

Probability and Computing – Important Random Variables and How to Sample Them

Stefan Walzer | WS 2024/2025

www.kit.edu

Content

1. What is Probability?

- 2. Bernoulli Distribution
- 3. Uniform Distribution
- 4. Rejection Sampling
- 5. Inverse Transform Sampling
- 6. Geometric Distribution
- 7. Sampling Without Replacement

8. Reservoir Sampling

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

Probability?	Bernoulli	Uniform	Rejection	Inverse Transform	Geometric	No Replacement	Reservoir	Appendix
•	0	00	00	00	0	0	0	00

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about objective stuff:

"The probability that the coin comes up heads is 50%."

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about objective stuff:

"The probability that the coin comes up heads is 50%."

Evidential / Bayesian Accounts

Probabilities reflect how much a rational agent believes in a proposition and about how much they are willing to bet on it.

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about objective stuff:

"The probability that the coin comes up heads is 50%."

Evidential / Bayesian Accounts

Probabilities reflect how much a rational agent believes in a proposition and about how much they are willing to bet on it.

It's about what I subjectively know:

"The probability that it is going to rain tomorrow is 33%."

Probability?	Bernoulli	Uniform	Rejection	Inverse Transform	Geometric	No Replacement	Reservoir	Appendix
●	O	00	00		O	O	O	00

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about objective stuff:

"The probability that the coin comes up heads is 50%."

Evidential / Bayesian Accounts

Probabilities reflect how much a rational agent believes in a proposition and about how much they are willing to bet on it.

It's about what I subjectively know:

"The probability that it is going to rain tomorrow is 33%."

See https://en.wikipedia.org/wiki/Probability_interpretations. In this lecture, we use a naive notion.

 Probability?
 Bernoulli
 Uniform
 Rejection
 Inverse Transform
 Geometric
 No Replacement
 Reservoir
 Appendix

 ●
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 ○
 <td

Bernoulli Distribution

Definition: Ber(p) for $p \in [0, 1]$

 $B \sim Ber(p)$ is a random variable with

$$Pr[B = 1] = p$$
 and $Pr[B = 0] = 1 - p$.

Bernoulli Distribution

Definition: Ber(p) for $p \in [0, 1]$

 $B \sim Ber(p)$ is a random variable with

$$Pr[B = 1] = p$$
 and $Pr[B = 0] = 1 - p$.

Standard Assumption: Access to Coin Flips

Algorithms have access to a sequence $B_1, B_2, \ldots \sim Ber(1/2)$ in independent uniformly random bits.

Bernoulli Distribution

Definition: Ber(p) for $p \in [0, 1]$

 $B \sim Ber(p)$ is a random variable with

$$Pr[B = 1] = p$$
 and $Pr[B = 0] = 1 - p$.

Standard Assumption: Access to Coin Flips

Algorithms have access to a sequence $B_1, B_2, \ldots \sim Ber(1/2)$ in independent uniformly random bits.

Exercise: Ber(1/3) from Ber(1/2)

Design an algorithm that outputs *B* such that $B \sim Ber(1/3)$.

Probability?	Bernoulli	Uniform	Rejection	Inverse Transform	Geometric	No Replacement	Reservoir	Appendix
0	•	00	00	00	0	0	0	00

Definition: $\mathcal{U}(D)$ on finite D

If $|D| < \infty$, then $X \sim \mathcal{U}(D)$ is a random variable with

$$\Pr[X = x] = \frac{1}{|D|} \text{ for all } x \in D.$$

Probability?	Bernoulli O	Uniform ●○	Rejection	Inverse Transform	Geometric o	No Replacement O	Reservoir O	Appendix 00
--------------	----------------	---------------	-----------	-------------------	----------------	---------------------	----------------	----------------

Definition: $\mathcal{U}(D)$ on finite D

If $|D| < \infty$, then $X \sim \mathcal{U}(D)$ is a random variable with

$$\Pr[X = x] = \frac{1}{|D|}$$
 for all $x \in D$.

Definition: $\mathcal{U}(D)$ on infinite D

If *D* is infinite but has finite measure^{*a*} then $X \sim U(D)$ is a random variable with uniform density function on *D*. Important example:

 $X \sim \mathcal{U}([0,1]) \Leftrightarrow \forall x \in [0,1] : \Pr[X < x] = x.$

Uniform

.

^aFormal details: Not in this lecture.

Bernoulli

Probability?

