

Exercise Sheet 7 - Classic Hash Tables

Probability and Computing

Exercise 1 – 2-Independence vs. 1-Universality

Let $\mathcal{H} \subseteq [m]^D$ be a family of hash functions mapping D to [m]. Prove or disprove the following implications:

- (a) \mathcal{H} is 2-independent $\Rightarrow \mathcal{H}$ is 1-universal.
- (b) \mathcal{H} is 1-universal $\Rightarrow \mathcal{H}$ is 2-independent.

Hint: In one case, the implication is straightforward. In the other, trivial counterexamples exist.

Exercise 2 – *d*-Independence without Mutual Independence

Alice and Bob each spin a roulette wheel with 10 equally sized segments labeled 0 to 9. Let A and B denote Alice's and Bob's outcomes, respectively. Define $C = (A + B) \mod 10$.

- (a) Show that *A*, *B*, and *C* are pairwise independent.
- (b) Show that *A*, *B*, and *C* are not mutually independent.
- (c) For any $d \in \mathbb{N}$, construct a family of random variables that is d-independent but not fully independent.

Exercise 3 – Find the Error

Let p be prime, $\mathbb{F}_p = \{0, \dots, p-1\}$ and $m \in \mathbb{N}$. Consider the following class of hash functions from \mathbb{F}_p to [m], also mentioned in the lecture.

$$\mathcal{H} = \{x \mapsto ((a \cdot x) \bmod p) \bmod m \mid a \in \mathbb{F}_p^*\}.$$

Consider the following argument that \mathcal{H} is 1-universal. Find the mistake in the proof.

The proof considers arbitrary $x, y \in \mathbb{F}_p$ with $x \neq y$. It has six steps.

$$\Pr_{h \sim \mathcal{H}}[h(x) = h(y)] \stackrel{1}{=} \Pr_{a \sim \mathcal{U}(\mathbb{F}_p^*)}[(ax \mod p) \mod m = (ay \mod p) \mod m]$$

$$\stackrel{2}{=} \Pr_{a \sim \mathcal{U}(\mathbb{F}_p^*)}[((ax \mod p) - (ay \mod p)) \mod m = 0]$$

$$\stackrel{3}{=} \Pr_{a \sim \mathcal{U}(\mathbb{F}_p^*)}[((ax - ay) \mod p) \mod m = 0]$$

$$\stackrel{4}{=} \Pr_{a \sim \mathcal{U}(\mathbb{F}_p^*)}[(a(x - y) \mod p) \mod m = 0]$$

$$\stackrel{5}{=} \Pr_{u \sim \mathcal{U}(\mathbb{F}_p^*)}[u \mod m = 0]$$

$$\stackrel{6}{=} \frac{|\{m, 2m, 3m, \dots, \} \cap \mathbb{F}_p^*|}{|\mathbb{F}_p^*|}$$

$$\stackrel{7}{=} \frac{1}{m}.$$

In Step 5 we use that the function $a \mapsto az \mod p$ is a bijection on \mathbb{F}_p^* for any fixed $z \in \mathbb{F}_p^*$. Therefore, if $a \sim \mathcal{U}(\mathbb{F}_p^*)$ and u := az then $u \sim \mathcal{U}(\mathbb{F}_p^*)$.

Exercise 4 – Bonus: Concentration Bounds for Sums of *d*-wise Independent Random Variables

Let $d \in \mathbb{N}$ be even, and $\{X_1, \dots, X_n\}$ be a d-wise independent family of random variables, each distributed as Ber(p) with $p = \Omega(1/n)$.

Define $X = \sum_{i=1}^{n} X_i$. Note: X is not necessarily binomially distributed since the X_i are not mutually independent.

The goal is to prove the concentration bound: for any $\delta > 0$,

$$\Pr[X - \mathbb{E}[X] \ge \delta \mathbb{E}[X]] = O(\delta^{-d}(np)^{-d/2}).$$

To this end, consider the "centered" random variables $Y_i := X_i - p$, their sum $Y = \sum_{i=1}^n Y_i$, and the moment $\mathbb{E}[Y^d]$.

- (i) Warm-up: Let $d \ge 3$ and $n \ge 3$. Verify and briefly explain why the following hold:
 - (a) $\mathbb{E}[Y_1^5 Y_2^{42}] = \mathbb{E}[Y_1^5] \mathbb{E}[Y_2^{42}]$
 - (b) $\mathbb{E}[Y_1^5 Y_2^{42} Y_3] = 0$
 - (c) $\mathbb{E}[Y_1^5] \leq \mathbb{E}[Y_1^2]$

In subsequent steps, you may apply these insights without further justification.

- (ii) Show: $\mathbb{E}[Y_1^2] \leq p$.
- (iii) Let $i_1, \ldots, i_d \in [n]$ (not necessarily distinct) and $S = \{i_1, \ldots, i_d\}$. Prove:

- If |S| > d/2, then $\mathbb{E}[Y_{i_1} \cdots Y_{i_d}] = 0$.
- Otherwise, $\mathbb{E}[Y_{i_1}\cdots Y_{i_d}] \leq p^{|S|}$.
- (iv) Show: $\mathbb{E}[Y^d] = O((np)^{d/2})$. You may assume d = O(1). Hint: Expand $(\sum_{i=1}^n Y_i)^d$. Yes, this yields n^d terms.
- (v) Prove the original goal by applying Markov's inequality to \mathbb{Y}^d .