
Stefan Walzer, Stefan Hermann
ITI Prof. Sanders

winter term 2025/2026

Exercise Sheet 8 – Bounded Differences
and Bloom Filters
Probability and Computing

Exercise 1 – Balls, Bins and Bounded Differences
Let 𝜆 > 0 be a constant, 𝑚 = 𝜆𝑛 the number of balls, and 𝑛 the number of bins. The 𝑗-th
ball is placed in bin 𝑋 𝑗 , where 𝑋1, . . . , 𝑋𝑚 ∼ U([𝑛]) are independent random variables. The
collision count is defined as 𝐶 = |{(𝑖, 𝑗) | 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,𝑋𝑖 = 𝑋 𝑗 }|. The goal of this exercise
is to derive a concentration bound for 𝐶 .

(i) Show that E[𝐶] = Θ(𝑛).

For 𝑖 ∈ [𝑛], let 𝐿𝑖 = |{ 𝑗 ∈ [𝑚] | 𝑋 𝑗 = 𝑖}| denote the load of bin 𝑖 . It is neither difficult nor
interesting to show that Pr[max𝑖∈[𝑛] 𝐿𝑖 ≤ log𝑛] ≥ 1 − O(𝑛−100). Assume this to hold in the
following (proof provided in the sample solution).

(ii) Define 𝐶cap :=
∑︁
𝑖∈[𝑛]

(
min(log𝑛, 𝐿𝑖)

2

)
. Show that Pr[𝐶cap = 𝐶] = 1 − O(𝑛−100).

(iii) Show that Pr[𝐶cap − E[𝐶cap] ≥ 𝑡] ≤ exp(−2𝑡2/(𝑚 · log2 𝑛)).

(iv) Show that Pr[𝐶 − E[𝐶] ≥ 𝑛2/3] = O(𝑛−100).

(v) Assume an algorithm inserts 𝑛 keys into a hash table and then queries every key exactly
once. Show that the algorithm runs in timeO(𝑛) except with probabilityO(𝑛−100) under
suitable assumptions. Note that we are not talking about expected running time.

Solution 1
(i) Any two distinct balls collide with probability 1/𝑛. Hence, E[𝐶] =

(𝑚
2
)
· 1
𝑛
=

𝑚(𝑚−1)
2𝑛 =

𝜆(𝑚−1)
2 = Θ(𝑛).

We now examine the claimed bound on bin loads. Fix arbitrary 𝑖 ∈ [𝑛] and 𝑘 ∈ N. For a
subset 𝑆 ⊆ [𝑚] of size 𝑘 , let 𝐸𝑆,𝑖 denote the event that all balls in 𝑆 are placed in bin 𝑖 . Then
Pr[𝐸𝑆,𝑖] = 𝑛−𝑘 . It follows that:

Pr[max
𝑖∈[𝑛]

𝐿𝑖 ≥ 𝑘] = Pr
[ ⋃
𝑆⊆[𝑚],𝑖∈[𝑛]
|𝑆 |=𝑘

𝐸𝑆,𝑖

] UB
≤

∑︁
𝑆⊆[𝑚],𝑖∈[𝑛]
|𝑆 |=𝑘

Pr[𝐸𝑆,𝑖] =
(
𝑚

𝑘

)
· 𝑛 · 𝑛−𝑘 ≤ 𝑚𝑘

𝑘! 𝑛
−𝑘+1 =

𝜆𝑘𝑛

𝑘! .

1



Substituting 𝑘 = log𝑛 and observing that 𝜆𝑘 = poly(𝑛) while (log𝑛)! = 𝑛Ω(log log𝑛) grows
faster than any polynomial, completes the argument.

(ii) If max𝑖∈[𝑛] 𝐿𝑖 ≤ log𝑛, then

𝐶cap =
∑︁
𝑖∈[𝑛]

(
𝐿𝑖

2

)
.

The latter is an alternative definition of the collision count𝐶 (summing collisions within
each bin).

(iii) 𝐶cap is a function of the 𝑚 independent random variables 𝑋1, . . . , 𝑋𝑚 . Changing any
single 𝑋 𝑗 alters 𝐶cap by at most log𝑛. The result follows directly from McDiarmid’s
inequality.
Remark: The same strategy does not apply well to 𝐶 itself. In the extreme case where
𝑋1 = · · · = 𝑋𝑚−1 = 1 and 𝑋𝑚 = 2, changing 𝑋𝑚 to 1 induces𝑚 − 1 additional collisions.

