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Exercise 1 – 2-Independence vs. 1-Universality
Let H ⊆ [𝑚]𝐷 be a family of hash functions mapping 𝐷 to [𝑚]. Prove or disprove the
following implications:

(a) H is 2-independent ⇒H is 1-universal.

(b) H is 1-universal ⇒H is 2-independent.

Hint: In one case, the implication is straightforward. In the other, trivial counterexamples
exist.

Solution 1
(a) The implication holds. For any 𝑥 ≠ 𝑦 ∈ 𝐷 , by the definition of 2-independence:

∀𝑖, 𝑗 ∈ [𝑚] : Pr
ℎ∼U(H)

[ℎ(𝑥) = 𝑖 ∧ ℎ(𝑦) = 𝑗] = 1
𝑚2 .

Consequently, the collision probability for 𝑥 and 𝑦 under H is bounded as follows:

Pr
ℎ∼U(H)

[ℎ(𝑥) = ℎ(𝑦)] =
𝑚∑︁
𝑖=1

Pr
ℎ∼U(H)

[ℎ(𝑥) = 𝑖 ∧ ℎ(𝑦) = 𝑖]

=

𝑚∑︁
𝑖=1

1
𝑚2 =

1
𝑚
.

This verifies the condition for 1-universality.

(b) The implication does not hold. This is primarily due to “trivial” counterexamples.

Example 1. Take𝐷 = [𝑚] andH = {id}. The identity function never causes collisions;
hence, H is even 0-universal (and thus 1-universal). However, H is not 2-independent:
the hash values are not uniformly distributed in [𝑚]—in fact, they are deterministic.
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Example 2. Consider the class H = H lin
𝑝,𝑚 from lecture, parameterized by 𝑝 and 𝑚,

such that 𝑚 does not divide 𝑝 (𝑝 − 1). As shown in lecture, H is 1-universal. Since
|H | = 𝑝 (𝑝 − 1), all relevant probabilities (of the form Prℎ∼H [. . .]) are multiples of 1

𝑝 (𝑝−1) .
However, 1

𝑚
is not such a multiple. Consequently, Prℎ∼H [ℎ(𝑥) = 0] = 1

𝑚
cannot hold for

any 𝑥 . Hence, the hash value of 𝑥 is not uniformly distributed in [𝑚].

Exercise 2 – 𝒅-Independence without Mutual Independence
Alice and Bob each spin a roulette wheel with 10 equally sized segments labeled 0 to 9. Let
𝐴 and 𝐵 denote Alice’s and Bob’s outcomes, respectively. Define 𝐶 = (𝐴 + 𝐵) mod 10.
(a) Show that 𝐴, 𝐵, and 𝐶 are pairwise independent.

(b) Show that 𝐴, 𝐵, and 𝐶 are not mutually independent.

(c) For any 𝑑 ∈ N, construct a family of random variables that is 𝑑-independent but not fully
independent.

Solution 2
We solve the problem for arbitrary 𝑑,𝑚 ∈ N (instead of 𝑑 = 2 and 𝑚 = 10). Specifically,
let 𝐴1, 𝐴2, . . . , 𝐴𝑑 ∼ U([𝑚]) be 𝑑 mutually independent uniform random variables over [𝑚],
and define𝐶 := (𝐴1+· · ·+𝐴𝑑) mod𝑚. It is straightforward to verify𝐶 ∼ U([𝑚]): regardless
of the values𝐴1, . . . , 𝐴𝑑−1, the𝑚 possible values of𝐴𝑑 yield each residue modulo𝑚 for𝐶 with
equal probability. We prove two properties:

The family {𝑨1, . . . , 𝑨𝒅, 𝑪} is not mutually independent. We have Pr[∀𝑖 ∈ [𝑑] : 𝐴𝑖 =

0] = 𝑚−𝑑 and Pr[𝐶 = 0] = 𝑚−1. However, the event ∀𝑖 ∈ [𝑑] : 𝐴𝑖 = 0 implies 𝐶 = 0, so
Pr[𝐶 = 0 ∧ ∀𝑖 ∈ [𝑑] : 𝐴𝑖 = 0] = 𝑚−𝑑 . Had mutual independence of {𝐴1, . . . , 𝐴𝑑 ,𝐶} held, we
would have obtained𝑚−(𝑑+1) .

