

Probability and Computing – Important Random Variables and How to Sample Them

Stefan Walzer | WS 2024/2025

KIT – The Research University in the Helmholtz Association **www.kit.edu**

Content

- **2. [Bernoulli Distribution](#page-7-0)**
- **3. [Uniform Distribution](#page-10-0)**
- **4. [Rejection Sampling](#page-18-0)**
- **5. [Inverse Transform Sampling](#page-24-0)**
- **6. [Geometric Distribution](#page-32-0)**
- **7. [Sampling Without Replacement](#page-35-0)**

8. [Reservoir Sampling](#page-36-0)

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about **objective stuff**:

"The probability that the coin comes up heads is 50%*."*

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about **objective stuff**:

"The probability that the coin comes up heads is 50%*."*

Evidential / Bayesian Accounts

Probabilities reflect how much a rational agent believes in a proposition and about how much they are willing to bet on it.

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about **objective stuff**:

"The probability that the coin comes up heads is 50%*."*

Evidential / Bayesian Accounts

Probabilities reflect how much a rational agent believes in a proposition and about how much they are willing to bet on it.

It's about **what I subjectively know**:

"The probability that it is going to rain tomorrow is 33%*."*

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about **objective stuff**:

"The probability that the coin comes up heads is 50%*."*

Evidential / Bayesian Accounts

Probabilities reflect how much a rational agent believes in a proposition and about how much they are willing to bet on it.

It's about **what I subjectively know**:

"The probability that it is going to rain tomorrow is 33%*."*

See https://en.wikipedia.org/wiki/Probability_interpretations. In this lecture, we use a naive notion.

Bernoulli Distribution

Definition: *Ber*(p) for $p \in [0, 1]$

B ∼ *Ber*(*p*) is a random variable with

 $Pr[B = 1] = p$ and $Pr[B = 0] = 1 - p$.

Bernoulli Distribution

Definition: $Ber(p)$ for $p \in [0, 1]$

B ∼ *Ber*(*p*) is a random variable with

$$
Pr[B = 1] = p \text{ and } Pr[B = 0] = 1 - p.
$$

Standard Assumption: Access to Coin Flips

Algorithms have access to a sequence *B*1, *B*2, . . . ∼ *Ber*(1/2) in independent uniformly random bits.

Bernoulli Distribution

Definition: $Ber(p)$ for $p \in [0, 1]$

B ∼ *Ber*(*p*) is a random variable with

$$
Pr[B = 1] = p \text{ and } Pr[B = 0] = 1 - p.
$$

Standard Assumption: Access to Coin Flips

Algorithms have access to a sequence *B*1, *B*2, . . . ∼ *Ber*(1/2) in independent uniformly random bits.

Exercise: *Ber*(1/3) from *Ber*(1/2)

Design an algorithm that outputs *B* such that *B* ∼ *Ber*(1/3).

Definition: U(*D*) on finite *D*

If $|D| < \infty$, then *X* ∼ $U(D)$ is a random variable with

$$
Pr[X = x] = \frac{1}{|D|}
$$
 for all $x \in D$.

Definition: U(*D*) on finite *D*

If $|D| < \infty$, then *X* ∼ $U(D)$ is a random variable with

$$
Pr[X = x] = \frac{1}{|D|}
$$
 for all $x \in D$.

Definition: U(*D*) on infinite *D*

If *D* is infinite but has finite measure*^a* then *X* ∼ U(*D*) is a random variable with uniform density function on *D*. Important example:

X ∼ $\mathcal{U}([0, 1]) \Leftrightarrow \forall x \in [0, 1]: Pr[X < x] = x$.

*^a*Formal details: Not in this lecture.

[Probability?](#page-2-0) [Bernoulli](#page-7-0) [Uniform](#page-10-0) [Rejection](#page-18-0) [Inverse Transform](#page-24-0) [Geometric](#page-32-0) [No Replacement](#page-35-0) [Reservoir](#page-36-0) [Appendix](#page-61-0)

Definition: U(*D*) on finite *D*

If $|D| < \infty$, then *X* ∼ $U(D)$ is a random variable with

$$
Pr[X = x] = \frac{1}{|D|}
$$
 for all $x \in D$.

Definition: U(*D*) on infinite *D*

If *D* is infinite but has finite measure*^a* then *X* ∼ U(*D*) is a random variable with uniform density function on *D*. Important example:

X ∼ $\mathcal{U}([0, 1]) \Leftrightarrow \forall x \in [0, 1]: Pr[X < x] = x$.

Standard Assumption

Algorithms have access to $X_1, X_2, \ldots \sim \mathcal{U}([0, 1]).$ In practice: Initialise the significand*^a* of floating point number with random bits.