(iv) We combine the previous two results:

Pr[𝐶 − E[𝐶] ≥ 𝑛2/3] ≤ Pr[𝐶 ≠ 𝐶cap ∨𝐶cap − E[𝐶] ≥ 𝑛2/3]
UB
≤ Pr[𝐶 ≠ 𝐶cap] + Pr[𝐶cap − E[𝐶] ≥ 𝑛2/3]
𝐶 ≥ 𝐶cap
≤ Pr[𝐶 ≠ 𝐶cap] + Pr[𝐶cap − E[𝐶cap] ≥ 𝑛2/3]
≤ O(𝑛−100) + exp(−2𝑛4/3/(𝑚 log2 𝑛)) = O(𝑛−100).

(v) We use hashing with linear chaining at load factor 𝛼 = 1 and make the simple uniform
hashing assumption. The distribution of keys to buckets matches the setting at hand
with 𝜆 = 1. Inserting the 𝑛 keys takes O(𝑛) times and querying the keys takes O(𝑛 +𝐶)
time because very collision between two keys 𝑥 ≠ 𝑦 increases either the query time
of 𝑥 or the query time of 𝑦 by one step. From (i) we know that E[𝐶] = O(𝑛) and
from (iv) we know that Pr[𝐶 ≥ 2E[𝐶]] ≤ O(𝑛−100). This implies a running time of
O(𝑛 + 2E[𝐶]) = O(𝑛), except with probability O(𝑛−100).

The following exercise is not directly related to randomized algorithms, except that we used the
bound in lecture. Hence, “Bonus”.

Exercise 2 – Bonus: Approximations of 𝒆
You know that 𝑒 = lim𝑛→∞(1 + 1

𝑛
)𝑛 (this is even a common definition of 𝑒). Derive from this

that the following two inequalities hold for all 𝑛 ∈ N:

(1 + 1
𝑛
)𝑛 ≤ 𝑒 ≤ (1 + 1

𝑛
)𝑛+1

(1 − 1
𝑛
)𝑛 ≤ 𝑒−1 ≤ (1 − 1

𝑛
)𝑛−1.

The following steps are suggested:

2



(i) Prove the left-hand inequalities.
Hint: Use again 1 + 𝑥 ≤ 𝑒𝑥 .

(ii) Show that the right-hand sides are monotonically decreasing in 𝑛.

(iii) Deduce the right-hand inequalities from (ii) and a limit argument.

Solution 2
(i) We have:

(1 + 1
𝑛
)𝑛 ≤ (𝑒1/𝑛)𝑛 = 𝑒

(1 − 1
𝑛
)𝑛 ≤ (𝑒−1/𝑛)𝑛 = 𝑒−1

(ii) First, taking logarithms of the hint for (i), we obtain:

∀𝑥 ∈ (−1,∞) : ln(1 + 𝑥) ≤ 𝑥

To show that 𝑓 (𝑛) = (1+ 1
𝑛
)𝑛+1 is monotonically decreasing in 𝑛 ∈ N, it suffices to show

that ln(𝑓 (𝑥)) = (𝑥 + 1) ln(1 + 1
𝑥
) is monotonically decreasing in 𝑥 ∈ (0,∞). Consider

its derivative and show it is everywhere ≤ 0:

(ln(𝑓 (𝑥)))′ = ln(1 + 1
𝑥
) + 𝑥 + 1

1 + 1
𝑥

· (− 1
𝑥2 ) ≤ 1

𝑥
− 𝑥 + 1
(𝑥 + 1)𝑥 = 0.

Analogously, for 𝑔(𝑥) = (1 − 1
𝑛
)𝑛−1, we show the derivative of ln(𝑔(𝑥)) is ≤ 0:

(ln(𝑔(𝑥)))′ = ((𝑛 − 1) ln(1 − 1
𝑛
))′ = ln(1 − 1

𝑥
) + 𝑥 − 1

1 − 1
𝑥

· 1
𝑥2 ≤ −

1
𝑥
+ 𝑥 − 1
(𝑥 − 1)𝑥 = 0.

(iii) We have by separating a factor:

lim
𝑛→∞
(1 + 1

𝑛
)𝑛+1 = lim

𝑛→∞
(1 + 1

𝑛
)𝑛 · lim

𝑛→∞
(1 + 1

𝑛
) = 𝑒 · 1 = 𝑒.