5/14 WS 2024/2025 Stefan Walzer: Important Random Variables and How to Sample Them

Rejection

Inverse Transform

Geometric

No Replacement

ITI, Algorithm Engineering

Appendix

Reservoir

Definition: $\mathcal{U}(D)$ on finite D

If $|D| < \infty$, then $X \sim \mathcal{U}(D)$ is a random variable with

$$\Pr[X = x] = \frac{1}{|D|}$$
 for all $x \in D$.

Definition: $\mathcal{U}(D)$ on infinite D

If *D* is infinite but has finite measure^{*a*} then $X \sim U(D)$ is a random variable with uniform density function on *D*. Important example:

 $X \sim \mathcal{U}([0,1]) \Leftrightarrow \forall x \in [0,1] : \Pr[X < x] = x.$

Standard Assumption

Algorithms have access to $X_1, X_2, \ldots \sim \mathcal{U}([0, 1])$. In practice: Initialise the significand^{*a*} of floating point number with random bits.

^aDeutsch: Mantisse.

^aFormal details: Not in this lecture.

Probability?	Bernoulli o	Uniform ●○	Rejection	Inverse Transform	Geometric o	No Replacement O	Reservoir o	Appendix 00
--------------	----------------	---------------	-----------	-------------------	----------------	---------------------	----------------	----------------

Definition: $\mathcal{U}(D)$ on finite D

If $|D| < \infty$, then $X \sim \mathcal{U}(D)$ is a random variable with

$$\Pr[X = x] = \frac{1}{|D|}$$
 for all $x \in D$.

Definition: $\mathcal{U}(D)$ on infinite D

If *D* is infinite but has finite measure^{*a*} then $X \sim U(D)$ is a random variable with uniform density function on *D*. Important example:

 $X \sim \mathcal{U}([0,1]) \Leftrightarrow \forall x \in [0,1] : \Pr[X < x] = x.$

^aFormal details: Not in this lecture.

Standard Assumption

Algorithms have access to $X_1, X_2, ... \sim U([0, 1])$. In practice: Initialise the significand^{*a*} of floating point number with random bits.

^aDeutsch: Mantisse.

Exercise: $\mathcal{U}(\{1,\ldots,n\})$ from $\mathcal{U}([0,1])$

Design an algorithm that outputs *X* such that $X \sim \mathcal{U}(\{1, ..., n\}).$

Probability?	Bernoulli o	Uniform ●○	Rejection 00	Inverse Transform	Geometric O	No Replacement O	Reservoir O	Appendix 00
--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Probability?	Bernoulli	Uniform	Rejection	Inverse Transform	Geometric	No Replacement	Reservoir	Appendix
0	0	00	00	00	0	0	0	00

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Flawed Attempt

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $R \sim \mathcal{U}([0, 1])$ return $(R \cdot \cos \Phi, R \cdot \sin \Phi)$

Probability?	Bernoulli o	Uniform ○●	Rejection 00	Inverse Transform	Geometric o	No Replacement O	Reservoir o	Appendix 00

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Flawed Attempt

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $R \sim \mathcal{U}([0, 1])$ return $(R \cdot \cos \Phi, R \cdot \sin \Phi)$

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Flawed Attempt

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $R \sim \mathcal{U}([0, 1])$ return $(R \cdot \cos \Phi, R \cdot \sin \Phi)$

Issue

Disc of half the radius is hit 50% of the time but makes up only 1/4 of the area!

Probability?	Bernoulli o	Uniform ○●	Rejection 00	Inverse Transform	Geometric O	No Replacement O	Reservoir o	Appendix 00
--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Probability?	Bernoulli	Uniform	Rejection	Inverse Transform	Geometric	No Replacement	Reservoir	Appendix
0	0	00	● ○	00	0	0	0	00

Task

Sample
$$P \sim \mathcal{U}(D)$$
 for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Solution with Rejection Sampling

repeat

$$\begin{vmatrix} \text{ sample } X \sim \mathcal{U}([-1, 1]) \\ \text{ sample } Y \sim \mathcal{U}([-1, 1]) \\ \text{ until } X^2 + Y^2 \leq 1 \\ \text{ return } (X, Y) \end{vmatrix}$$

Task

Sample
$$P \sim \mathcal{U}(D)$$
 for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

S	Solution with Rejection Sampling
re	epeat
	sample $X \sim \mathcal{U}([-1, 1])$
	sample $X \sim \mathcal{U}([-1, 1])$ sample $Y \sim \mathcal{U}([-1, 1])$
u	ntil $X^2 + Y^2 \le 1$
	eturn (X, Y)

• Idea: $P \sim \mathcal{U}([-1, 1]^2)$ conditioned on $P \in D$ is uniform on D.