*^a*Deutsch: Mantisse.

*^a*Formal details: Not in this lecture.

Definition: U(*D*) on finite *D*

If $|D| < \infty$, then *X* ∼ $U(D)$ is a random variable with

$$
Pr[X = x] = \frac{1}{|D|}
$$
 for all $x \in D$.

Definition: U(*D*) on infinite *D*

If *D* is infinite but has finite measure*^a* then *X* ∼ U(*D*) is a random variable with uniform density function on *D*. Important example:

 $X \sim \mathcal{U}([0, 1]) \Leftrightarrow \forall x \in [0, 1] : Pr[X < x] = x.$

*^a*Formal details: Not in this lecture.

Standard Assumption

Algorithms have access to $X_1, X_2, \ldots \sim \mathcal{U}([0, 1]).$ In practice: Initialise the significand*^a* of floating point number with random bits.

*^a*Deutsch: Mantisse.

Exercise: $\mathcal{U}(\{1,\ldots,n\})$ from $\mathcal{U}([0,1])$

Design an algorithm that outputs *X* such that $X \sim \mathcal{U}(\{1,\ldots,n\}).$

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1 \}.$

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1 \}.$

Flawed Attempt

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $R \sim \mathcal{U}([0,1])$ **return** $(R \cdot \cos \Phi, R \cdot \sin \Phi)$

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1 \}.$

Flawed Attempt

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $R \sim \mathcal{U}([0,1])$ **return** $(R \cdot \cos \Phi, R \cdot \sin \Phi)$

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1 \}.$

Flawed Attempt

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $R \sim \mathcal{U}([0,1])$ **return** $(R \cdot \cos \Phi, R \cdot \sin \Phi)$

Issue

Disc of half the radius is hit 50% of the time but makes up only 1/4 of the area!

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1 \}.$

Task

Sample
$$
P \sim \mathcal{U}(D)
$$
 for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Solution with Rejection Sampling

repeat

$$
\begin{array}{c}\n\text{sample } X \sim \mathcal{U}([-1, 1]) \\
\text{sample } Y \sim \mathcal{U}([-1, 1]) \\
\text{until } X^2 + Y^2 \le 1 \\
\text{return } (X, Y)\n\end{array}
$$

Task

Sample
$$
P \sim \mathcal{U}(D)
$$
 for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Solution with Rejection Sampling

\n**repeat**

\n
$$
\begin{array}{c}\n \text{sample } X \sim \mathcal{U}([-1, 1]) \\
 \text{sample } Y \sim \mathcal{U}([-1, 1]) \\
 \text{until } X^2 + Y^2 \leq 1 \\
 \text{return } (X, Y)\n \end{array}
$$

Idea: *P* ∼ U([−1, 1] 2) *conditioned* on *P* ∈ *D* is uniform on *D*.

Task

Sample
$$
P \sim \mathcal{U}(D)
$$
 for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Solution with Rejection Sampling

repeat

```
sample X \sim \mathcal{U}([-1,1])sample Y \sim \mathcal{U}([-1, 1])until X^2 + Y^2 \le 1return (X, Y)
```


- Idea: *P* ∼ U([−1, 1] 2) *conditioned* on *P* ∈ *D* is uniform on *D*.
- Each sample is accepted with probability $\pi/4$.
- Expected number of rounds is $1/(\pi/4) = \mathcal{O}(1)$.

Task

Sample
$$
P \sim \mathcal{U}(D)
$$
 for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Solution with Rejection Sampling

repeat

```
sample X \sim \mathcal{U}([-1,1])sample Y \sim \mathcal{U}([-1, 1])until X^2 + Y^2 \le 1return (X, Y)
```


- Idea: *P* ∼ U([−1, 1] 2) *conditioned* on *P* ∈ *D* is uniform on *D*.
- Each sample is accepted with probability $\pi/4$.
- Expected number of rounds is $1/(\pi/4) = \mathcal{O}(1)$.

Spoiler alert: We'll get worst-case constant time with inverse transform sampling later.

Rejection Sampling in General Discrete Distributions

Exercise

Let \mathcal{D}_1 and \mathcal{D}_2 be distributions on a finite^a set D. Assume

1 We can sample in constant time from \mathcal{D}_1 .

2 There exists $C > 0$ such that for any $x \in D$ we have

$$
\Pr_{X \sim \mathcal{D}_2}[X = x] \leq C \cdot \Pr_{X \sim \mathcal{D}_1}[X = x].
$$

Design an algorithm that generates a sample from \mathcal{D}_2 in expected time $\mathcal{O}(C)$.

*^a*This can be generalised.

