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Probability and Computing

Exercise 1 – Coupling of a RandomWalk
Let 𝑋1, 𝑋2, . . . ∼ U({−1, 1}) be independent random variables. For 𝑛 ∈ N0, define𝑊𝑛 :=∑𝑛

𝑖=1𝑋𝑖 . The sequence (𝑊𝑛)𝑛∈N0 is called a random walk. We may also consider a shifted
random walk (𝑉𝑛)𝑛∈N0 defined by 𝑉𝑛 :=𝑊𝑛 + 42, which therefore has initial position 𝑉0 = 42
instead of𝑊0 = 0. We aim to show that the choice of initial position typically does not matter
in the long run. We will use without proof that the random walk visits every integer at least
once with probability 1. In particular, lim𝑛→∞ Pr[max{𝑊1, . . . ,𝑊𝑛} < 𝑐] = 0 for all 𝑐 ∈ N.

(i) Let 𝑆1, 𝑆2, . . . ⊆ Z be arbitrary sets. Show that lim𝑛→∞ | Pr[𝑊𝑛 ∈ 𝑆𝑛] − Pr[𝑉𝑛 ∈ 𝑆𝑛] | = 0.
Hint: Construct a coupling (𝑊 ′

𝑛,𝑉
′
𝑛)𝑛∈N0 of (𝑊𝑛)𝑛∈N0 and (𝑉𝑛)𝑛∈N0 such that lim𝑛→∞ Pr[𝑊 ′

𝑛 =

𝑉 ′
𝑛] = 1.

(ii) Show that the result of part (i) does not hold in this form for a shift of 43 instead of 42.

Solution 1
(i) We take (𝑊 ′

𝑛) = (𝑊𝑛) and describe (𝑉 ′
𝑛) in natural language. Initially, (𝑉 ′

𝑛) behaves
exactly oppositely to (𝑊𝑛), i.e., uses the inverted increments −𝑋1,−𝑋2,−𝑋3, . . . and so
on. Let 𝑇 = min{𝑡 ∈ N | 𝑊𝑡 = 21}. Then𝑊𝑇 = 21 and 𝑉 ′

𝑇
= 42 − 21 = 21, meaning

the random walks meet at time 𝑇 . From this point onward, (𝑉 ′
𝑛) behaves identically to

(𝑊𝑛), using the same increments 𝑋𝑇+1, 𝑋𝑇+2, . . ..

It is evident that (𝑉 ′
𝑛)𝑛∈N0

d
= (𝑉𝑛)𝑛∈N0 , since the accumulated increments remain in-

dependent random variables uniformly distributed in U({−1, 1}) (whether we add or
subtract 𝑋𝑖 is determined before observing the value of 𝑋𝑖 ). Thus, we have a valid cou-
pling. In this coupling, the implication𝑊𝑛 ≠ 𝑉 ′

𝑛 ⇒ 𝑇 ≥ 𝑛 holds. We now perform an
auxiliary calculation for arbitrary random variables 𝑋 , 𝑌 and arbitrary sets 𝑆 .

| Pr[𝑋 ∈ 𝑆] − Pr[𝑌 ∈ 𝑆] |
=
�� Pr[𝑋 ∈ 𝑆 ∧ 𝑋 ≠ 𝑌 ] + Pr[𝑋 ∈ 𝑆 ∧ 𝑋 = 𝑌 ] − Pr[𝑌 ∈ 𝑆 ∧ 𝑋 = 𝑌 ] − Pr[𝑌 ∈ 𝑆 ∧ 𝑋 ≠ 𝑌 ]

��
=
�� Pr[𝑋 ∈ 𝑆 ∧ 𝑋 ≠ 𝑌 ] − Pr[𝑌 ∈ 𝑆 ∧ 𝑋 ≠ 𝑌 ]

