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Exercise 1 – Jensen’s Inequality
Let 𝐷 ⊆ R be a connected domain and 𝑓 : 𝐷 → R be a function. The function 𝑓 is called
convex if it is “curved to the left” and concave if it is “curved to the right”.1 A function is
convex if and only if its negation is concave. For a formal definition see: Wikipedia

(a) Decide (without proof) for the following functions whether they are convex on their
respective domains, concave, both, or neither.

𝑓1(𝑥) = 𝑥, 𝑓2(𝑥) = 𝑥2, 𝑓3(𝑥) = 𝑥3, 𝑓4(𝑥) = log(𝑥), 𝑓5(𝑥) = log2(𝑥).

(b) Let 𝑓 be a convex function with domain 𝐷 . Argue geometrically that for every 𝑥0 ∈ 𝐷

there exists a linear function 𝑔 such that:
(i) 𝑓 (𝑥) ≥ 𝑔(𝑥) for all 𝑥 ∈ 𝐷
(ii) 𝑓 (𝑥0) = 𝑔(𝑥0).

(c) Conclude that for every convex function 𝑓 and for every random variable 𝑋 with values
in the domain 𝐷 of 𝑓 the following holds:

E[𝑓 (𝑋 )] ≥ 𝑓 (E[𝑋 ]) .

Hint: Consider 𝑥0 = E[𝑋 ] and the corresponding 𝑔 from the previous subproblem.

(d) Show that analogously, for every concave function 𝑓 with domain 𝐷 and for every ran-
dom variable 𝑋 with values in 𝐷 the following holds:

E[𝑓 (𝑋 )] ≤ 𝑓 (E[𝑋 ]) .

The inequality from (c) as well as variants as in (d) are called Jensen’s inequality.

1The “curved to the left” in quotation marks allows, besides left curvatures (of a twice continuously differen-
tiable function), also left kinks and linear behavior.
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https://en.wikipedia.org/wiki/Convex_function
https://de.wikipedia.org/wiki/Jensensche_Ungleichung


Solution 1
(a) The functions are all twice continuously differentiable. If the second derivative is every-

where non-negative, then the function is convex; if it is everywhere non-positive, then
the function is concave.

• 𝑓1 is convex and concave
• 𝑓2 is convex
• 𝑓3 is neither convex nor concave
• 𝑓4 is concave
• 𝑓5 is neither convex nor concave

(b) Because 𝑓 is curved to the left, one can place a tangent 𝑔 to the graph of 𝑓 at the point
(𝑥0, 𝑓 (𝑥0)) such that 𝑓 lies entirely above 𝑔.

x

f(x)

That this is possible can be seen as follows (illustrated in the figure): One considers,
below the point (𝑥0, 𝑓 (𝑥0)) (red) on the graph of 𝑓 (black), the angular region of those
directions that never go beyond the graph of the function (blue). If this region is smaller
than 180◦ (right in the figure), then one obtains a contradiction to the convexity of 𝑓 . If
this region is larger than 180◦ (center) or equal to 180◦ (left), then there exists at least one
line through (𝑥0, 𝑓 (𝑥0)) that avoids going beyond the graph of 𝑓 .

(c) Let 𝑔(𝑥) be the function from (b) for 𝑥0 = E[𝑋 ]. Then 𝑓 (𝑥) ≥ 𝑔(𝑥) for all 𝑥 ∈ 𝐷 and
𝑓 (E[𝑋 ]) = 𝑔(E[𝑋 ]). Since 𝑔 is a line, there exist 𝑎, 𝑏 ∈ R such that 𝑔(𝑥) = 𝑎𝑥 + 𝑏. It
follows that

E[𝑓 (𝑋 )] ≥ E[𝑔(𝑋 )] = E[𝑎𝑋 + 𝑏] = 𝑎E[𝑋 ] + 𝑏 = 𝑔(E[𝑋 ]) = 𝑓 (E[𝑋 ]).

(d) Since −𝑓 is convex, it follows directly from (c):

E[𝑓 (𝑋 )] = −E[−𝑓 (𝑋 )]
(𝑐)
≤ −(−𝑓 (E[𝑋 ])) = 𝑓 (E[𝑋 ]).
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Exercise 2 – Analysis of Lossy Counting

Reminder: Lossy Counting is a simple streaming al-
gorithm that approximately counts the length 𝑚 of a
stream. It involves a parameter 𝑝 ∈ (0, 1]. The algo-
rithm itself as well as the way it is used are shown on
the right. Prove:

(a) E[result] =𝑚

(b) Pr[|result −𝑚 | ≤ 𝜀𝑚] ≥ 1 − 2 exp(−𝜀2𝑝𝑚/3).

(c) E[space] ≤ log(1 +𝑚𝑝) + 1.
Hint: By space we denote the maximum memory
usage required for the state 𝑍 of LossyCounting. A
number 𝑖 ∈ N can be encoded with ⌈log2(𝑖+1)⌉ bits.
Use Jensen’s inequality from Exercise 1.

Algorithm init:
𝑍 ← 0
return 𝑍

Algorithm update(𝑍, 𝑎):
with probability 𝑝 do

𝑍 ← 𝑍 + 1
return 𝑍

Algorithm result(𝑍 ):
return 𝑍/𝑝

Usage:
𝑍 ← init()
for 𝑖 = 1 to𝑚 do

𝑍 ← update(𝑍, 𝑎𝑖)
return result(𝑍 )

Solution 2
(a) Let 𝑋1, . . . , 𝑋𝑚 ∼ Ber(𝑝) be independent random variables, where 𝑋𝑖 indicates whether

the 𝑖-th element of the stream leads to an increment of the counter 𝑍 . Then 𝑋 :=
∑𝑚

𝑖=1𝑋𝑖

is the value of 𝑍 after the last update. The estimate of the algorithm for 𝑚 is thus
result = 𝑋/𝑝 . Hence:

E[result] = E[𝑋/𝑝] = 1
𝑝
E
[ 𝑚∑︁
𝑖=1

𝑋𝑖

]
= 1

𝑝

𝑚∑︁
𝑖=1
E[𝑋𝑖] = 1

𝑝

𝑚∑︁
𝑖=1

𝑝 =𝑚.

(b) Using the stated Chernoff bound, we obtain

Pr[|result −𝑚 | ≥ 𝜀𝑚] = Pr[|𝑋/𝑝 −𝑚 | ≥ 𝜀𝑚] = Pr[|𝑋 −𝑚𝑝 | ≥ 𝜀𝑚𝑝]
= Pr[|𝑋 − E[𝑋 ] | ≥ 𝜀E[𝑋 ]] ≤ 2 exp(−𝜀2E[𝑋 ]/3) = 2 exp(−𝜀2𝑚𝑝/3).

The claim follows by considering the complementary probability.

(c) Since 𝑍 grows monotonically, the memory requirement for 𝑍 is largest at the very end,
namely ⌈log2(1 + 𝑋 )⌉. Since 𝑓 (𝑥) = log(1 + 𝑥) is concave on [0,∞), Jensen’s inequality
yields

E[space] = E[⌈log2(1 + 𝑋 )⌉] ≤ E[log2(1 + 𝑋 )] + 1
Jensen
≤ log2(1 + E[𝑋 ]) + 1 = log2(1 +𝑚𝑝) + 1.
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