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Exercise 1 - Jensen’s Inequality

Let D C R be a connected domain and f : D — R be a function. The function f is called
convex if it is “curved to the left” and concave if it is “curved to the right”E] A function is
convex if and only if its negation is concave. For a formal definition see: Wikipedia

(a) Decide (without proof) for the following functions whether they are convex on their
respective domains, concave, both, or neither.

fi)=x  p=x  fix)=x"  filx) =log(x),  fx) =log’(x).

(b) Let f be a convex function with domain D. Argue geometrically that for every x, € D
there exists a linear function g such that:

(i) f(x) = g(x)forallx € D
(i) f(x0) = g(xo).

(c) Conclude that for every convex function f and for every random variable X with values
in the domain D of f the following holds:

E[f(X)] = f(E[X]).
Hint: Consider xj, = E[X] and the corresponding g from the previous subproblem.

(d) Show that analogously, for every concave function f with domain D and for every ran-
dom variable X with values in D the following holds:

E[f(X)] = f(E[X]).

The inequality from (c) as well as variants as in (d) are called Jensen’s inequality.

!The “curved to the left” in quotation marks allows, besides left curvatures (of a twice continuously differen-
tiable function), also left kinks and linear behavior.


https://en.wikipedia.org/wiki/Convex_function
https://de.wikipedia.org/wiki/Jensensche_Ungleichung

Solution 1

(a) The functions are all twice continuously differentiable. If the second derivative is every-
where non-negative, then the function is convex; if it is everywhere non-positive, then
the function is concave.

+ fi is convex and concave

* f» is convex

« f3 is neither convex nor concave
* fiis concave

« f5 is neither convex nor concave

(b) Because f is curved to the left, one can place a tangent g to the graph of f at the point
(x0, f (x0)) such that f lies entirely above g.

el

That this is possible can be seen as follows (illustrated in the figure): One considers,
below the point (xo, f(x0)) (red) on the graph of f (black), the angular region of those
directions that never go beyond the graph of the function (blue). If this region is smaller
than 180° (right in the figure), then one obtains a contradiction to the convexity of f. If
this region is larger than 180° (center) or equal to 180° (left), then there exists at least one

line through (xq, f(x()) that avoids going beyond the graph of f.

(c) Let g(x) be the function from (b) for xo = E[X]. Then f(x) > g(x) for all x € D and
f(E[X]) = g(E[X]). Since g is a line, there exist a,b € R such that g(x) = ax + b. It
follows that

E[f(X)] = E[¢g(X)] = E[aX +b] = aE[X] +b = g(E[X]) = f(E[X]).

(d) Since —f is convex, it follows directly from (c):

E[f(X)] = -E[-f(X)] < —(=f(E[XD) = fE[X]).



Exercise 2 — Analysis of Lossy Counting

Algorithm init:
Reminder: Lossy Counting is a simple streaming al- Z 0
gorithm that approximately counts the length m of a return Z

stream. It involves a parameter p € (0,1]. The algo-
rithm itself as well as the way it is used are shown on
the right. Prove:

(a)
(b)
(c)

Algorithm update(Z, a):
with probability p do

L Z—7Z+1
E[result] =m | return Z
Pr[|result — m| < em] > 1 - 2exp(—€’pm/3). Algorithm result(Z):

L return Z/p
E[space] < log(1+ mp) + 1.

Hint: By space we denote the maximum memory
usage required for the state Z of LossyCounting. A
number i € N can be encoded with [log,(i+1)] bits.
Use Jensen’s inequality from Exercise

Usage:
Z « init()
fori=1tomdo
L Z « update(Z, a;)

return result(2)

Solution 2

()

(b)

(©)

Let Xj,..., X,y ~ Ber(p) be independent random variables, where X; indicates whether
the i-th element of the stream leads to an increment of the counter Z. Then X := }}12, X,
is the value of Z after the last update. The estimate of the algorithm for m is thus
result = X/p. Hence:

E[result] = E[X/p] = [Zm:X,] ZmlE Zm:p m.

i=1 i=1 i=1

"le—l
"OI»—A

Using the stated Chernoff bound, we obtain

Pr[|result — m| > em] = Pr[|X/p — m| > em] = Pr[|X — mp| > emp]
= Pr[|X — E[X]| > eE[X]] < 2exp(—£°E[X]/3) = 2exp(—£*mp/3).

The claim follows by considering the complementary probability.

Since Z grows monotonically, the memory requirement for Z is largest at the very end,
namely [log,(1+ X)T. Since f(x) = log(1 + x) is concave on [0, ), Jensen’s inequality
yields

E[space] = E[[log,(1+X)]] < E[log,(1+X)] +1

Jensen

< log,(1+E[X]) +1 =log,(1+mp) +1.