The family {𝑨1, . . . , 𝑨𝒅, 𝑪} is 𝒅-wise independent. Consider any selection of𝑑 variables
and the event that they attain specific values. We must show the probability of this event
equals the product of individual probabilities. By symmetry (since 𝐴1, . . . , 𝐴𝑑 play identical
roles), we only distinguish two cases: whether 𝐶 is selected or not:

Pr[𝐴1 = 𝑎1 ∧ · · · ∧𝐴𝑑 = 𝑎𝑑]
!
=

𝑑∏
𝑖=1

Pr[𝐴𝑖 = 𝑎𝑖] =𝑚−𝑑 ,

Pr[𝐴1 = 𝑎1 ∧ · · · ∧𝐴𝑑−1 = 𝑎𝑑−1 ∧𝐶 = 𝑐] !
= Pr[𝐶 = 𝑐] ·

𝑑−1∏
𝑖=1

Pr[𝐴𝑖 = 𝑎𝑖] =𝑚−𝑑 .

The“ !=”must be proven. In the first case, this holds trivially by the independence of𝐴1, . . . , 𝐴𝑑 .
For the second case, consider the event:

𝐸 = {𝐴1 = 𝑎1 ∧ · · · ∧𝐴𝑑−1 = 𝑎𝑑−1 ∧𝐶 = 𝑐},
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where 𝑎1, . . . , 𝑎𝑑−1, 𝑐 are fixed. By definition of 𝐶 ,

𝐸 = {𝐴1 = 𝑎1 ∧ · · · ∧𝐴𝑑−1 = 𝑎𝑑−1 ∧𝐴1 + · · · +𝐴𝑑−1 +𝐴𝑑 = 𝑐}.

Since 𝐴1, . . . , 𝐴𝑑−1 are fixed, this is equivalent to:

𝐸 = {𝐴1 = 𝑎1 ∧ · · · ∧𝐴𝑑−1 = 𝑎𝑑−1 ∧𝐴𝑑 = 𝑐 − 𝑎1 − · · · − 𝑎𝑑−1}.

In this form, it is clear that Pr[𝐸] = 𝑚−𝑑 , since 𝐴1, . . . , 𝐴𝑑 are independent and uniformly
distributed.

A Remark. If one examines our definitions very closely, one might still have a concern.
Althoughwe showed above that for any selection of𝑑 variables, we can factor the probability
of a joint event into a product, the definition of 𝑑-independence refers to “up to” 𝑑 variables.
What if we select only 𝑘 variables, where 𝑘 < 𝑑? Does it automatically follow that these 𝑘
variables are also independent? The answer is “yes”.

Consider, for example, the event:

𝐸 = {𝐴1 = 𝑎1 ∧ · · · ∧𝐴𝑘−1 = 𝑎𝑘−1 ∧𝐶 = 𝑐}.

We must show that for this event 𝐸,

Pr[𝐸] !
= Pr[𝐶 = 𝑐] ·

𝑘−1∏
𝑖=1

Pr[𝐴𝑖 = 𝑎𝑖] =𝑚−𝑘 .

This is achieved by introducing additional case distinctions over the remaining random vari-
ables and reusing the prior result:

Pr[𝐸] = Pr[𝐴1 = 𝑎1 ∧ · · · ∧𝐴𝑘−1 = 𝑎𝑘−1 ∧𝐶 = 𝑐]

=

𝑚−1∑︁
𝑎𝑘=0

𝑚−1∑︁
𝑎𝑘+1=0

· · ·
𝑚−1∑︁
𝑎𝑑−1=0

Pr[𝐴1 = 𝑎1 ∧ · · · ∧𝐴𝑑−1 = 𝑎𝑑−1 ∧𝐶 = 𝑐]

=

𝑚−1∑︁
𝑎𝑘=0

𝑚−1∑︁
𝑎𝑘+1=0

· · ·
𝑚−1∑︁
𝑎𝑑−1=0

𝑚−𝑑 =𝑚𝑑−𝑘 ·𝑚−𝑑 =𝑚−𝑘 .

