

Exercise Sheet 3 – Important Random Variables and How to Sample Them

Probability and Computing

Exercise 1 – Ber(1/3) from Ber(1/2)

Design an algorithm that, given a sequence $B_1, B_2, \ldots \sim \text{Ber}(1/2)$ of random bits, computes a sample $B \sim \text{Ber}(1/3)$ in expected time O(1).

Exercise 2 – Ber(p) and $\mathcal{U}(\{1,\ldots,n\})$ from $\mathcal{U}([0,1])$

We now assume a machine model that can handle real numbers and allows us to sample $U \sim \mathcal{U}([0,1])$. Show that we can also sample $B \sim \mathrm{Ber}(p)$ for $p \in [0,1]$ and $X \sim \mathcal{U}(\{1,\ldots,n\})$ for $n \in \mathbb{N}$.

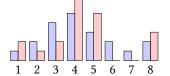
Hint: For the rest of this sheet and the course, we take this result as given.

Exercise 3 - Rejection Sampling in General

Let \mathcal{D}_1 and \mathcal{D}_2 be distributions over a finite set D. Assume:

- 1. We can sample $X \sim \mathcal{D}_1$ in time O(1).
- 2. For any $x \in D$, $p_1(x) := \Pr_{X \sim \mathcal{D}_2}[X = x]$ as well as $p_2(x) := \Pr_{X \sim \mathcal{D}_1}[X = x]$ can be computed in O(1).
- 3. There exists C > 0 such that for all $x \in D$,

$$p_2(x) \leq C \cdot p_1(x)$$
.



Possible histogram for \mathcal{D}_1 (blue, left) and \mathcal{D}_2 (red, right). It always holds that "red $\leq 2 \cdot$ blue", so condition (3) holds with C = 2.

Design an algorithm that samples $Y \sim \mathcal{D}_2$ in expected time O(C).

Exercise 4 – $G \sim \text{Geom}_1(p)$ with Inverse Transform Sampling

Design an algorithm that, for a given $p \in (0, 1]$, samples a random variable $G \sim \text{Geom}_1(p)$ in time O(1).

Exercise 5 - Sampling without Replacement

We consider algorithms that, for $k, n \in \mathbb{N}$ with $0 \le k \le n/2$, compute a set $S \subseteq [n]$ of size k, chosen uniformly at random among all subsets of [n] of size k.

- (a) Why can we assume $k \le n/2$ without loss of generality?
- (b) Describe an algorithm that has an expected runtime of $O(k \log k)$. **Hint:** Rejection sampling and search tree.
- (c) **Bonus:** Design an algorithm that has a worst-case runtime of $O(k \log k)$.
- (d) **Bonus:** Research how to achieve a worst-case runtime of O(k):

https://stackoverflow.com/a/67850443