
Stefan Walzer, Stefan Hermann
ITI Prof. Sanders

winter term 2025/2026

Exercise Sheet 8 – Bounded Differences
and Bloom Filters
Probability and Computing

Exercise 1 – Balls, Bins and Bounded Differences
Let 𝜆 > 0 be a constant, 𝑚 = 𝜆𝑛 the number of balls, and 𝑛 the number of bins. The 𝑗-th
ball is placed in bin 𝑋 𝑗 , where 𝑋1, . . . , 𝑋𝑚 ∼ U([𝑛]) are independent random variables. The
collision count is defined as 𝐶 = |{(𝑖, 𝑗) | 1 ≤ 𝑖 < 𝑗 ≤ 𝑚,𝑋𝑖 = 𝑋 𝑗 }|. The goal of this exercise
is to derive a concentration bound for 𝐶 .

(i) Show that E[𝐶] = Θ(𝑛).

For 𝑖 ∈ [𝑛], let 𝐿𝑖 = |{ 𝑗 ∈ [𝑚] | 𝑋 𝑗 = 𝑖}| denote the load of bin 𝑖 . It is neither difficult nor
interesting to show that Pr[max𝑖∈[𝑛] 𝐿𝑖 ≤ log𝑛] ≥ 1 − O(𝑛−100). Assume this to hold in the
following (proof provided in the sample solution).

(ii) Define 𝐶cap :=
∑︁
𝑖∈[𝑛]

(
min(log𝑛, 𝐿𝑖)

2

)
. Show that Pr[𝐶cap = 𝐶] = 1 − O(𝑛−100).

(iii) Show that Pr[𝐶cap − E[𝐶cap] ≥ 𝑡] ≤ exp(−2𝑡2/(𝑚 · log2 𝑛)).

(iv) Show that Pr[𝐶 − E[𝐶] ≥ 𝑛2/3] = O(𝑛−100).

(v) Assume an algorithm inserts 𝑛 keys into a hash table and then queries every key exactly
once. Show that the algorithm runs in time O(𝑛) except with probability O(𝑛−100) under
suitable assumptions. Note that we are not talking about expected running time.

The following exercise is not directly related to randomized algorithms, except that we used the
bound in lecture. Hence, “Bonus”.

Exercise 2 – Bonus: Approximations of 𝒆
You know that 𝑒 = lim𝑛→∞(1 + 1

𝑛
)𝑛 (this is even a common definition of 𝑒). Derive from this

that the following two inequalities hold for all 𝑛 ∈ N:

(1 + 1
𝑛
)𝑛 ≤ 𝑒 ≤ (1 + 1

𝑛
)𝑛+1

(1 − 1
𝑛
)𝑛 ≤ 𝑒−1 ≤ (1 − 1

𝑛
)𝑛−1.

The following steps are suggested:

1

(i) Prove the left-hand inequalities.
Hint: Use again 1 + 𝑥 ≤ 𝑒𝑥 .

(ii) Show that the right-hand sides are monotonically decreasing in 𝑛.

(iii) Deduce the right-hand inequalities from (ii) and a limit argument.

Exercise 3 – Counting Bloom Filter (a.k.a.: Count-Min Sketch)
A Counting Bloom Filter is initially like a standard Bloom Filter: it manages 𝑛 keys in an
array of size 𝑚, with load factor 𝛼 := 𝑛

𝑚
and 𝑘 hash functions. The parameters are chosen

as in lecture so that a standard Bloom Filter would have false-positive probability 𝜀. The
array now contains natural numbers instead of bits. In addition to insert and query, a delete
operation is now available.

Algorithm insert(𝑥):
for 𝑖 ∈ [𝑘] do

𝐴[ℎ𝑖 (𝑥)] + +

Algorithm delete(𝑥):
for 𝑖 ∈ [𝑘] do

𝐴[ℎ𝑖 (𝑥)] − −

Algorithm query(𝑥):
for 𝑖 ∈ [𝑘] do

if 𝐴[ℎ𝑖 (𝑥)] = 0 then
return false

return true
We allow a key to be inserted multiple times into the Counting Bloom Filter. Hence, the man-
aged object 𝑆 is now a multiset with 𝑛 elements {𝑥1, . . . , 𝑥𝑛}, each with multiplicity 𝑎1, . . . , 𝑎𝑛 .
The operation insert(𝑥) adds one copy of 𝑥 to the multiset 𝑆 , i.e., increments the multiplicity
of 𝑥 if 𝑥 is already in 𝑆 , or adds a new element with multiplicity 1 if 𝑥 is not yet in 𝑆 . The
meaning of delete is analogous. As before, query may return false positives but not false
negatives.