Let D be a distribution on \mathbb{R} . \hookrightarrow e.g. $\mathcal{D} = \mathcal{N}(0, 1)$

- Let D be a distribution on \mathbb{R} . \hookrightarrow e.g. $\mathcal{D} = \mathcal{N}(0, 1)$
- Let $X \sim \mathcal{D}$ and $F_X(x) = \Pr[X \le x]$.

 \hookrightarrow *F_X* is the *cumulative distribution function* of X

 \hookrightarrow the CDF of the normal distribution is called Φ

- Let D be a distribution on \mathbb{R} . \hookrightarrow e.g. $\mathcal{D} = \mathcal{N}(0, 1)$
- Let $X \sim \mathcal{D}$ and $F_X(x) = \Pr[X \le x]$. \rightarrow *F_X* is the *cumulative distribution function* of X \hookrightarrow the CDF of the normal distribution is called Φ
- Let $F_X^{-1}(u) := \inf\{x \in \mathbb{R} \mid F_X(x) \ge u\}.$

 \hookrightarrow ordinary inverse for strictly monotone F_X

- Let D be a distribution on \mathbb{R} . \hookrightarrow e.g. $\mathcal{D} = \mathcal{N}(0, 1)$
- Let $X \sim \mathcal{D}$ and $F_X(x) = \Pr[X \le x]$. \rightarrow *F_X* is the *cumulative distribution function* of X \hookrightarrow the CDF of the normal distribution is called Φ Let $F_X^{-1}(u) := \inf\{x \in \mathbb{R} \mid F_X(x) \ge u\}.$

 \hookrightarrow ordinary inverse for strictly monotone F_X

Theorem (Inverse Transform Sampling)

If $U \sim \mathcal{U}([0,1])$ then $F_X^{-1}(U) \stackrel{d}{=} X$, i.e. $F_X^{-1}(U) \sim \mathcal{D}$. $($ " $\stackrel{d}{=}$ " means: "has the same distribution as")

- Let D be a distribution on \mathbb{R} . \hookrightarrow e.g. $\mathcal{D} = \mathcal{N}(0, 1)$
- Let $X \sim \mathcal{D}$ and $F_X(x) = \Pr[X \le x]$. \rightarrow *F_X* is the *cumulative distribution function* of X \hookrightarrow the CDF of the normal distribution is called Φ Let $F_X^{-1}(u) := \inf\{x \in \mathbb{R} \mid F_X(x) \ge u\}.$

 \hookrightarrow ordinary inverse for strictly monotone F_X

Theorem (Inverse Transform Sampling)

If $U \sim \mathcal{U}([0,1])$ then $F_X^{-1}(U) \stackrel{d}{=} X$, i.e. $F_X^{-1}(U) \sim \mathcal{D}$. $($ " $\stackrel{d}{=}$ " means: "has the same distribution as")

Reason:
$$
Pr[F_X^{-1}(U) \le x] = Pr[U \le F_X(x)] = F_X(x)
$$
.

Uniform Distribution on a Disc with Inverse Transform Sampling

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1 \}.$

Uniform Distribution on a Disc with Inverse Transform Sampling

Task

Sample
$$
P \sim \mathcal{U}(D)
$$
 for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Preparation

If $(x, y) \sim \mathcal{U}(D)$ then $R = \sqrt{x^2 + y^2}$ satisfies

$$
F_R(r) = \Pr[R \le r] = r^2 \pi/\pi = r^2
$$
 hence $F_R^{-1}(u) = \sqrt{u}$.

Uniform Distribution on a Disc with Inverse Transform Sampling

Sample $P \sim \mathcal{U}(D)$ for $D = \{ (x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1 \}.$

Preparation

If $(x, y) \sim \mathcal{U}(D)$ then $R = \sqrt{x^2 + y^2}$ satisfies

$$
F_R(r) = \Pr[R \le r] = r^2 \pi/\pi = r^2
$$
 hence $F_R^{-1}(u) = \sqrt{u}$.

Solution with Inverse Transform Sampling

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $U \sim \mathcal{U}([0,1])$ $R \leftarrow \sqrt{U}$ **return** $(R \cdot \cos \Phi, R \cdot \sin \Phi)$

Geometric Distribution

$\mathsf{Definition}\colon G\sim \mathsf{Geom}_1(\rho)$ and $G'\sim \mathsf{Geom}_0(\rho)$

Let *p* ∈ (0, 1] and *B*₁, *B*₂, . . . ∼ *Ber*(*p*). Then we define the geometric random variables

G := $\min\{i \in \mathbb{N} \mid B_i = 1\}$

 \hookrightarrow number of *Ber(p)* trials until (and including) the first success $G' := G - 1$

 \hookrightarrow number of *Ber(p)* failures before the first success

 We write $G \sim Geom_1(\rho)$ and $G' \sim Geom_0(\rho).^{\mathsf{A}}$

a In the literature *Geom* is used inconsistently.