Probability?	Bernoulli O	Uniform 00	Rejection ●○	Inverse Transform	Geometric O	No Replacement O	Reservoir o	Appendix 00
--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

Task

Sample
$$P \sim \mathcal{U}(D)$$
 for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Solution with Rejection Sampling

repeat

```
\begin{vmatrix} \text{ sample } X \sim \mathcal{U}([-1,1]) \\ \text{ sample } Y \sim \mathcal{U}([-1,1]) \\ \text{ until } X^2 + Y^2 \leq 1 \\ \text{ return } (X,Y) \end{vmatrix}
```


- Idea: $P \sim \mathcal{U}([-1, 1]^2)$ conditioned on $P \in D$ is uniform on D.
- Each sample is accepted with probability $\pi/4$.
- Expected number of rounds is $1/(\pi/4) = O(1)$.

Probability?	Bernoulli o	Uniform 00	Rejection ●○	Inverse Transform	Geometric o	No Replacement O	Reservoir o	Appendix 00
--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

Task

Sample
$$P \sim \mathcal{U}(D)$$
 for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Solution with Rejection Sampling

repeat

 $\begin{vmatrix} \text{ sample } X \sim \mathcal{U}([-1,1]) \\ \text{ sample } Y \sim \mathcal{U}([-1,1]) \\ \text{ until } X^2 + Y^2 \leq 1 \\ \text{ return } (X,Y) \end{vmatrix}$

- Idea: $P \sim \mathcal{U}([-1, 1]^2)$ conditioned on $P \in D$ is uniform on D.
- Each sample is accepted with probability $\pi/4$.
- Expected number of rounds is $1/(\pi/4) = O(1)$.

Spoiler alert: We'll get worst-case constant time with inverse transform sampling later.

Probability?	Bernoulli O	Uniform 00	Rejection ●○	Inverse Transform	Geometric O	No Replacement O	Reservoir O	Appendix 00
--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

Rejection Sampling in General Discrete Distributions

Exercise

Let \mathcal{D}_1 and \mathcal{D}_2 be distributions on a finite^{*a*} set *D*. Assume

- **1** We can sample in constant time from \mathcal{D}_1 .
- **2** There exists C > 0 such that for any $x \in D$ we have

$$\Pr_{X \sim \mathcal{D}_2}[X = x] \leq C \cdot \Pr_{X \sim \mathcal{D}_1}[X = x].$$

Design an algorithm that generates a sample from \mathcal{D}_2 in expected time $\mathcal{O}(C)$.

^aThis can be generalised.

Probability?	Bernoulli o	Uniform 00	Rejection ○●	Inverse Transform	Geometric o	No Replacement O	Reservoir o	Appendix 00
--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

• Let \mathcal{D} be a distribution on \mathbb{R} . \hookrightarrow e.g. $\mathcal{D} = \mathcal{N}(0, 1)$

Probability?	Bernoulli o	Uniform 00	Rejection	Inverse Transform ●○	Geometric o	No Replacement	Reservoir O	Appendix 00
--------------	----------------	---------------	-----------	-------------------------	----------------	----------------	----------------	----------------

• Let \mathcal{D} be a distribution on \mathbb{R} . \hookrightarrow e.g. $\mathcal{D} = \mathcal{N}(0, 1)$

Bernoulli

Probability?

• Let $X \sim \mathcal{D}$ and $F_X(x) = \Pr[X \leq x]$.

 \hookrightarrow *F_X* is the *cumulative distribution function* of *X* \hookrightarrow the CDF of the normal distribution is called Φ

Rejection

Inverse Transform

•0

Uniform

• Let \mathcal{D} be a distribution on \mathbb{R} . \hookrightarrow e.g. $\mathcal{D} = \mathcal{N}(0, 1)$

Bernoulli

Probability?

- Let X ~ D and F_X(x) = Pr[X ≤ x].
 → F_X is the *cumulative distribution function* of X
 → the CDF of the normal distribution is called Φ
- Let $F_X^{-1}(u) := \inf\{x \in \mathbb{R} \mid F_X(x) \ge u\}.$

 \hookrightarrow ordinary inverse for strictly monotone F_X

Rejection

Inverse Transform

•0

- Let \mathcal{D} be a distribution on \mathbb{R} . \hookrightarrow e.g. $\mathcal{D} = \mathcal{N}(0, 1)$
- Let X ~ D and F_X(x) = Pr[X ≤ x].
 → F_X is the *cumulative distribution function* of X
 → the CDF of the normal distribution is called Φ
 Let F_X⁻¹(u) := inf{x ∈ ℝ | F_X(x) ≥ u}.
 - \rightarrow ordinary inverse for strictly monotone F_X