The limit of (1 − 1
𝑛
)𝑛−1 can be computed as follows:

lim
𝑛→∞
(1 − 1

𝑛
)𝑛−1 = lim

𝑛→∞
(𝑛−1

𝑛
)𝑛−1 = lim

𝑛→∞

(
1
𝑛

𝑛−1

)𝑛−1

=
1

lim𝑛→∞( 𝑛
𝑛−1 )𝑛−1

=
1

lim𝑛→∞(1 + 1
𝑛−1 )𝑛−1 =

1
𝑒
= 𝑒−1.

Thus, the right-hand sides converge to 𝑒 and 𝑒−1, respectively. By (ii), they converge
“from above”. Hence, the inequalities hold as claimed.

3



Exercise 3 – Counting Bloom Filter (a.k.a.: Count-Min Sketch)
A Counting Bloom Filter is initially like a standard Bloom Filter: it manages 𝑛 keys in an
array of size 𝑚, with load factor 𝛼 := 𝑛

𝑚
and 𝑘 hash functions. The parameters are chosen

as in lecture so that a standard Bloom Filter would have false-positive probability 𝜀. The
array now contains natural numbers instead of bits. In addition to insert and query, a delete
operation is now available.

Algorithm insert(𝑥 ):
for 𝑖 ∈ [𝑘] do

𝐴[ℎ𝑖 (𝑥)] + +

Algorithm delete(𝑥 ):
for 𝑖 ∈ [𝑘] do

𝐴[ℎ𝑖 (𝑥)] − −

Algorithm query(𝑥 ):
for 𝑖 ∈ [𝑘] do

if 𝐴[ℎ𝑖 (𝑥)] = 0 then
return false

return true
We allow a key to be inserted multiple times into the Counting Bloom Filter. Hence, the man-
aged object 𝑆 is now a multiset with 𝑛 elements {𝑥1, . . . , 𝑥𝑛}, each with multiplicity 𝑎1, . . . , 𝑎𝑛 .
The operation insert(𝑥 ) adds one copy of 𝑥 to the multiset 𝑆 , i.e., increments the multiplicity
of 𝑥 if 𝑥 is already in 𝑆 , or adds a new element with multiplicity 1 if 𝑥 is not yet in 𝑆 . The
meaning of delete is analogous. As before, query may return false positives but not false
negatives.

(a) We require that delete is called only for elements that are actually in 𝑆 (with multiplicity
at least 1). What breaks if we do not enforce this?

Additional useful operations can be implemented with Counting Bloom Filters.

(b) Implement an operation count that, for 𝑥 ∈ 𝐷 , returns an estimate count(𝑥 ) of the mul-
tiplicity 𝑎 of 𝑥 in 𝑆 . Show that Pr[𝑎 ≠ count(𝑥)] ≤ 𝜀.

(c) The primary argument for using (Counting) Bloom Filters is their low memory footprint
compared to exact data structures. We should therefore avoid using large integer types
(e.g., 64 bits) for counters. Consider an application where “most” counters never exceed 8
bits. We therefore use an array𝐴 of 8-bit counters. Briefly discuss the following proposals
for handling counter overflows. What are the advantages and what compromises are
made?

• Alice merely prevents counter overflows, i.e., adapts the 𝐴[ℎ𝑖 (𝑥)] + + operation in
insert and the 𝐴[ℎ𝑖 (𝑥)] − − operation in delete so that the counter is increment-
ed/decremented only if the maximum/minimum representable value has not yet
been reached.

• Bob proposes to “freeze” a counter that reaches (11111111)2 = 255, i.e., no future
insert or delete operations will modify this counter.

• Carol proposes to use the bit string (11111111)2 = 255 as a marker indicating that
the true counter value exceeds 254. In this special case, the true counter value is
stored in a hash table.

4



Solution 3
(a) A delete(𝑦) for a 𝑦 that was never inserted reduces 𝑘 counters in the Counting Bloom

Filter uncontrollably. Thus, counters may become 0. Consequently, for some 𝑥 ∈ 𝑆 ,
query(𝑥 ) might return false, yielding a false negative — which is not allowed.

