

Probability and Computing – Important Random Variables and How to Sample Them

Stefan Walzer | WS 2024/2025

www.kit.edu

Content

1. What is Probability?

- 2. Bernoulli Distribution
- 3. Uniform Distribution
- 4. Rejection Sampling
- 5. Inverse Transform Sampling
- 6. Geometric Distribution
- 7. Sampling Without Replacement

8. Reservoir Sampling

What is a Probability?

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about objective stuff:

"The probability that the coin comes up heads is 50%."

Evidential / Bayesian Accounts

Probabilities reflect how much a rational agent believes in a proposition and about how much they are willing to bet on it.

It's about what I subjectively know:

"The probability that it is going to rain tomorrow is 33%."

See https://en.wikipedia.org/wiki/Probability_interpretations. In this lecture, we use a naive notion.

 Probability?
 Bernoulli
 Uniform
 Rejection
 Inverse Transform
 Geometric
 No Replacement
 Reservoir
 Appendix

 ●
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 <td

Bernoulli Distribution

Definition: Ber(p) for $p \in [0, 1]$

 $B \sim Ber(p)$ is a random variable with

$$Pr[B = 1] = p$$
 and $Pr[B = 0] = 1 - p$.

Standard Assumption: Access to Coin Flips

Algorithms have access to a sequence $B_1, B_2, \ldots \sim Ber(1/2)$ in independent uniformly random bits.

Exercise: Ber(1/3) from Ber(1/2)

Design an algorithm that outputs *B* such that $B \sim Ber(1/3)$.

Probability?	Bernoulli	Uniform	Rejection	Inverse Transform	Geometric	No Replacement	Reservoir	Appendix
0	•	00	00	00	0	0	0	00

Uniform Distribution

Definition: $\mathcal{U}(D)$ on finite D

If $|D| < \infty$, then $X \sim \mathcal{U}(D)$ is a random variable with

$$\Pr[X = x] = \frac{1}{|D|}$$
 for all $x \in D$.

Definition: $\mathcal{U}(D)$ on infinite D

If *D* is infinite but has finite measure^{*a*} then $X \sim U(D)$ is a random variable with uniform density function on *D*. Important example:

 $X \sim \mathcal{U}([0,1]) \Leftrightarrow \forall x \in [0,1] : \Pr[X < x] = x.$

^aFormal details: Not in this lecture.

Standard Assumption

Algorithms have access to $X_1, X_2, ... \sim U([0, 1])$. In practice: Initialise the significand^{*a*} of floating point number with random bits.

^aDeutsch: Mantisse.

Exercise: $\mathcal{U}(\{1,\ldots,n\})$ from $\mathcal{U}([0,1])$

Design an algorithm that outputs *X* such that $X \sim \mathcal{U}(\{1, ..., n\}).$

Probability?	Bernoulli o	Uniform ●○	Rejection 00	Inverse Transform	Geometric O	No Replacement O	Reservoir O	Appendix 00
--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

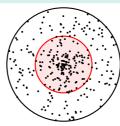
Uniform Distribution on a Disc

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Flawed Attempt

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $R \sim \mathcal{U}([0, 1])$ return $(R \cdot \cos \Phi, R \cdot \sin \Phi)$



Issue

Disc of half the radius is hit 50% of the time but makes up only 1/4 of the area!

Probability?	Bernoulli o	Uniform ○●	Rejection 00	Inverse Transform	Geometric o	No Replacement O	Reservoir o	Appendix 00
--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

Uniform Distribution on a Disc with Rejection Sampling

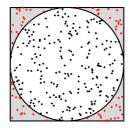
Task

Sample
$$P \sim \mathcal{U}(D)$$
 for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Solution with Rejection Sampling

repeat

 $\begin{vmatrix} \text{ sample } X \sim \mathcal{U}([-1,1]) \\ \text{ sample } Y \sim \mathcal{U}([-1,1]) \\ \text{ until } X^2 + Y^2 \leq 1 \\ \text{ return } (X,Y) \end{vmatrix}$



- Idea: $P \sim \mathcal{U}([-1, 1]^2)$ conditioned on $P \in D$ is uniform on D.
- Each sample is accepted with probability $\pi/4$.
- Expected number of rounds is $1/(\pi/4) = O(1)$.

Spoiler alert: We'll get worst-case constant time with inverse transform sampling later.

Probability?	Bernoulli O	Uniform 00	Rejection ●○	Inverse Transform	Geometric O	No Replacement O	Reservoir O	Appendix 00
--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

Rejection Sampling in General Discrete Distributions

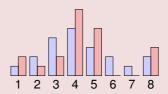
Exercise

Let \mathcal{D}_1 and \mathcal{D}_2 be distributions on a finite^{*a*} set *D*. Assume

- **1** We can sample in constant time from \mathcal{D}_1 .
- **2** There exists C > 0 such that for any $x \in D$ we have

$$\Pr_{X \sim \mathcal{D}_2}[X = x] \leq C \cdot \Pr_{X \sim \mathcal{D}_1}[X = x].$$

Design an algorithm that generates a sample from \mathcal{D}_2 in expected time $\mathcal{O}(C)$.



^aThis can be generalised.

