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Probability and Computing

Exercise 1 - 2-Independence vs. 1-Universality

Let H C [m]P be a family of hash functions mapping D to [m]. Prove or disprove the
following implications:

(a) H is 2-independent = H is 1-universal.

(b) H is 1-universal = H is 2-independent.

Hint: In one case, the implication is straightforward. In the other, trivial counterexamples
exist.

Solution 1

(a) The implication holds. For any x # y € D, by the definition of 2-independence:

Vi,je[m]: Pr )[h(x) =iAh(y) =]
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Consequently, the collision probability for x and y under H is bounded as follows:
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This verifies the condition for 1-universality.
(b) The implication does not hold. This is primarily due to “trivial” counterexamples.
Example 1. Take D = [m] and H = {id}. The identity function never causes collisions;

hence, H is even 0-universal (and thus 1-universal). However, H is not 2-independent:
the hash values are not uniformly distributed in [m]—in fact, they are deterministic.



Example 2. Consider the class H = ?{Il,”,‘n from lecture, parameterized by p and m,
such that m does not divide p(p — 1). As shown in lecture, H is 1-universal. Since
|H| = p(p — 1), all relevant probabilities (of the form Pry.4/[. . .]) are multiples of m.
However, % is not such a multiple. Consequently, Pry.¢/[h(x) = 0] = % cannot hold for
any x. Hence, the hash value of x is not uniformly distributed in [m].

Exercise 2 — d-Independence without Mutual Independence

Alice and Bob each spin a roulette wheel with 10 equally sized segments labeled 0 to 9. Let
A and B denote Alice’s and Bob’s outcomes, respectively. Define C = (A + B) mod 10.

(a) Show that A, B, and C are pairwise independent.
(b) Show that A, B, and C are not mutually independent.

(c) Foranyd € N, construct a family of random variables that is d-independent but not fully
independent.

Solution 2

We solve the problem for arbitrary d,m € N (instead of d = 2 and m = 10). Specifically,
let Ay, Ay, ..., Ag ~ U([m]) be d mutually independent uniform random variables over [m],
and define C := (A;+- - -+Ay) mod m. It is straightforward to verify C ~ U ([m]): regardless
of the values Ay, . .., Aj_1, the m possible values of A, yield each residue modulo m for C with
equal probability. We prove two properties:

The family {A4, ..., A4, C} is not mutually independent. We have Pr[Vi € [d] : A; =
0] = m% and Pr[C = 0] = m™~'. However, the event Vi € [d] : A; = 0 implies C = 0, so
Pr[C =0 A Vi€ [d] : A; = 0] = m™¢. Had mutual independence of {A;, ..., Aq, C} held, we
would have obtained m~(@*+1).

The family {A4, ..., A4, C} isd-wise independent. Consider any selection of d variables
and the event that they attain specific values. We must show the probability of this event
equals the product of individual probabilities. By symmetry (since Ay, ..., Ay play identical
roles), we only distinguish two cases: whether C is selected or not:
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The “=" must be proven. In the first case, this holds trivially by the independence of Ay, . . ., Ay.
For the second case, consider the event:

E:{Alzal/\---/\Ad_l:ad_l/\Czc},



where ay, ..., a4-1, ¢ are fixed. By definition of C,

E:{Al:al/\"'/\Ad_l:ad_l/\A1+"'+Ad_1+Ad:C}.

Since Ay, ..., A4-1 are fixed, this is equivalent to:

E={Ai=a1 AN NAj_1=ag_ 1 NAg=c—a;— -+ —aq_1}.
In this form, it is clear that Pr[E] = m™, since A, ..., Ay are independent and uniformly
distributed.

A Remark. If one examines our definitions very closely, one might still have a concern.
Although we showed above that for any selection of d variables, we can factor the probability
of a joint event into a product, the definition of d-independence refers to “up to” d variables.
What if we select only k variables, where k < d? Does it automatically follow that these k
variables are also independent? The answer is “yes”.

Consider, for example, the event:

E:{Al:al/\---/\Ak_lzak_l/\C:c}.

We must show that for this event E,
! —k
Pr[E] =Pr[C=c] | |Pr[Ai=a;]] =m".

This is achieved by introducing additional case distinctions over the remaining random vari-
ables and reusing the prior result:

m—1 m-1 m—1
= Pr[Ai=a1 A+ NAg_1=ag_1 ANC=c]
=0 aj1=0 aq-1=0
m-1 m-1 m—1
— Z m—d — md—k m—d — m—k
ar=0 ap,1=0 aq-1=0

Exercise 3 — Find the Error

Let p be prime, F, = {0,...,p—1} and m € N. Consider the following class of hash functions
from F, to [m], also mentioned in the lecture.

H ={x ((a-x) mod p) modm | a€F,}.

Consider the following argument that H is 1-universal. Find the mistake in the proof.



The proof considers arbitrary x,y € F, with x # y. It has six steps.

hljg{[h(x) =h(y)] L aN(EfP;)[(ax mod p) mod m = (ay mod p) mod m]
2
= Pr ax mod p) — (ay mod mod m=0
e [(@rmod p) ~ (ay mod p)) ]
3
= Pr ax —ay) mod p) mod m =0
e [(@r = ay) mod p) ]
4
= Pr a(x —y) mod p) mod m =0
b [(atx =) mod p) ]
2 pr [u mod m = 0]
u~’ZJ(F;)
6 |{m,2m,3m,...,} DIF;|
A
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m

In Step 5 we use that the function a - az mod p is a bijection on F,, for any fixed z € F,,.
Therefore, if a ~ U(F,) and u := az then u ~ U(F,).