(b) We return the minimum of the counters associated with 𝑥 :

Algorithm count(𝑥 ):
𝑟 ←∞
for 𝑖 ∈ [𝑘] do

𝑟 ← min(𝑟, 𝐴[ℎ𝑖 (𝑥)])
return 𝑟

Note that count(𝑥) < 𝑎 is impossible, since every occurrence of 𝑥 is counted by every
associated counter. However, it is possible that count(𝑥) > 𝑎 if all 𝑘 counters are also
incremented by other keys. To understand this, let 𝐴′[1..𝑚] ∈ {0, 1}𝑚 be the standard
Bloom Filter into which all elements of 𝑆 except 𝑥 have been inserted (using the same
hash functions as for the Counting Bloom Filter). Then:

count(𝑥) ≠ 𝑎 ⇔ count(𝑥) > 𝑎

⇔ min
𝑖∈[𝑘]

𝐴[ℎ𝑖 (𝑥)] > 𝑎

⇔ ∀𝑖 ∈ [𝑘] : 𝐴[ℎ𝑖 (𝑥)] > 𝑎

⇔ ∀𝑖 ∈ [𝑘] : some key in 𝑆 other than 𝑥 uses 𝐴[ℎ𝑖 (𝑥)]
⇔ ∀𝑖 ∈ [𝑘] : 𝐴′[ℎ𝑖 (𝑥)] = 1
⇔ 𝑥 is a false positive for 𝐴′

The latter event has probability at most 𝜀 by the choice of configuration parameters.
Hence, the same holds for the equivalent first event.

(c) Regarding the proposals:
• Alice’s proposal is simple to implement, but false negatives become possible. The

simplest example is inserting the same key 𝑥 256 times and then deleting it 255
times. The final insertion is lost, and the deletions reset all relevant counters to 0.
Subsequently, query(𝑥 ) returns false, although 𝑥 should still be in the data structure.
Not good.

• Bob’s proposal ensures counters never falsely return to zero, so false negatives are
impossible. However, frozen counters can never be released. In the long run, the
false-positive rate may increase.

• Carol’s proposal makes no compromises in functionality. The additional hash table
naturally consumes space, and accesses to it incur time costs.

5



Exercise 4 – Estimating Set Intersections with Bloom Filters
Let 𝑛,𝑚, 𝑘 ∈ N. Alice and Bob wish to estimate how similar their musical tastes are. Let 𝑋 be
Alice’s 𝑛 favorite songs and 𝑌 be Bob’s 𝑛 favorite songs. The goal is to estimate 𝛾 := |𝑋∩𝑌 |

𝑛
∈

[0, 1]. They proceed as follows:

• Alice constructs a Bloom filter𝐴[1..𝑚] ∈ {0, 1}𝑚 for𝑋 using𝑘 hash functionsℎ1, . . . , ℎ𝑘 .

• Bob constructs a Bloom filter 𝐵 [1..𝑚] ∈ {0, 1}𝑚 for 𝑌 using the same 𝑘 hash functions.

• Alice and Bob exchange their filters and compute 𝛿 := |{𝑖∈[𝑚] |𝐴[𝑖]≠𝐵 [𝑖]}|
𝑚

.

• Alice and Bob compute an estimate 𝛾 for 𝛾 based on 𝛿 .

Solve the following subproblems:

(a) Discuss: What advantages and disadvantages might this method have compared to direct
exchange of 𝑋 and 𝑌?

(b) Gain intuition: What values of 𝛿 do you expect (approximately) for the extreme cases
𝛾 = 1 and 𝛾 = 0?
Hint: You may assume here and in the following that the Bloom filters use an “optimal”
configuration with 𝛼𝑘 = ln(2).

(c) Compute E[𝛿] as a function of 𝛾 . You may drop lower-order terms, e.g., write (1− 1
𝑚
)𝑚 ≈

𝑒−1 without carrying an 𝑜 (1) term.
Hint: At first glance, other parameters (e.g., 𝑛,𝑚, 𝑘, 𝛼, 𝜀) might appear relevant. Their
influence vanishes in lower-order terms.

(d) Discuss: Which concentration bound is suitable for proving that 𝛿 is close to E[𝛿] with
high probability?

(e) Rearrange the equation from (c) to show how an estimate 𝛾 for 𝛾 can be computed from
𝛿 .

(f) Speculate: What role does the choice of 𝑘 (or 𝜀) play in this context?

Solution 4
(a) • Advantage: Space usage may be smaller.

• Disadvantage: We can ensure 𝛾 is close to 𝛾 with high probability, but cannot com-
pute 𝛾 error-free.

• Advantage: Elements of 𝑋 and 𝑌 are not revealed; i.e., Alice can plausibly deny any
𝑥 ∈ 𝑋 without being contradicted.

(b) For 𝛾 = 1, clearly 𝐴[𝑖] = 𝐵 [𝑖] for all 𝑖 , so 𝛿 = 0. For 𝛾 = 0, the two Bloom filters are
independent. By lecture, in a Bloom filter with 𝛼𝑘 = ln(2), approximately half the entries
are 1 and half are 0. Thus, Pr[𝐴[𝑖] ≠ 𝐵 [𝑖]] ≈ Pr𝐶,𝐷∼Ber(1/2) [𝐶 ≠ 𝐷] = 1/2, so we expect
𝛿 ≈ 1/2.