Geometric Distribution

$\mathsf{Definition}\colon G\sim \mathsf{Geom}_1(\rho)$ and $G'\sim \mathsf{Geom}_0(\rho)$

Let *p* ∈ (0, 1] and *B*₁, *B*₂, . . . ∼ *Ber*(*p*). Then we define the geometric random variables

G := min{*i* \in N | *B*_{*i*} = 1}

 \hookrightarrow number of *Ber(p)* trials until (and including) the first success $G' := G - 1$

 \hookrightarrow number of *Ber(p)* failures before the first success

 We write $G \sim Geom_1(\rho)$ and $G' \sim Geom_0(\rho).^{\mathsf{A}}$

a In the literature *Geom* is used inconsistently.

```
Sampling G ∼ Geom<sub>1</sub>(p) in time \mathcal{O}(G)
```

```
i \leftarrow 0repeat
    i \leftarrow i + 1sample X ∼ Ber(p)
until X = 1return i
Quite bad: \mathbb{E}[G] = 1/p might be large.
```


Geometric Distribution

$\mathsf{Definition}\colon G\sim \mathsf{Geom}_1(\rho)$ and $G'\sim \mathsf{Geom}_0(\rho)$

Let *p* ∈ (0, 1] and *B*₁, *B*₂, . . . ∼ *Ber*(*p*). Then we define the geometric random variables

G := min{*i* \in N | *B*_{*i*} = 1}

 \hookrightarrow number of *Ber(p)* trials until (and including) the first success $G' := G - 1$

 \hookrightarrow number of *Ber(p)* failures before the first success

 We write $G \sim Geom_1(\rho)$ and $G' \sim Geom_0(\rho).^{\mathsf{A}}$

a In the literature *Geom* is used inconsistently.

```
Sampling G ∼ Geom<sub>1</sub>(p) in time \mathcal{O}(G)
```

```
i \leftarrow 0repeat
    i \leftarrow i + 1sample X ∼ Ber(p)
until X = 1return i
```
Quite bad: $\mathbb{E}[G] = 1/p$ might be large.

Exercise

Use inverse transform sampling to sample *G* ∼ *Geom*₁(*p*) in time $\mathcal{O}(1)$.

Sampling Without Replacement

Exercise

Design an algorithm that, given $k, n \in \mathbb{N}$ with $0 \leq k \leq n$ outputs a set $S \subseteq [n]$ of size $|S| = k$ uniformly at random.

Karlsruhe Institute of Technology

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n \leftarrow 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
   reservoir[n] ← x
else
    sample I ∼ U({1, . . . , n})
    if I ≤ k then
        reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n \leftarrow 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```
Karlsruhe Institute of Techn

Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n \leftarrow 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n \leftarrow 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```
Karlsruhe Institute of Techn

Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir[n] \leftarrow xelse
    sample I \sim \mathcal{U}(\{1,\ldots,n\})if I ≤ k then
         reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(*k*)**:**

```
allocate reservoir[1..k]
n ← 0
```
Algorithm observeItem(*x*):

```
n \leftarrow n + 1if n ≤ k then
    reservoir [n] \leftarrow xelse
    sample I ∼ U({1, . . . , n})
    if I ≤ k then
        reservoir[I] ← x
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \geq k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size *k* with equal probability.

Conclusion

General Techniques

- **rejection sampling**
- **n** inverse transform sampling

Distributions

- **Bernoulli distribution**
- uniform distribution
- **q**eometric distribution

Other Stuff

- sampling from a set without replacement
- **reservoir sampling**

Anhang: Mögliche Prüfungsfragen I

- Wie kann man *B* ∼ *Ber*(*p*) sampeln? Wie *X* ∼ $\mathcal{U}(\{1,\ldots,n\})$? Unter welchen Annahmen?
- Wie funktioniert Rejection Sampling allgemein? Unter welchen Voraussetzungen führt Rejection Sampling zu einem effizienten Algorithmus?
- Wie funktioniert Inverse Transform Sampling allgemein? Unter welchen Voraussetzungen führt Inverse Transform Sampling zu einem effizienten Algorithmus?
- Wie kann man einen zufälligen Punkt einer Kreisscheibe sampeln? Nenne zwei Techniken und nenne Vorbzw. Nachteile.
- Gegeben eine Menge der Größe *n*. Wie kann ich eine zufällige Teilmenge der Größe *k* ≤ *n* bestimmen und wie lange dauert das?
- **Erkläre Reservoir Sampling. Ist das nicht einfach ein langsamerer Algorithmus für "Sampling without "** Replacement"?

