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Exercise 1 - Coupling of a Random Walk

Let X1, X, ... ~ U({-1,1}) be independent random variables. For n € Ny, define W, :=
* 1 Xi. The sequence (W,)nen, is called a random walk. We may also consider a shifted
random walk (V;,)nen, defined by V,, :== W, + 42, which therefore has initial position V;, = 42
instead of Wy = 0. We aim to show that the choice of initial position typically does not matter
in the long run. We will use without proof that the random walk visits every integer at least
once with probability 1. In particular, lim, . Pr[max{W;,...,W,} <c] =0forallc € N.

(i) Let Sy, Sy, ... C Z be arbitrary sets. Show that lim,_, | Pr[W, € S,] — Pr[V, € S,]| = 0.
Hint: Construct a coupling (W, V;))neny, of (Wp)new, and (V,)nen, such thatlim, o Pr[W, =
Vi]=1.

(if) Show that the result of part (i) does not hold in this form for a shift of 43 instead of 42.

Solution 1

(i) We take (W;) = (W,) and describe (V) in natural language. Initially, (V,) behaves
exactly oppositely to (W,), i.e., uses the inverted increments —Xj, =X, —X3, ... and so
on. Let T = min{t € N | W; = 21}. Then Wy = 21 and V; = 42 — 21 = 21, meaning
the random walks meet at time T. From this point onward, (V) behaves identically to
(W,), using the same increments X1, X142, - . ..

It is evident that (V,)nen, d (Vi)nen,, since the accumulated increments remain in-
dependent random variables uniformly distributed in U ({—1,1}) (whether we add or
subtract X; is determined before observing the value of X;). Thus, we have a valid cou-
pling. In this coupling, the implication W, # V, = T > n holds. We now perform an
auxiliary calculation for arbitrary random variables X, Y and arbitrary sets S.

|Pr[X € S] —Pr[Y € S]|

=|Pr[X e SAX # Y] +Pr[X e SAX=Y] -Pr[Y e SAX =Y] -Pr[Y e SAX # Y]|
=|Pr[X e SAX#Y]-Pr[Y e SAX # Y]

<max{Pr[X e SAX #Y],Pr[Ye SAX Y]} <Pr[X #Y].



Applying thisto S = S,, X = W,,, and Y =V, we obtain:
|Pr[W, € S,] = Pr[V, € S]] = | Pr[W, € S,] = Pr[V, € S,]| < Pr[W, # V]
=Pr[T > n] = Pr[max{W,, ..., W,} < 21] 50
where the last step applies the hint for ¢ = 21.

(ii) As defined, the random walk “forgets” its precise starting point but not the parity of this
starting point. In other words, if we define S, := S := 2-Z, then random walks alternate
between being in S and not in S. For a shift of 23, we would then have |Pr[W, €
Sp] = Pr[V, € S,]| =1foralln e N.

Exercise 2 - Coupling and Total Variation Distance

Let X and Y be two random variables taking values in N. The total variation distance between
X and Y (or their distributions) is defined a|

d(X.Y) = %Zm[x: i - Pr[Y = 1]].

ieN
(i) Show: There exists a coupling (X', Y’) of X and Y such that Pr[X’ # Y'] =d(X,Y).

(ii) Show: No coupling (X', Y’) of X and Y satisfies Pr[X’ # Y'] < d(X,Y).

Solution 2

As preparation, consider a joint histogram of X (blue) and Y (red).
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Let all bars have width 1. Denote by red, blue, and purple the sets of points of the respec-
tive colors, and by Ayeqd, Aplue, and Apyrple the corresponding areas. Since the bars represent
distributions, we have Apjye + Apurple = 1 and Ared + Apurple = 1, implying Apjye = Ared. Both
equal the total variation distance d(X, Y). This is seen as follows:

d(X,Y) = Z |Pr[X = i] - Pr[Y = i]|
ieN
(Z(Pr )+Z(Pr - Pr[X = 1))
Pr[X= 1]>Pr[ i] Pr[X= 1]<Pr[Y i

=3 (Ablue + Ared) = %(Ablue + Ablue) = Ablue-

A general definition applicable also to continuous probability spaces can be found on Wikipedia.




(i) We sample a pair (P, Q) of points as follows:
« Sample P ~ U (blue U purple).
« If P € purple, set Q = P.
« Otherwise, sample Q ~ U(red).

It should be clear that then Q ~ U (red U purple). We now define X’ as the index of the
bar containing P and Y’ as the index of the bar containing Q. It should then be clear

that X’ £ X and Y’ £ Y. The useful property we will use is Pr[X’ = Y'| = Pr[P = Q] =
Apurple- From this it follows as desired:

PI‘[X’ # Y,] =1- Apurple = Aplue =d(X, Y).

(ii) Let S={i e N | Pr[X =i] > Pr[Y =i]}. Let (X', Y’) be any coupling of X and Y. Then:

Pr[ X' #Y ] >Pr[X € SAY ¢S] =Pr[X €S| -Pr[X € SAY €]
> Pr[X’ € S] — Pr[Y’ € S] = Pr[X € S] - Pr[Y € S]
= ZPr[X = i] = Pr[Y = i] = Apje = d(X, Y).

Exercise 3 — Properties of the Poisson Distribution

Let X ~ Pois(A). Show:
(i) E[X] =A.
(i) Var(X) = A.
(iii) For Y ~ Pois(p) independent of X, we have X + Y ~ Pois(A + p).

(iv) For X’ ~ Bin(X, p), we have X’ ~ Pois(Ap).
Note: Here, a two-stage random experiment is performed. The outcome X of the first
stage serves as a parameter of the second stage.

Solution 3
(o] tl
In the following, we constantly use the definition of the exponential function, i.e., el = Z —.
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(ii) We first compute the second uncentered moment:
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Moreover, we know E[X]? = A2. It follows that

Var(X) =E[X?] -E[X]? = A2+ A - A% = A,

(iii) Let k € N. We consider all k + 1 possibilities by which X + Y can sum to k, and then
apply the binomial theorem.
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(iv) Let k € N. For the final outcome to be k, it must have held that X > k. We consider all

possibilities.
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Exercise 4 — Poissonised Bloom Filters

We consider a Poisson model of Bloom filters, i.e., we assume that each position in the array
independently appears as a hash value Pois(ak)-many times.

(i) We again choose ak = In 2. How can we show that the fraction % of zeros is with high
probability close to %?

(i) How could this result be transferred to a non-Poissonised model?

Solution 4

(i) If X ~ Pois(In 2), then Pr[X = 0] = e~ "2 = % Since each position is now independently
empty or non-empty, we have Z ~ Bin(m, %) It follows that E[%] = %, and Chernoff
bounds apply directly to Z.

(ii) The quantity m — Z is a monotone function in the sense of the Poissonisation theorem
from the lecture. Accordingly, the exact “nk balls into m bins” model can be sandwiched
between two Poissonised models, as discussed.