Exercise 3 – Find the Error
Let 𝑝 be prime, F𝑝 = {0, . . . , 𝑝 −1} and𝑚 ∈ N. Consider the following class of hash functions
from F𝑝 to [𝑚], also mentioned in the lecture.

H = {𝑥 ↦→ ((𝑎 · 𝑥) mod 𝑝) mod𝑚 | 𝑎 ∈ F∗𝑝}.

Consider the following argument thatH is 1-universal. Find the mistake in the proof.
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The proof considers arbitrary 𝑥,𝑦 ∈ F𝑝 with 𝑥 ≠ 𝑦. It has six steps.

Pr
ℎ∼H

[ℎ(𝑥) = ℎ(𝑦)] 1
= Pr

𝑎∼U(F∗𝑝 )
[(𝑎𝑥 mod 𝑝) mod𝑚 = (𝑎𝑦 mod 𝑝) mod𝑚]

2
= Pr

𝑎∼U(F∗𝑝 )
[((𝑎𝑥 mod 𝑝) − (𝑎𝑦 mod 𝑝)) mod𝑚 = 0]

3
= Pr

𝑎∼U(F∗𝑝 )
[((𝑎𝑥 − 𝑎𝑦) mod 𝑝) mod𝑚 = 0]

4
= Pr

𝑎∼U(F∗𝑝 )
[(𝑎(𝑥 − 𝑦) mod 𝑝) mod𝑚 = 0]

5
= Pr

𝑢∼U(F∗𝑝 )
[𝑢 mod𝑚 = 0]

6
=

|{𝑚, 2𝑚, 3𝑚, . . . , } ∩ F∗𝑝 |
|F∗𝑝 |

7
≤ 1
𝑚
.

In Step 5 we use that the function 𝑎 ↦→ 𝑎𝑧 mod 𝑝 is a bijection on F∗𝑝 for any fixed 𝑧 ∈ F∗𝑝 .
Therefore, if 𝑎 ∼ U(F∗𝑝) and 𝑢 := 𝑎𝑧 then 𝑢 ∼ U(F∗𝑝).

Solution 3
The error is in Step 3. In general it is not true that

(𝑐 mod 𝑝) − (𝑑 mod 𝑝) = (𝑐 − 𝑑) mod 𝑝.

The left hand side may even produce negative values! It is true however that

(𝑐 mod 𝑝) − (𝑑 mod 𝑝) ∈ {(𝑐 − 𝑑) mod 𝑝, (𝑐 − 𝑑) mod 𝑝 − 𝑝}.

Remark: Adapting the argument to track through both cases we can get an upper bound
of 2

𝑚
+ 1

𝑝−1 . This almost proves 2-universality (assuming 𝑝 ≫ 𝑚). The details are somewhat
annoying.

Exercise 4 – Bonus: Concentration Bounds for Sums of 𝒅-wise
Independent Random Variables
Let 𝑑 ∈ N be even, and {𝑋1, . . . , 𝑋𝑛} be a 𝑑-wise independent family of random variables,
each distributed as Ber(𝑝) with 𝑝 = Ω(1/𝑛).
Define 𝑋 =

∑𝑛
𝑖=1𝑋𝑖 . Note: 𝑋 is not necessarily binomially distributed since the 𝑋𝑖 are not

mutually independent.
The goal is to prove the concentration bound: for any 𝛿 > 0,

Pr[𝑋 − E[𝑋 ] ≥ 𝛿E[𝑋 ]] = O(𝛿−𝑑 (𝑛𝑝)−𝑑/2) .