Probability?	Bernoulli o	Uniform 00	Rejection ○●	Inverse Transform	Geometric o	No Replacement O	Reservoir o	Appendix 00
--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

Inverse Transform Sampling

• Let \mathcal{D} be a distribution on \mathbb{R} . \hookrightarrow e.g. $\mathcal{D} = \mathcal{N}(0, 1)$

Bernoulli

Probability?

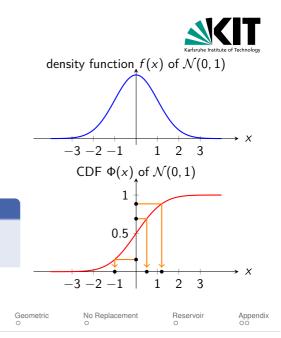
• Let $X \sim \mathcal{D}$ and $F_X(x) = \Pr[X \le x]$. $\hookrightarrow F_X$ is the *cumulative distribution function* of X \hookrightarrow the CDF of the normal distribution is called Φ

■ Let $F_X^{-1}(u) := \inf\{x \in \mathbb{R} \mid F_X(x) \ge u\}$. \hookrightarrow ordinary inverse for strictly monotone F_X

Theorem (Inverse Transform Sampling)

If $U \sim \mathcal{U}([0,1])$ then $F_X^{-1}(U) \stackrel{d}{=} X$, i.e. $F_X^{-1}(U) \sim \mathcal{D}$. (" $\stackrel{d}{=}$ " means: "has the same distribution as")

Reason:
$$\Pr[F_X^{-1}(U) \le x] = \Pr[U \le F_X(x)] = F_X(x).$$



Rejection

Inverse Transform

•0

Uniform Distribution on a Disc with Inverse Transform Sampling

Sample
$$P \sim \mathcal{U}(D)$$
 for $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

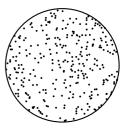
Preparation

If $(x, y) \sim \mathcal{U}(D)$ then $R = \sqrt{x^2 + y^2}$ satisfies

$$F_R(r) = \Pr[R \le r] = r^2 \pi / \pi = r^2$$
 hence $F_R^{-1}(u) = \sqrt{u}$.

Solution with Inverse Transform Sampling

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $U \sim \mathcal{U}([0, 1])$ $R \leftarrow \sqrt{U}$ return $(R \cdot \cos \Phi, R \cdot \sin \Phi)$



Geometric Distribution

Definition: $G \sim Geom_1(p)$ and $G' \sim Geom_0(p)$

Let $p \in (0, 1]$ and $B_1, B_2, \ldots \sim Ber(p)$. Then we define the geometric random variables

 $G:=\min\{i\in\mathbb{N}\mid B_i=1\}$

 \hookrightarrow number of Ber(p) trials until (and including) the first success

G' := G - 1

 \hookrightarrow number of Ber(p) failures before the first success

We write $G \sim Geom_1(p)$ and $G' \sim Geom_0(p)$.^a

^aIn the literature Geom is used inconsistently.

```
Sampling G \sim Geom_1(p) in time \mathcal{O}(G)
```

```
i \leftarrow 0
repeat
\begin{vmatrix} i \leftarrow i + 1 \\ \text{sample } X \sim Ber(p) \\ \text{until } X = 1
return i
```

Quite bad: $\mathbb{E}[G] = 1/p$ might be large.

Exercise

Use inverse transform sampling to sample $G \sim \text{Geom}_1(p)$ in time $\mathcal{O}(1)$.

	Probability?	Bernoulli O	Uniform 00	Rejection 00	Inverse Transform	Geometric ●	No Replacement O	Reservoir O	Appendix 00
--	--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

Sampling Without Replacement

Exercise

Design an algorithm that, given $k, n \in \mathbb{N}$ with $0 \le k \le n$ outputs a set $S \subseteq [n]$ of size |S| = k uniformly at random.

Reservoir Sampling

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

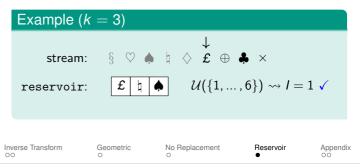
Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).



Uniform

Rejection

Conclusion

General Techniques

- rejection sampling
- inverse transform sampling

Distributions

- Bernoulli distribution
- uniform distribution
- geometric distribution

Other Stuff

- sampling from a set without replacement
- reservoir sampling

Probability?	Bernoulli o	Uniform 00	Rejection 00	Inverse Transform	Geometric o	No Replacement O	Reservoir O	Appendix ●○
--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

Anhang: Mögliche Prüfungsfragen I

- Wie kann man $B \sim Ber(p)$ sampeln? Wie $X \sim \mathcal{U}(\{1, \dots, n\})$? Unter welchen Annahmen?
- Wie funktioniert Rejection Sampling allgemein? Unter welchen Voraussetzungen führt Rejection Sampling zu einem effizienten Algorithmus?
- Wie funktioniert Inverse Transform Sampling allgemein? Unter welchen Voraussetzungen führt Inverse Transform Sampling zu einem effizienten Algorithmus?
- Wie kann man einen zufälligen Punkt einer Kreisscheibe sampeln? Nenne zwei Techniken und nenne Vorbzw. Nachteile.
- Gegeben eine Menge der Größe n. Wie kann ich eine zufällige Teilmenge der Größe k ≤ n bestimmen und wie lange dauert das?
- Erkläre Reservoir Sampling. Ist das nicht einfach ein langsamerer Algorithmus f
 ür "Sampling without Replacement"?