
Stefan Walzer, Stefan Hermann
ITI Prof. Sanders

winter term 2025/2026

Exercise Sheet 5 – Randomized
Complexity Classes

Probability and Computing

Exercise 1 – Relations between Complexity Classes
Justify the following inclusions:

(i) ZPP ⊆ RP and ZPP ⊆ co−RP

(ii) P ⊆ ZPP

(iii) RP ⊆ NP and co−RP ⊆ co−NP

(iv) RP ⊆ BPP and co−RP ⊆ BPP

(v) BPP ⊆ PP

Solution 1
(i) This follows directly from the definition ZPP := RP ∩ co−RP.

(ii) Let 𝐿 ∈ P. We show that 𝐿 ∈ ZPP. Let 𝑇 be a deterministic polynomial-time Turing
machine for 𝐿. Using the “typecasting” argument from the lecture, we can formally
regard 𝑇 as a probabilistic Turing machine (which in fact uses no randomness) that
still decides 𝐿 and still runs in polynomial time. In particular, this PTM witnesses that
𝐿 ∈ RP. We have 𝐿 ∈ P because P = co−P, and by the same reasoning, 𝐿 ∈ RP.
Therefore, 𝐿 ∈ co−RP. Altogether we obtain 𝐿 ∈ RP ∩ co−RP = ZPP.

(iii) Let 𝐿 ∈ RP and let𝑇 be an RP-PTM for 𝐿. By “forgetting” the probabilistic choices, we
obtain a nondeterministic Turing machine𝑇 ′. Since for every𝑤 ∈ 𝐿 we have Pr[𝑇 (𝑤) =
yes] ≥ 1

2 , there exists at least one accepting computation path for 𝑤. Thus 𝑇 ′(𝑤) =
yes. For every 𝑤 ∉ 𝐿 we have Pr[𝑇 (𝑤) = yes] = 0, hence there exists no accepting
computation for 𝑤. Therefore 𝑇 ′(𝑤) = no. Consequently, 𝑇 ′ decides 𝐿, and we have
𝐿 ∈ NP. As 𝐿 was arbitrary, it follows that RP ⊆ NP.
For the symmetric case we conclude analogously:

𝐿 ∈ co−RP⇔ 𝐿 ∈ RP⇒ 𝐿 ∈ NP⇔ 𝐿 ∈ co−NP.

1



(iv) Let 𝐿 ∈ RP and let 𝑇 be an RP-PTM for 𝐿. Define a PTM 𝑇 ′ that runs 𝑇 three times
independently and accepts if at least one of the three runs of 𝑇 accepts. Then, for all
𝑤 ∈ 𝐿,

Pr[𝑇 ′(𝑤) = no] = Pr[𝑇 (𝑤) = no]3.
Hence for 𝑤 ∈ 𝐿 we have:

Pr[𝑇 ′(𝑤) = yes] = 1 − Pr[𝑇 ′(𝑤) = no] = 1 − Pr[𝑇 (𝑤) = no]3

= 1 − (1 − Pr[𝑇 (𝑤) = yes])3 ≥ 1 −
(
1 − 1

2

)3
= 1 − 1

8 >
3
4 .

For 𝑤 ∉ 𝐿 we obtain:

Pr[𝑇 ′(𝑤) = yes] = 1 − Pr[𝑇 ′(𝑤) = no] = 1 − Pr[𝑇 (𝑤) = no]3 = 1 − 13 = 0 <
1
4 .

Thus, 𝑇 ′ is a BPP-PTM for 𝐿. Hence 𝐿 ∈ BPP. Since 𝐿 was arbitrary, we have RP ⊆
BPP.
The symmetric case follows analogously, since BPP = co−BPP.

(v) There is nothing to prove here. Every BPP-PTM is also a PP-PTM, as the acceptance
requirement is merely relaxed. Hence, for every language 𝐿 that has a BPP-PTM, there
also exists a PP-PTM.

Exercise 2 – Las Vegas Algorithm for 𝑳 implies 𝑳 ∈ ZPP
Let LV (for Las Vegas) denote the class of all languages 𝐿 for which there exists a probabilistic
Turing machine 𝑇 with the following properties:

• 𝑇 decides 𝐿 (that is, 𝑇 outputs 1 for all 𝑥 ∈ 𝐿 and 0 for all 𝑥 ∉ 𝐿).

• There exists a polynomial 𝑝 (𝑛) such that the expected runtime of 𝑇 on input 𝑥 is
bounded by 𝑝 ( |𝑥 |).

In the lecture we proved that ZPP ⊆ LV. Show that also LV ⊆ ZPP holds. Thus, the two
classes are identical.

Hint: Definition of ZPP, Markov inequality.

Solution 2
Let 𝐿 ∈ LV. We first show that 𝐿 ∈ RP. Let𝑇 be an LV-TM for 𝐿 with associated polynomial
𝑝 (𝑛). We consider the following Turing machine 𝑇 ′:
Algorithm 𝑇 ′(𝑤):

𝑡max ← 2𝑝 ( |𝑤 |)
simulate 𝑇 on input 𝑤 for 𝑡max steps
if 𝑇 has terminated with output 𝑟 then

return 𝑟

else // 𝑇 has not yet terminated
return no
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We now show that 𝑇 ′ is an RP-TM for 𝐿. Due to the choice of 𝑡max, the runtime of 𝑇 ′(𝑤)
is clearly bounded by some polynomial 𝑞( |𝑤 |). Concerning the outputs of 𝑇 ′:

• For𝑤 ∉ 𝐿, the output of𝑇 ′(𝑤) is always no, either because𝑇 decided so or because we
reached the else-case. Hence, Pr[𝑇 ′(𝑤) = yes] = 0.

• For 𝑤 ∈ 𝐿, let 𝑡 (𝑤) denote the random runtime of 𝑇 on 𝑤. By assumption, E[𝑡 (𝑤)] ≤
𝑝 ( |𝑤 |). By Markov’s inequality it follows that:

Pr[𝑡 (𝑤) > 𝑡max] ≤
E[𝑡 (𝑤)]
𝑡max

≤ 𝑝 ( |𝑤 |)
2𝑝 ( |𝑤 |) ≤

1
2 .

Thus,𝑇 terminates on𝑤 within the given time limit (with the correct result) with prob-
ability at least 1/2. Therefore, Pr[𝑇 ′(𝑤) = yes] ≥ 1

2 .

Hence, 𝑇 ′ is an RP-TM for 𝐿. Thus, 𝐿 ∈ RP. Analogously, 𝐿 ∈ co−RP follows (by returning
yes in the non-termination case). Therefore, 𝐿 ∈ ZPP. Since 𝐿 was arbitrary, we obtain
LV ⊆ ZPP.

Exercise 3 – Bonus: Probability Amplification for BPP
Look up on Wikipedia what the complexity class P/poly means. Show that BPP ⊆ P/poly.
This insight is also known as Adleman’s Theorem.

Hint: Make the error probability smaller than 2−𝑛 . Transform the PTM into a DTM and
show that there exists a random string that yields the correct result for all inputs.

Solution 3
No solution for the bonus exercise.
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