To this end, consider the “centered” random variables 𝑌𝑖 := 𝑋𝑖 −𝑝 , their sum 𝑌 =
∑𝑛

𝑖=1𝑌𝑖 , and
the moment E[𝑌𝑑].
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(i) Warm-up: Let 𝑑 ≥ 3 and 𝑛 ≥ 3. Verify and briefly explain why the following hold:
(a) E[𝑌 5

1𝑌
42
2 ] = E[𝑌 5

1 ]E[𝑌 42
2 ]

(b) E[𝑌 5
1𝑌

42
2 𝑌3] = 0

(c) E[𝑌 5
1 ] ≤ E[𝑌 2

1 ]
In subsequent steps, you may apply these insights without further justification.

(ii) Show: E[𝑌 2
1 ] ≤ 𝑝 .

(iii) Let 𝑖1, . . . , 𝑖𝑑 ∈ [𝑛] (not necessarily distinct) and 𝑆 = {𝑖1, . . . , 𝑖𝑑}. Prove:
• If |𝑆 | > 𝑑/2, then E[𝑌𝑖1 · · ·𝑌𝑖𝑑 ] = 0.
• Otherwise, E[𝑌𝑖1 · · ·𝑌𝑖𝑑 ] ≤ 𝑝 |𝑆 | .

(iv) Show: E[𝑌𝑑] = O((𝑛𝑝)𝑑/2). You may assume 𝑑 = O(1). Hint: Expand (∑𝑛
𝑖=1𝑌𝑖)𝑑 . Yes,

this yields 𝑛𝑑 terms.

(v) Prove the original goal by applying Markov’s inequality to 𝑌𝑑 .

Solution 4
(i) Since 𝑑 ≥ 3, for any distinct 𝑖1, 𝑖2, 𝑖3 ∈ [𝑛], the random variables 𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3 are mutu-

ally independent. Hence, 𝑌 5
1 , 𝑌 42

2 , and 𝑌3 (as functions of 𝑋1, 𝑋2, 𝑋3) are also mutually
independent.
(a) For independent random variables, the expectation of the product equals the prod-

uct of expectations, by definition.
(b) Factor the expectation: E[𝑌 5

1𝑌
42
2 𝑌3] = E[𝑌 5

1 ]E[𝑌 42
2 ]E[𝑌3]. SinceE[𝑌3] = E[𝑋3−𝑝] =

𝑝 − 𝑝 = 0, the product is zero.
(c) Since |𝑌1 | ≤ 1 and 𝑥𝑖 is non-increasing for 𝑥 ∈ [0, 1] as 𝑖 increases,

E[𝑌 5
1 ] ≤ E[|𝑌 5

1 |] = E[|𝑌1 |5] ≤ E[|𝑌1 |2] = E[𝑌 2
1 ] .

(ii) E[𝑌 2
1 ] = E[(𝑋1 − 𝑝)2] = 𝑝 (1 − 𝑝)2 + (1 − 𝑝) (0 − 𝑝)2 = 𝑝 (1 − 𝑝) (1 − 𝑝 + 𝑝) ≤ 𝑝 .

(iii) The key question is whether any index appears exactly once in the multiset {𝑖1, . . . , 𝑖𝑑}.
• If |𝑆 | > 𝑑/2, then at least one index 𝑗 appears exactly once. Then E[𝑌𝑖1 · · ·𝑌𝑖𝑑 ]
factors such that E[𝑌𝑗 ] = 0 appears as a multiplicative factor, so the expectation
is zero.

• If |𝑆 | ≤ 𝑑/2, then the product involves at most 𝑑/2 distinct variables. Factor as
in part (i)(a). If any variable appears with exponent 1, the entire product vanishes
(since E[𝑌𝑗 ] = 0). Otherwise, each exponent is at least 2. Then apply (i)(c) and (ii)
to bound each distinct factor by 𝑝 , giving 𝑝 |𝑆 | .
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(iv) We compute:

E[𝑌𝑑] = E
[( 𝑛∑︁

𝑖=1
𝑌𝑖

)𝑑 ]
= E

[
𝑛∑︁

𝑖1=1
· · ·

𝑛∑︁
𝑖𝑑=1

𝑌𝑖1 · · ·𝑌𝑖𝑑

]
(1)
=

𝑛∑︁
𝑖1=1

· · ·
𝑛∑︁

𝑖𝑑=1
E[𝑌𝑖1 · · ·𝑌𝑖𝑑 ]

