

Exercise Sheet 6 – Concentration Bounds

Probability and Computing

Exercise 1 - Algebraic Rule for Expectation

Let *X*, *Y* be independent random variables whose expectation exists. Show that

$$\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y].$$

Hint: Use the definition of independence for discrete random variables, which guarantees

$$Pr[X = i \land Y = j] = Pr[X = i] \cdot Pr[Y = j]$$
 for all i, j .

Exercise 2 - Algebraic Rules for Variance

Let X, Y be independent random variables with existing variance. Let s, t > 0. Show:

- (a) $Var(sX) = s^2 Var(X)$
- (b) Var(X + Y) = Var(X) + Var(Y)
- (c) $Var(sX + tY) = s^2 Var(X) + t^2 Var(Y)$

Hint: Use linearity of expectation and the result of the previous exercise, i.e., $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$ for independent X and Y.

Exercise 3 - Chernoff in Even Simpler Form for Large Deviations

Let $X = X_1 + \cdots + X_n$ be a sum of independent Bernoulli random variables with $\mu = \mathbb{E}[X]$ and let $b \ge 6\mu$. Show

$$\Pr[X \ge b] \le 2^{-b}.$$

Hint: Use the Chernoff bound $\Pr[X \ge (1 + \delta)\mu] \le (\frac{e^{\delta}}{(1+\delta)^{1+\delta}})^{\mu}$.

Exercise 4 - Comparing Concentration Inequalities

For $n \in \mathbb{N}$ let X_n be the number of sixes when rolling a fair die n times. Let p_n be the probability that X_n exceeds its expectation by at least 10%. For each of the following, find an upper bound on p_n using. . .

- (a) ... Markov's Inequality.
- (b) ... Chebyshev's Inequality.
- (c) ... the Chernoff bound (or a variant).
- (d) Compare the asymptotic strength of the bounds.