��
≤ max{Pr[𝑋 ∈ 𝑆 ∧ 𝑋 ≠ 𝑌 ], Pr[𝑌 ∈ 𝑆 ∧ 𝑋 ≠ 𝑌 ]} ≤ Pr[𝑋 ≠ 𝑌 ] .
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Applying this to 𝑆 = 𝑆𝑛 , 𝑋 =𝑊𝑛 , and 𝑌 = 𝑉 ′
𝑛 , we obtain:

| Pr[𝑊𝑛 ∈ 𝑆𝑛] − Pr[𝑉𝑛 ∈ 𝑆𝑛] | = | Pr[𝑊𝑛 ∈ 𝑆𝑛] − Pr[𝑉 ′
𝑛 ∈ 𝑆𝑛] | ≤ Pr[𝑊𝑛 ≠ 𝑉 ′

𝑛]

= Pr[𝑇 > 𝑛] = Pr[max{𝑊1, . . . ,𝑊𝑛} < 21] 𝑛→∞−−−−→ 0

where the last step applies the hint for 𝑐 = 21.

(ii) As defined, the randomwalk “forgets” its precise starting point but not the parity of this
starting point. In other words, if we define 𝑆𝑛 := 𝑆 := 2 ·Z, then random walks alternate
between being in 𝑆 and not in 𝑆 . For a shift of 23, we would then have | Pr[𝑊𝑛 ∈
𝑆𝑛] − Pr[𝑉𝑛 ∈ 𝑆𝑛] | = 1 for all 𝑛 ∈ N.

Exercise 2 – Coupling and Total Variation Distance
Let𝑋 and𝑌 be two random variables taking values inN. The total variation distance between
𝑋 and 𝑌 (or their distributions) is defined as1

𝑑 (𝑋,𝑌 ) = 1
2
∑︁
𝑖∈N

| Pr[𝑋 = 𝑖] − Pr[𝑌 = 𝑖] |.

(i) Show: There exists a coupling (𝑋 ′, 𝑌 ′) of 𝑋 and 𝑌 such that Pr[𝑋 ′ ≠ 𝑌 ′] = 𝑑 (𝑋,𝑌 ).

(ii) Show: No coupling (𝑋 ′, 𝑌 ′) of 𝑋 and 𝑌 satisfies Pr[𝑋 ′ ≠ 𝑌 ′] < 𝑑 (𝑋,𝑌 ).

Solution 2
As preparation, consider a joint histogram of 𝑋 (blue) and 𝑌 (red).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · ·

Let all bars have width 1. Denote by red, blue, and purple the sets of points of the respec-
tive colors, and by 𝐴red, 𝐴blue, and 𝐴purple the corresponding areas. Since the bars represent
distributions, we have 𝐴blue + 𝐴purple = 1 and 𝐴red + 𝐴purple = 1, implying 𝐴blue = 𝐴red. Both
equal the total variation distance 𝑑 (𝑋,𝑌 ). This is seen as follows:

𝑑 (𝑋,𝑌 ) = 1
2

∑︁
𝑖∈N

| Pr[𝑋 = 𝑖] − Pr[𝑌 = 𝑖] |

= 1
2

(∑︁
𝑖∈N

Pr[𝑋=𝑖]≥Pr[𝑌=𝑖]

(Pr[𝑋 = 𝑖] − Pr[𝑌 = 𝑖]) +
∑︁
𝑖∈N

Pr[𝑋=𝑖]<Pr[𝑌=𝑖]

(Pr[𝑌 = 𝑖] − Pr[𝑋 = 𝑖])
)

= 1
2
(
𝐴blue +𝐴red

)
= 1

2
(
𝐴blue +𝐴blue) = 𝐴blue.

1A general definition applicable also to continuous probability spaces can be found on Wikipedia.
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(i) We sample a pair (𝑃,𝑄) of points as follows:
• Sample 𝑃 ∼ U(blue ∪ purple).
• If 𝑃 ∈ purple, set 𝑄 = 𝑃 .
• Otherwise, sample 𝑄 ∼ U(red).

It should be clear that then𝑄 ∼ U(red∪ purple). We now define 𝑋 ′ as the index of the
bar containing 𝑃 and 𝑌 ′ as the index of the bar containing 𝑄 . It should then be clear
that 𝑋 ′ d

= 𝑋 and 𝑌 ′ d
= 𝑌 . The useful property we will use is Pr[𝑋 ′ = 𝑌 ′] = Pr[𝑃 = 𝑄] =

𝐴purple. From this it follows as desired:

Pr[𝑋 ′ ≠ 𝑌 ′] = 1 −𝐴purple = 𝐴blue = 𝑑 (𝑋,𝑌 ).