(a) We require that delete is called only for elements that are actually in 𝑆 (with multiplicity
at least 1). What breaks if we do not enforce this?

Additional useful operations can be implemented with Counting Bloom Filters.

(b) Implement an operation count that, for 𝑥 ∈ 𝐷 , returns an estimate count(𝑥) of the mul-
tiplicity 𝑎 of 𝑥 in 𝑆 . Show that Pr[𝑎 ≠ count(𝑥)] ≤ 𝜀.

(c) The primary argument for using (Counting) Bloom Filters is their low memory footprint
compared to exact data structures. We should therefore avoid using large integer types
(e.g., 64 bits) for counters. Consider an application where “most” counters never exceed 8
bits. We therefore use an array𝐴 of 8-bit counters. Briefly discuss the following proposals
for handling counter overflows. What are the advantages and what compromises are
made?

• Alice merely prevents counter overflows, i.e., adapts the 𝐴[ℎ𝑖 (𝑥)] + + operation in
insert and the 𝐴[ℎ𝑖 (𝑥)] − − operation in delete so that the counter is increment-
ed/decremented only if the maximum/minimum representable value has not yet
been reached.

2

• Bob proposes to “freeze” a counter that reaches (11111111)2 = 255, i.e., no future
insert or delete operations will modify this counter.

• Carol proposes to use the bit string (11111111)2 = 255 as a marker indicating that
the true counter value exceeds 254. In this special case, the true counter value is
stored in a hash table.

Exercise 4 – Estimating Set Intersections with Bloom Filters
Let 𝑛,𝑚, 𝑘 ∈ N. Alice and Bob wish to estimate how similar their musical tastes are. Let 𝑋 be
Alice’s 𝑛 favorite songs and 𝑌 be Bob’s 𝑛 favorite songs. The goal is to estimate 𝛾 := |𝑋∩𝑌 |

𝑛
∈

[0, 1]. They proceed as follows:

• Alice constructs a Bloom filter𝐴[1..𝑚] ∈ {0, 1}𝑚 for𝑋 using𝑘 hash functionsℎ1, . . . , ℎ𝑘 .

• Bob constructs a Bloom filter 𝐵 [1..𝑚] ∈ {0, 1}𝑚 for 𝑌 using the same 𝑘 hash functions.

• Alice and Bob exchange their filters and compute 𝛿 := |{𝑖∈[𝑚] |𝐴[𝑖]≠𝐵 [𝑖]}|
𝑚

.

• Alice and Bob compute an estimate 𝛾 for 𝛾 based on 𝛿 .

Solve the following subproblems:

(a) Discuss: What advantages and disadvantages might this method have compared to direct
exchange of 𝑋 and 𝑌?

(b) Gain intuition: What values of 𝛿 do you expect (approximately) for the extreme cases
𝛾 = 1 and 𝛾 = 0?
Hint: You may assume here and in the following that the Bloom filters use an “optimal”
configuration with 𝛼𝑘 = ln(2).

(c) Compute E[𝛿] as a function of 𝛾 . You may drop lower-order terms, e.g., write (1− 1
𝑚
)𝑚 ≈

𝑒−1 without carrying an 𝑜 (1) term.
Hint: At first glance, other parameters (e.g., 𝑛,𝑚, 𝑘, 𝛼, 𝜀) might appear relevant. Their
influence vanishes in lower-order terms.

(d) Discuss: Which concentration bound is suitable for proving that 𝛿 is close to E[𝛿] with
high probability?

(e) Rearrange the equation from (c) to show how an estimate 𝛾 for 𝛾 can be computed from
𝛿 .

(f) Speculate: What role does the choice of 𝑘 (or 𝜀) play in this context?

3