Theorem (Inverse Transform Sampling)

If
$$U \sim \mathcal{U}([0,1])$$
 then $F_X^{-1}(U) \stackrel{d}{=} X$, i.e. $F_X^{-1}(U) \sim \mathcal{D}$.
(" $\stackrel{d}{=}$ " means: "has the same distribution as")

• Let \mathcal{D} be a distribution on \mathbb{R} . \hookrightarrow e.g. $\mathcal{D} = \mathcal{N}(0, 1)$

Bernoulli

Probability?

• Let $X \sim \mathcal{D}$ and $F_X(x) = \Pr[X \le x]$. $\hookrightarrow F_X$ is the *cumulative distribution function* of X \hookrightarrow the CDF of the normal distribution is called Φ

■ Let $F_X^{-1}(u) := \inf\{x \in \mathbb{R} \mid F_X(x) \ge u\}$. \hookrightarrow ordinary inverse for strictly monotone F_X

Theorem (Inverse Transform Sampling)

If $U \sim \mathcal{U}([0,1])$ then $F_X^{-1}(U) \stackrel{d}{=} X$, i.e. $F_X^{-1}(U) \sim \mathcal{D}$. (" $\stackrel{d}{=}$ " means: "has the same distribution as")

Reason:
$$\Pr[F_X^{-1}(U) \le x] = \Pr[U \le F_X(x)] = F_X(x).$$

Rejection

Inverse Transform

•0

Uniform Distribution on a Disc with Inverse Transform Sampling

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Probability?	Bernoulli	Uniform	Rejection	Inverse Transform	Geometric	No Replacement	Reservoir	Appendix
0	0	00	00	00	0	0	0	00

Uniform Distribution on a Disc with Inverse Transform Sampling

Task

Sample
$$P \sim \mathcal{U}(D)$$
 for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Preparation

If $(x, y) \sim \mathcal{U}(D)$ then $R = \sqrt{x^2 + y^2}$ satisfies

$$F_R(r) = \Pr[R \le r] = r^2 \pi / \pi = r^2$$
 hence $F_R^{-1}(u) = \sqrt{u}$.

Uniform Distribution on a Disc with Inverse Transform Sampling

Sample
$$P \sim \mathcal{U}(D)$$
 for $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}.$

Preparation

If $(x, y) \sim \mathcal{U}(D)$ then $R = \sqrt{x^2 + y^2}$ satisfies

$$F_R(r) = \Pr[R \le r] = r^2 \pi / \pi = r^2$$
 hence $F_R^{-1}(u) = \sqrt{u}$.

Solution with Inverse Transform Sampling

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $U \sim \mathcal{U}([0, 1])$ $R \leftarrow \sqrt{U}$ return $(R \cdot \cos \Phi, R \cdot \sin \Phi)$

Geometric Distribution

Definition: $G \sim Geom_1(p)$ and $G' \sim Geom_0(p)$

Let $p \in (0, 1]$ and $B_1, B_2, \ldots \sim Ber(p)$. Then we define the geometric random variables

 $G:=\min\{i\in\mathbb{N}\mid B_i=1\}$

 \hookrightarrow number of Ber(p) trials until (and including) the first success

G' := G - 1

 \hookrightarrow number of Ber(p) failures before the first success

We write $G \sim Geom_1(p)$ and $G' \sim Geom_0(p)$.^a

^aIn the literature Geom is used inconsistently.

Probability?	Bernoulli O	Uniform 00	Rejection	Inverse Transform	Geometric •	No Replacement O	Reservoir o	Appendix 00
--------------	----------------	---------------	-----------	-------------------	----------------	---------------------	----------------	----------------

Geometric Distribution

Definition: $G \sim Geom_1(p)$ and $G' \sim Geom_0(p)$

Let $p \in (0, 1]$ and $B_1, B_2, \ldots \sim Ber(p)$. Then we define the geometric random variables

 $G:=\min\{i\in\mathbb{N}\mid B_i=1\}$

 \hookrightarrow number of Ber(p) trials until (and including) the first success

G' := G - 1

 \hookrightarrow number of Ber(p) failures before the first success

We write $G \sim Geom_1(p)$ and $G' \sim Geom_0(p)$.^{*a*}

^aIn the literature Geom is used inconsistently.

```
Sampling G \sim Geom_1(p) in time \mathcal{O}(G)
```

```
i \leftarrow 0
repeat
\begin{vmatrix} i \leftarrow i + 1 \\ \text{sample } X \sim Ber(p) \\ \text{until } X = 1
return i
Quite bad: \mathbb{E}[G] = 1/p might be large.
```