6



(c) We write ℎ(𝑧) := {ℎ1(𝑧), . . . , ℎ𝑘 (𝑧)}. Note: Events concerning different keys or hash
functions can be separated by independence. Let 𝑥0 be an arbitrary element in 𝑋 and 𝑦0
an arbitrary element in 𝑌 \ 𝑋 .

E[𝛿] = E[|{𝑖 ∈ [𝑚] | 𝐴[𝑖] ≠ 𝐵 [𝑖]}|]
𝑚

=
1
𝑚

𝑚∑︁
𝑖=1

Pr[𝐴[𝑖] ≠ 𝐵 [𝑖]] = Pr[𝐴[𝑖0] ≠ 𝐵 [𝑖0]]

= Pr[(𝐴[𝑖0] = 0 ∧ 𝐵 [𝑖0] = 1) ∨ (𝐴[𝑖0] = 1 ∧ 𝐵 [𝑖0] = 0)] = 2 Pr[𝐴[𝑖0] = 0 ∧ 𝐵 [𝑖0] = 1]
= 2 Pr[∀𝑥 ∈ 𝑋 : 𝑖0 ∉ ℎ(𝑥) ∧ ∃𝑦 ∈ 𝑌 \ 𝑋 : 𝑖0 ∈ ℎ(𝑦)]
= 2 Pr[∀𝑥 ∈ 𝑋 : 𝑖0 ∉ ℎ(𝑥)] · Pr[∃𝑦 ∈ 𝑌 \ 𝑋 : 𝑖0 ∈ ℎ(𝑦)]
= 2 Pr[∀𝑥 ∈ 𝑋 : 𝑖0 ∉ ℎ(𝑥)] · (1 − Pr[∀𝑦 ∈ 𝑌 \ 𝑋 : 𝑖0 ∉ ℎ(𝑦)])
= 2 Pr[𝑖0 ∉ ℎ(𝑥0)] |𝑋 | · (1 − Pr[𝑖0 ∉ ℎ(𝑦0)] |𝑌\𝑋 |)
= 2 Pr[𝑖0 ≠ ℎ1(𝑥0)]𝑘 |𝑋 | · (1 − Pr[𝑖0 ≠ ℎ1(𝑦0)]𝑘 |𝑌\𝑋 |)
= 2(1 − 1

𝑚
)𝑘 |𝑋 | · (1 − (1 − 1

𝑚
)𝑘 |𝑌\𝑋 |)

= 2(1 − 1
𝑚
)𝑘𝑛 · (1 − (1 − 1

𝑚
)𝑘 (1−𝛾)𝑛)

= 2(1 − 1
𝑚
)𝑘𝛼𝑚 · (1 − (1 − 1

𝑚
)𝑘 (1−𝛾)𝛼𝑚)

≈ 2𝑒−𝑘𝛼 · (1 − 𝑒−𝑘 (1−𝛾)𝛼 )
= 2𝑒− ln(2) · (1 − 𝑒−(1−𝛾) ln(2))

= 1 −
( 1

2
) (1−𝛾)

.

(d) The method of bounded differences (or McDiarmid’s inequality) is suitable here. The
𝑘 · |𝑋 ∪𝑌 | relevant hash values are all independent. Changing any one alters 𝛿 by at most
± 1
𝑚

. The lecture’s analysis of the concentration of 𝑍 (number of zeros) transfers directly.

(e) From (c), we have E[𝛿] = 1 − ( 12 )
(1−𝛾) . We drop the “E” (since we have only 𝛿 , not E[𝛿])

and replace 𝛾 with 𝛾 (since we cannot compute 𝛾 exactly but only estimate it). Solving
𝛿 = 1 − ( 12 )

(1−𝛾) yields: 𝛾 = 1 − log2(1/(1 − 𝛿)).

(f) The larger 𝑘 , the stronger the concentration bound and the better the estimate 𝛾 . How-
ever, there is little reason not to use 𝑘 = 1. It is even conceivable to choose 𝑘 ∈ (0, 1),
meaning a key is assigned a position with probability 𝑘 and discarded with probability
1 − 𝑘 . These random choices must be made via a hash function known to both Alice and
Bob. With 𝑘 = Θ(1/𝑛), one could achieve memory usage independent of 𝑛. Similar to
approximation algorithms, one could introduce relative error and failure probability and
compute the required 𝑘 as a function of these parameters.

7