(ii) Let 𝑆 = {𝑖 ∈ N | Pr[𝑋 = 𝑖] > Pr[𝑌 = 𝑖]}. Let (𝑋 ′, 𝑌 ′) be any coupling of 𝑋 and 𝑌 . Then:

Pr[𝑋 ′ ≠ 𝑌 ′] ≥ Pr[𝑋 ′ ∈ 𝑆 ∧ 𝑌 ′ ∉ 𝑆] = Pr[𝑋 ′ ∈ 𝑆] − Pr[𝑋 ′ ∈ 𝑆 ∧ 𝑌 ′ ∈ 𝑆]
≥ Pr[𝑋 ′ ∈ 𝑆] − Pr[𝑌 ′ ∈ 𝑆] = Pr[𝑋 ∈ 𝑆] − Pr[𝑌 ∈ 𝑆]
=
∑︁
𝑖∈𝑆

Pr[𝑋 = 𝑖] − Pr[𝑌 = 𝑖] = 𝐴blue = 𝑑 (𝑋,𝑌 ).

Exercise 3 – Properties of the Poisson Distribution
Let 𝑋 ∼ Pois(𝜆). Show:

(i) E[𝑋 ] = 𝜆.

(ii) Var(𝑋 ) = 𝜆.

(iii) For 𝑌 ∼ Pois(𝜌) independent of 𝑋 , we have 𝑋 + 𝑌 ∼ Pois(𝜆 + 𝜌).

(iv) For 𝑋 ′ ∼ Bin(𝑋, 𝑝), we have 𝑋 ′ ∼ Pois(𝜆𝑝).
Note: Here, a two-stage random experiment is performed. The outcome 𝑋 of the first
stage serves as a parameter of the second stage.

Solution 3

In the following, we constantly use the definition of the exponential function, i.e., 𝑒𝑡 =
∞∑︁
𝑖=0

𝑡 𝑖

𝑖! .

(i) E[𝑋 ] =
∞∑︁
𝑖=0

𝑒−𝜆
𝜆𝑖

𝑖! · 𝑖 = 𝑒−𝜆 · 𝜆
∞∑︁
𝑖=1

𝜆𝑖−1

(𝑖 − 1)! = 𝑒−𝜆 · 𝜆
∞∑︁
𝑖=0

𝜆𝑖

𝑖! = 𝑒−𝜆 · 𝜆 · 𝑒𝜆 = 𝜆.
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(ii) We first compute the second uncentered moment:

E[𝑋 2] =
∞∑︁
𝑖=0

𝑒−𝜆
𝜆𝑖

𝑖! · 𝑖
2 = 𝑒−𝜆 · 𝜆

∞∑︁
𝑖=1

𝜆𝑖−1

(𝑖 − 1)! · 𝑖

= 𝑒−𝜆 · 𝜆
( ∞∑︁
𝑖=1

𝜆𝑖−1

(𝑖 − 1)! · (𝑖 − 1) +
∞∑︁
𝑖=1

𝜆𝑖−1

(𝑖 − 1)!

)
= 𝑒−𝜆 · 𝜆

(
𝜆

∞∑︁
𝑖=2

𝜆𝑖−2

(𝑖 − 2)! +
∞∑︁
𝑖=1

𝜆𝑖−1

(𝑖 − 1)!

)
= 𝑒−𝜆 · 𝜆

(
𝜆

∞∑︁
𝑖=0

𝜆𝑖

𝑖! +
∞∑︁
𝑖=0

𝜆𝑖

𝑖!

)
= 𝑒−𝜆 · 𝜆

(
𝜆𝑒𝜆 + 𝑒𝜆

)
= 𝜆2 + 𝜆

Moreover, we know E[𝑋 ]2 = 𝜆2. It follows that

Var(𝑋 ) = E[𝑋 2] − E[𝑋 ]2 = 𝜆2 + 𝜆 − 𝜆2 = 𝜆.

