

Exercise Sheet 5 – Randomized Complexity Classes

Probability and Computing

Exercise 1 – Relations between Complexity Classes

Justify the following inclusions:

- (i) $ZPP \subseteq RP$ and $ZPP \subseteq co-RP$
- (ii) $P \subseteq ZPP$
- (iii) $\mathbf{RP} \subseteq \mathbf{NP}$ and $\mathbf{co} \mathbf{RP} \subseteq \mathbf{co} \mathbf{NP}$
- (iv) $RP \subseteq BPP$ and $co-RP \subseteq BPP$
- (v) $\mathbf{BPP} \subseteq \mathbf{PP}$

Exercise 2 – Las Vegas Algorithm for L implies $L \in ZPP$

Let \mathbf{LV} (for Las Vegas) denote the class of all languages L for which there exists a probabilistic Turing machine T with the following properties:

- T decides L (that is, T outputs 1 for all $x \in L$ and 0 for all $x \notin L$).
- There exists a polynomial p(n) such that the *expected* runtime of T on input x is bounded by p(|x|).

In the lecture we proved that $ZPP \subseteq LV$. Show that also $LV \subseteq ZPP$ holds. Thus, the two classes are identical.

Hint: Definition of **ZPP**, Markov inequality.

Exercise 3 – Bonus: Probability Amplification for BPP

Look up on Wikipedia what the complexity class P/poly means. Show that $BPP \subseteq P/poly$. This insight is also known as Adleman's Theorem.

Hint: Make the error probability smaller than 2^{-n} . Transform the PTM into a DTM and show that there exists a random string that yields the correct result for all inputs.