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric O	Probability?
--	--------------

Geometric Distribution

Definition: $G \sim Geom_1(p)$ and $G' \sim Geom_0(p)$

Let $p \in (0, 1]$ and $B_1, B_2, \ldots \sim Ber(p)$. Then we define the geometric random variables

 $G:=\min\{i\in\mathbb{N}\mid B_i=1\}$

 \hookrightarrow number of Ber(p) trials until (and including) the first success

G' := G - 1

 \hookrightarrow number of Ber(p) failures before the first success

We write $G \sim Geom_1(p)$ and $G' \sim Geom_0(p)$.^a

^aIn the literature Geom is used inconsistently.

```
Sampling G \sim Geom_1(p) in time \mathcal{O}(G)
```

```
i \leftarrow 0
repeat
\begin{vmatrix} i \leftarrow i + 1 \\ \text{sample } X \sim Ber(p) \\ \text{until } X = 1
return i
```

Quite bad: $\mathbb{E}[G] = 1/p$ might be large.

Exercise

Use inverse transform sampling to sample $G \sim \text{Geom}_1(p)$ in time $\mathcal{O}(1)$.

	Probability?	Bernoulli O	Uniform 00	Rejection 00	Inverse Transform	Geometric ●	No Replacement O	Reservoir O	Appendix 00
--	--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

Sampling Without Replacement

Exercise

Design an algorithm that, given $k, n \in \mathbb{N}$ with $0 \le k \le n$ outputs a set $S \subseteq [n]$ of size |S| = k uniformly at random.

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k]
n \leftarrow 0
```

Algorithm observeltem(x):

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Probability?	Bernoulli O	Uniform 00	Rejection 00	Inverse Transform	Geometric o	No Replacement O	Reservoir ●	Appendix 00
--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Rejection

Uniform

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Rejection

Uniform

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Rejection

Uniform

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Rejection

Uniform

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Rejection

Uniform

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Rejection

Uniform

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Rejection

Uniform

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

13/14 WS 2024/2025 Stefan Walzer: Important Random Variables and How to Sample Them

Uniform

Rejection

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

Probability?

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

Bernoulli

```
\begin{array}{l} n \leftarrow n+1 \\ \text{if } n \leq k \text{ then} \\ \mid \text{ reservoir}[n] \leftarrow x \\ \text{else} \\ \mid \text{ sample } l \sim \mathcal{U}(\{1,\ldots,n\}) \\ \text{if } l \leq k \text{ then} \\ \mid \text{ reservoir}[l] \leftarrow x \end{array}
```


Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k	^r = 3)					
stream:	§ 🛇 🏟	\$ ♦ £ ⊕ ♣	×			
reservoir: 🗜 🛓 🜲						
Inverse Transform	Geometric o	No Replacement	Reservoir ●	Appendix		

Uniform

Rejection

Conclusion

General Techniques

- rejection sampling
- inverse transform sampling

Distributions

- Bernoulli distribution
- uniform distribution
- geometric distribution

Other Stuff

- sampling from a set without replacement
- reservoir sampling

Probability?	Bernoulli o	Uniform 00	Rejection 00	Inverse Transform	Geometric o	No Replacement O	Reservoir O	Appendix ●○
--------------	----------------	---------------	-----------------	-------------------	----------------	---------------------	----------------	----------------

Anhang: Mögliche Prüfungsfragen I

- Wie kann man $B \sim Ber(p)$ sampeln? Wie $X \sim \mathcal{U}(\{1, \dots, n\})$? Unter welchen Annahmen?
- Wie funktioniert Rejection Sampling allgemein? Unter welchen Voraussetzungen führt Rejection Sampling zu einem effizienten Algorithmus?
- Wie funktioniert Inverse Transform Sampling allgemein? Unter welchen Voraussetzungen führt Inverse Transform Sampling zu einem effizienten Algorithmus?
- Wie kann man einen zufälligen Punkt einer Kreisscheibe sampeln? Nenne zwei Techniken und nenne Vorbzw. Nachteile.
- Gegeben eine Menge der Größe n. Wie kann ich eine zufällige Teilmenge der Größe k ≤ n bestimmen und wie lange dauert das?
- Erkläre Reservoir Sampling. Ist das nicht einfach ein langsamerer Algorithmus f
 ür "Sampling without Replacement"?