(iii) Let 𝑘 ∈ N. We consider all 𝑘 + 1 possibilities by which 𝑋 + 𝑌 can sum to 𝑘 , and then
apply the binomial theorem.

Pr[𝑋 + 𝑌 = 𝑘] =
𝑘∑︁
𝑖=0

Pr[𝑋 = 𝑖 ∧ 𝑌 = 𝑘 − 𝑖] =
𝑘∑︁
𝑖=0

Pr[𝑋 = 𝑖] Pr[𝑌 = 𝑘 − 𝑖]

=

𝑘∑︁
𝑖=0

𝑒−𝜆
𝜆𝑖

𝑖! 𝑒
−𝜌 𝜌𝑘−𝑖

(𝑘 − 𝑖)! = 𝑒−(𝜆+𝜌)
1
𝑘!

𝑘∑︁
𝑖=0

𝑘!
𝑖!(𝑘 − 𝑖)!𝜆

𝑖𝜌𝑘−𝑖

= 𝑒−(𝜆+𝜌)
1
𝑘!

𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
𝜆𝑖𝜌𝑘−𝑖 = 𝑒−(𝜆+𝜌)

(𝜆 + 𝜌)𝑘
𝑘! = Pr

𝑍∼Pois(𝜆+𝜌)
[𝑍 = 𝑘] .

(iv) Let 𝑘 ∈ N. For the final outcome to be 𝑘 , it must have held that 𝑋 ≥ 𝑘 . We consider all
possibilities.

Pr[𝑋 ′ = 𝑘] =
∑︁
𝑖≥𝑘

Pr[𝑋 = 𝑖 ∧ 𝑋 ′ = 𝑘] =
∑︁
𝑖≥𝑘

Pr[𝑋 = 𝑖] · Pr[𝑋 ′ = 𝑘 | 𝑋 = 𝑖]

=
∑︁
𝑖≥𝑘

𝑒−𝜆
𝜆𝑖

𝑖! ·
(
𝑖

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑖−𝑘 = 𝑒−𝜆 ·

∑︁
𝑖≥𝑘

𝜆𝑖

𝑘!(𝑖 − 𝑘)!𝑝
𝑘 (1 − 𝑝)𝑖−𝑘

= 𝑒−𝜆
(𝜆𝑝)𝑘
𝑘! ·

∑︁
𝑖≥𝑘

𝜆𝑖−𝑘 (1 − 𝑝)𝑖−𝑘
(𝑖 − 𝑘)! = 𝑒−𝜆

(𝜆𝑝)𝑘
𝑘! ·

∑︁
𝑖≥0

(𝜆(1 − 𝑝))𝑖
𝑖!

= 𝑒−𝜆
(𝜆𝑝)𝑘
𝑘! 𝑒𝜆(1−𝑝) = 𝑒−𝜆𝑝

(𝜆𝑝)𝑘
𝑘! = Pr

𝑍∼Pois(𝜆𝑝)
[𝑍 = 𝑘] .
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Exercise 4 – Poissonised Bloom Filters
We consider a Poisson model of Bloom filters, i.e., we assume that each position in the array
independently appears as a hash value Pois(𝛼𝑘)-many times.

(i) We again choose 𝛼𝑘 = ln 2. How can we show that the fraction 𝑍
𝑚
of zeros is with high

probability close to 1
2?

(ii) How could this result be transferred to a non-Poissonised model?

Solution 4
(i) If𝑋 ∼ Pois(ln 2), then Pr[𝑋 = 0] = 𝑒− ln 2 = 1

2 . Since each position is now independently
empty or non-empty, we have 𝑍 ∼ Bin(𝑚, 12 ). It follows that E[

𝑍
𝑚
] = 1

2 , and Chernoff
bounds apply directly to 𝑍 .

(ii) The quantity𝑚 − 𝑍 is a monotone function in the sense of the Poissonisation theorem
from the lecture. Accordingly, the exact “𝑛𝑘 balls into𝑚 bins” model can be sandwiched
between two Poissonised models, as discussed.
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