(2)
=

∑︁
𝑖1,...,𝑖𝑑

E[𝑌𝑖1 · · ·𝑌𝑖𝑑 ]
(3)
=

𝑑∑︁
𝑟=1

∑︁
𝑆⊆[𝑛]
|𝑆 |=𝑟

∑︁
𝑖1,...,𝑖𝑑

⊮{𝑖1,...,𝑖𝑑 }=𝑆 · E[𝑌𝑖1 · · ·𝑌𝑖𝑑 ]

(4)
≤

𝑑/2∑︁
𝑟=1

∑︁
𝑆⊆[𝑛]
|𝑆 |=𝑟

∑︁
𝑖1,...,𝑖𝑑

⊮{𝑖1,...,𝑖𝑑 }=𝑆 · 𝑝
|𝑆 | (5)=

𝑑/2∑︁
𝑟=1

∑︁
𝑆⊆[𝑛]
|𝑆 |=𝑟

𝑝 |𝑆 |
∑︁
𝑖1,...,𝑖𝑑

⊮{𝑖1,...,𝑖𝑑 }=𝑆

(6)
≤

𝑑/2∑︁
𝑟=1

∑︁
𝑆⊆[𝑛]
|𝑆 |=𝑟

𝑝 |𝑆 | · |𝑆 |𝑑 (7)
=

𝑑/2∑︁
𝑟=1

(
𝑛

𝑟

)
𝑝𝑟𝑟𝑑

(8)
≤ (𝑑/2)𝑑

𝑑/2∑︁
𝑟=1

𝑛𝑟𝑝𝑟
(9)
≤ O(𝑛𝑑/2𝑝𝑑/2).

(1) Linearity of expectation.
(2) Compact notation.
(3) Group terms by the set 𝑆 = {𝑖1, . . . , 𝑖𝑑}.
(4) By part (iii), terms with |𝑆 | > 𝑑/2 vanish; the others are bounded by 𝑝 |𝑆 | .
(5) Factor out 𝑝 |𝑆 | .
(6) For the indicator to be 1, all indices 𝑖1, . . . , 𝑖𝑑 must lie in 𝑆 , which can occur in at

most |𝑆 |𝑑 ways.
(7) The inner sum depends only on 𝑟 = |𝑆 |, and there are

(𝑛
𝑟

)
such sets.

(8) Use
(𝑛
𝑟

)
≤ 𝑛𝑟 and 𝑟 ≤ 𝑑/2.

(9) Since 𝑑 = O(1), (𝑑/2)𝑑 = O(1). Since 𝑝 = Ω(1/𝑛), we have 𝑛𝑝 = Ω(1), so the term
at 𝑟 = 𝑑/2 dominates the constant number of other terms.

(v) First, the calculation:

Pr[𝑋 − E[𝑋 ] ≥ 𝛿E[𝑋 ]] (1)
= Pr[𝑌 ≥ 𝛿𝑛𝑝] ≤ Pr[|𝑌 | ≥ 𝛿𝑛𝑝] = Pr[|𝑌 |𝑑 ≥ (𝛿𝑛𝑝)𝑑]

(2)
= Pr[𝑌𝑑 ≥ (𝛿𝑛𝑝)𝑑]

(3)
≤ E[𝑌

𝑑]
(𝛿𝑛𝑝)𝑑

(4)
≤ O

(
𝑛𝑑/2𝑝𝑑/2

(𝛿𝑛𝑝)𝑑

)
= O

(
𝛿−𝑑 (𝑛𝑝)−𝑑/2

)
.

(1) By definition of 𝑌 and linearity, E[𝑋 ] = 𝑛𝑝 .
(2) Since 𝑑 is even, |𝑌 |𝑑 = 𝑌𝑑 .
(3) Apply Markov’s inequality to 𝑌𝑑 . Note that 𝑌𝑑 ≥ 0 because 𝑑 is even.
(4) Substitute the result from part (iv).
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