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Exercise 1 - Relations between Complexity Classes

Justify the following inclusions:
(i) ZPP C RP and ZPP C co—RP
(ii) P C ZPP
(iii) RP € NP and co—RP C co—NP
(iv) RP € BPP and co—RP C BPP

(v) BPP C PP

Solution 1

(i) This follows directly from the definition ZPP := RP N co—RP.

(ii) Let L € P. We show that L € ZPP. Let T be a deterministic polynomial-time Turing
machine for L. Using the “typecasting” argument from the lecture, we can formally
regard T as a probabilistic Turing machine (which in fact uses no randomness) that
still decides L and still runs in polynomial time. In particular, this PTM witnesses that
L € RP. We have L € P because P = co—P, and by the same reasoning, L € RP.
Therefore, L € co—RP. Altogether we obtain L € RP N co—RP = ZPP.

(iii) Let L € RP and let T be an RP-PTM for L. By “forgetting” the probabilistic choices, we
obtain a nondeterministic Turing machine T’. Since for every w € L we have Pr[T (w) =
YES] > %, there exists at least one accepting computation path for w. Thus T"(w) =
YES. For every w ¢ L we have Pr[T(w) = YEs] = 0, hence there exists no accepting
computation for w. Therefore T’(w) = No. Consequently, T’ decides L, and we have

L € NP. As L was arbitrary, it follows that RP C NP.

For the symmetric case we conclude analogously:

Leco-RPe LeRP=LeNP®Leco-NP.



(iv) Let L € RP and let T be an RP-PTM for L. Define a PTM T’ that runs T three times
independently and accepts if at least one of the three runs of T accepts. Then, for all
weL,

Pr[T’(w) = No] = Pr[T(w) = No]>.

Hence for w € L we have:

Pr[T’(w) = YEs] =1 — Pr[T’(w) = No] = 1 — Pr[T(w) = no]?
—1—(1-Pr[T(w) = yes])® = 1 - (1—%)3:1—% > Z

For w ¢ L we obtain:
1
Pr[T'(w) =vEs] =1 -Pr[T"(w) =No] =1 -Pr[T(w) =no0]’=1-1°=0 < "

Thus, T” is a BPP-PTM for L. Hence L € BPP. Since L was arbitrary, we have RP C
BPP.

The symmetric case follows analogously, since BPP = co-BPP.

(v) There is nothing to prove here. Every BPP-PTM is also a PP-PTM, as the acceptance
requirement is merely relaxed. Hence, for every language L that has a BPP-PTM, there
also exists a PP-PTM.

Exercise 2 — Las Vegas Algorithm for L implies L € ZPP

Let LV (for Las Vegas) denote the class of all languages L for which there exists a probabilistic
Turing machine T with the following properties:

T decides L (that is, T outputs 1 for all x € L and 0 for all x ¢ L).

« There exists a polynomial p(n) such that the expected runtime of T on input x is

bounded by p(|x]|).

In the lecture we proved that ZPP C LV. Show that also LV C ZPP holds. Thus, the two
classes are identical.
Hint: Definition of ZPP, Markov inequality.

Solution 2

Let L € LV. We first show that L € RP. Let T be an LV-TM for L with associated polynomial
p(n). We consider the following Turing machine T”:
Algorithm T’ (w):

tmax < 2p(Jw|)
simulate T on input w for ty.x steps
if T has terminated with output r then

‘ return r
else // T has not yet terminated

| return No




We now show that T’ is an RP-TM for L. Due to the choice of t,,x, the runtime of T’ (w)
is clearly bounded by some polynomial g(|w|). Concerning the outputs of T":

« Forw ¢ L, the output of T’ (w) is always NoO, either because T decided so or because we
reached the else-case. Hence, Pr[T’(w) = YES] = 0.

« Forw € L, let t(w) denote the random runtime of T on w. By assumption, E[t(w)] <
p(lw|). By Markov’s inequality it follows that:

_Elt@)] _ p(w) _

1
Prit) > tma] < — < () = 2

Thus, T terminates on w within the given time limit (with the correct result) with prob-
ability at least 1/2. Therefore, Pr[T’(w) = YES| > %

Hence, T" is an RP-TM for L. Thus, L € RP. Analogously, L € co—RP follows (by returning
YES in the non-termination case). Therefore, L € ZPP. Since L was arbitrary, we obtain
LV C ZPP.

Exercise 3 — Bonus: Probability Amplification for BPP

Look up on Wikipedia what the complexity class P/poly means. Show that BPP C P/poly.
This insight is also known as Adleman’s Theorem.

Hint: Make the error probability smaller than 27". Transform the PTM into a DTM and
show that there exists a random string that yields the correct result for all inputs.

Solution 3

No solution for the bonus exercise.