Solution 3
The error is in Step 3. In general it is not true that
(¢ mod p) — (d mod p) = (¢ — d) mod p.
The left hand side may even produce negative values! It is true however that
(c mod p) — (d mod p) € {(c — d) mod p, (c — d) mod p — p}.

Remark: Adapting the argument to track through both cases we can get an upper bound

of % + Iﬁ. This almost proves 2-universality (assuming p > m). The details are somewhat
annoying.

Exercise 4 — Bonus: Concentration Bounds for Sums of d-wise
Independent Random Variables

Let d € N be even, and {Xj,...,X,} be a d-wise independent family of random variables,
each distributed as Ber(p) with p = Q(1/n).

Define X = )}, X;. Note: X is not necessarily binomially distributed since the X; are not
mutually independent.

The goal is to prove the concentration bound: for any é > 0,

Pr[X — E[X] > SE[X]] = O(6%4(np)~%?).

To this end, consider the “centered” random variables Y; := X; — p, theirsum Y = }}I | V;, and
the moment E[Y?].



(i) Warm-up: Let d > 3 and n > 3. Verify and briefly explain why the following hold:
p y y €xp y g
(a) E[YY,?] = E[Y]]E[Y,?]
(b) E[Y)Y,*Y;] =0
(c) E[Y] < E[Y/]
In subsequent steps, you may apply these insights without further justification.

(ii) Show: E[Y?] < p.

(iii) Letiy,...,ig € [n] (not necessarily distinct) and S = {iy,. .., iz}. Prove:
« If|S| > d/2, then E[Y;, --- Y;,] = 0.
« Otherwise, E[Y;, --- Y;,] < Pl

(iv) Show: E[Y¢] = O((np)?/?). You may assume d = O(1). Hint: Expand (3", ¥;)%. Yes,
this yields n¢ terms.

(v) Prove the original goal by applying Markov’s inequality to Y.

Solution 4

(i) Since d > 3, for any distinct iy, iz, i3 € [n], the random variables X; , X;,, X;, are mutu-

ally independent. Hence, Y2, Y242, and Y3 (as functions of Xj, X, X3) are also mutually
independent.

(a) For independent random variables, the expectation of the product equals the prod-
uct of expectations, by definition.

(b) Factor the expectation: E[YY,Y;] = E[Y?]E[Y,*]E[Y;]. Since E[Y3] = E[X3—p] =
p — p = 0, the product is zero.

(c) Since |Y;| < 1 and x' is non-increasing for x € [0, 1] as i increases,

E[Y]] < E[|Y}[] = E[|Y:|°] < E[|"1[*] = B[Y?].

(ii) E[Y/] =E[(X1-p)’l =p(1=p)*+ (1 =p)(0-p)* =p(1-p)(1 —p+p) < p.
(iii) The key question is whether any index appears exactly once in the multiset {iy, ..., iz}.

« If |S| > d/2, then at least one index j appears exactly once. Then E[Y}, ---Y;,]
factors such that E[Y;] = 0 appears as a multiplicative factor, so the expectation
is zero.

« If |S| < d/2, then the product involves at most d/2 distinct variables. Factor as
in part (i)(a). If any variable appears with exponent 1, the entire product vanishes
(since E[Y;] = 0). Otherwise, each exponent is at least 2. Then apply (i)(c) and (ii)
to bound each distinct factor by p, giving p!Sl.



(iv)

(v)

We compute:

E[Y¢] =E Yl-)d

<1>Z S,y

Z

ig=1
(2 (3)
2 R, - Y,] ZZ > Klipmigs B[V - Y]
il,...,id r=1 SC n] ll ..... i
IS|=r
d/2
(4) s| ) S
ZZ Z”‘{ll Sig}=S " p|| ZZPHZH‘{U ,,,,, ig}=S
r=1 SC[n r=1 5C[n]
ISI-r IS|=r
d/2 d/2 dj/2
(6) NE @ n\ ,aqa® d/2)? bo) d/2 /2
ZZ ||—Z p'r S(/Z)an< (n ).
r=1 SC[n] r=1 r r=1
IS|=r

(1) Linearity of expectation.

(2) Compact notation.

(3) Group terms by the set S = {iy,...,ig}.

(4) By part (iii), terms with |S| > d/2 vanish; the others are bounded by p'!.
(5) Factor out p!Sl,

(6) For the indicator to be 1, all indices iy, ..., iy must lie in S, which can occur in at
most |S|? ways.

(7) The inner sum depends only on r = |S|, and there are ('rl) such sets.

(8) Use () <n"andr <dJ2.

(9) Since d = O(1), (d/2)? = O(1). Since p = Q(1/n), we have np = Q(1), so the term
at r = d/2 dominates the constant number of other terms.

First, the calculation:

D pr(Y > 6np] < Pr[|Y] = Snp] = Pr[|Y|¢ > (Snp)?]

® E[Y] © (d/zp‘”z) 0(6~ (np)2),

Pr[X — B[X] > SE[X]]

@ pry! > (5np)Y] <

(6np)d = | (dnp)?
(1) By definition of Y and linearity, E[X] = np.
(2) Since d is even, |Y]|¢ = Y.
(3) Apply Markov’s inequality to Y%. Note that Y¢ > 0 because d is even.
(4) Substitute the result from part (iv).



