Stefan Walzer, Stefan Hermann
\ ITI Prof. Sanders
[\ winter term 2025/2026

Karlsruher Institut fur Technologie

Exercise Sheet 3 - Important Random

Variables and How to Sample Them
Probability and Computing

Exercise 1 — Ber(1/3) from Ber(1/2)

Design an algorithm that, given a sequence By, By, ... ~ Ber(1/2) of random bits, computes
a sample B ~ Ber(1/3) in expected time O(1).

Solution 1

We interpret By, By, Bs, . .. as the binary expansion of a number U = (0.B;B;Bs ...),. Then
U ~ U([0,1]). We define B := 1y.y/5. This immediately implies B ~ Ber(1/3) as desired.
The binary expansion of 1/3is1/3 = (0.01010101 ...),. Thus, the following algorithm results,
which always takes the next two digits of U’s binary representation and checks whether they
allow a decision:
fori=1to codo
(x,y) < (Bai—1, B2)
if (x,y) = (0,0) then
return 1

else if (x,y) = (1,0) or (x,y) = (1,1) then

L return 0

Each round leads to a decision with probability 3/4. If R is the number of rounds, then

E[R]:ZPr[R>i]: R

i _1
ieNy i€eNyp 4 1 4 3

Remark: In practice, one wouldn’t actually do it this way. Instead, as in the next exercise,
one assumes that one can directly sample U ~ U([0,1]) (as accurately as floating-point
numbers allow).

Remark: The runtime is unbounded — and this is unavoidable. We can show this by contra-
diction. Suppose there exists an algorithm that always terminates after reading only a fixed
prefix By, ..., B¢ of the random bit sequence for some C € Nj. Then its output B is a random
variable B : Q — {0,1} on the probability space Q = {0,1} (with uniform distribution).
Each outcome has probability 27C. Hence, any event (and thus also the event {B = 1}) must
have probability that is an integer multiple of 27C. This contradicts the requirement that
Pr[B=1] =1/3.

Exercise 2 - Ber(p) and U ({1, ...,n}) from U([0, 1])

We now assume a machine model that can handle real numbers and allows us to sample U ~
U([0,1]). Show that we can also sample B ~ Ber(p) for p € [0,1] and X ~ U({1,...,n})
forn e N.

Hint: For the rest of this sheet and the course, we take this result as given.

Solution 2
Given U ~ U([0,1]), define B := 1y, and X := [U - n]. Then indeed:
Pr[B=1] =Pr[U < p] = p, and
for1 <i < n: Pr[X =] :Pr[U-nE(i—l,i]] Pr[Ue (=L - ,rll]] :%.
Remark: Strictly speaking, since U ~ U([0, 1]), the value U = 0 is possible, which would

yield X = 0, even though we want X € {1,...,n}. However, this happens with probability 0.
One can fix this by defining that 0 rounds up to 1, or simply ignore such minor edge cases.

Exercise 3 - Rejection Sampling in General

Let D, and D, be distributions over a finite set D. Assume:

1. We can sample X ~ D in time O(1).

2. For any x € D, pi(x) := Prx.p,[X = x] as well as EDD]H] [H[LEL[D

p2(x) == Prx.p, [X = x] can be computed in O(1). 2 3456738
Possible histogram for D; (blue,
3. There exists C > 0 such that for all x € D, left) and D, (red, right). It
always holds that
p2(x) < C - p1(x). “red < 2 - blue”, so condition (3)

holds with C = 2.

Design an algorithm that samples Y ~ 9, in expected time O(C).

Solution 3

The algorithm works as follows:
while True do
sample X ~ Dy // 0(1)
sample U ~ U([0,1]) // O(1)
if U < 2255 then // 0(1)
L return X

To verify correctness, note that c[? ;E)(% € [0, 1] by assumption (3). Let Y be the outcome of

a single iteration: Y = X if X is accepted, and Y = L otherwise. Then, for x € D:

—] = — 1. pa(x) 1 _ _ p2(x) _ pa(x)
Pr[Y =x] =Pr[X =x] - Pr U<—C-p1(x) = p1(x) Com - C

Thus, Pr[Y = x] is proportional to ps(x), and so Pr[Y = x | Y # L] = py(x). In other
words: whenever a sample is returned, it follows the distribution D, as desired. The success
probability per iterationis Pr[Y # L] = >, cp Pr[Y = x] = 1/C. Hence, the expected number
of rounds until success is C.

Intuition: You can visualize this process. If we draw the histograms of the two distribu-
tions on top of each other:

InSS

12345678

If we scale up the blue bars by a factor of C, the red bars are always below the blue ones.

12345678

To sample from the red distribution, it suffices to draw a random red point and return the
index of the bar in which it lies. To achieve this, we draw a random blue point (in the illus-
tration: a point that is blue or purple) and keep it if it is red.

In the algorithm, a random blue point is drawn by first choosing a bar X, and then selecting
a random height U - C - p;(X) along that bar. This height is then compared with the height
of the corresponding red bar.

Exercise 4 - G ~ Geom; (p) with Inverse Transform Sampling
Design an algorithm that, for a given p € (0, 1], samples a random variable G ~ Geom; (p)
in time O(1).
Solution 4
The cumulative distribution function of G is:
Fo(i)=Pr[G<i]=1-(1-p)".
For the (generalized) inverse, it follows for u € (0, 1]:

F;'(u) :=min{i € Ny | F5(i) > u} =min{i e Ng | 1 - (1 - p)" > u}
_ min {i €N, |i> log(1 —u)} _ [log(l —u)}'

~ log(1-p) log(1 - p)

According to the method, the following should work:

sample U ~ U([0,1])
log(1-U) ‘|
log(1-p)
We can also verify that everything worked by checking that the G produced by the algorithm
has the desired distribution function:
log(1-U)

MHP -

return G = [

log(1 - p) log(1=p) | = Frllog(l =U) = ilog(1 = p)l

=Pr[1-U>(1-p)]=Pr[lU<1-(1-p)]=1-(1-p).

Pr[G <i] =Pr U

Exercise 5 - Sampling without Replacement

We consider algorithms that, for k,n € N with 0 < k < n/2, compute a set S C [n] of size k,
chosen uniformly at random among all subsets of [n] of size k.

(a) Why can we assume k < n/2 without loss of generality?

(b) Describe an algorithm that has an expected runtime of O(k log k).
Hint: Rejection sampling and search tree.

(c) Bonus: Design an algorithm that has a worst-case runtime of O (k log k).

(d) Bonus: Research how to achieve a worst-case runtime of O (k):

https://stackoverflow.com/a/67850443

Solution 5

(a) S € [n] is a random set of size k if and only if [n] \ S is a random set of size n — k.

(b) Conceptually, the algorithm samples with replacement, stores the results in a search tree,
and ignores any samples that have already occurred. It continues until k distinct results
have been obtained. This is a form of rejection sampling, and it is quite clear that it is
correct.

Algorithm SampleWithoutReplacement(n, k):

S « @ // as search tree
while |S| < k do
sample X ~ U({1,...,n})
if X ¢ S then
| S—Su{x}

return S

By the assumption from (a) and the loop condition, at the beginning of each iteration
we have |S| < k < n/2. Thus, the probability of drawing something we already have is

https://stackoverflow.com/a/67850443

always at most 1/2. It follows that the number F of unsuccessful iterations is expected
to be at most the number of successful ones, i.e. E[F] < k.

The total runtime is T = (k + F) - O(logk) because there are k + F iterations, each
performing search tree operations in O(log k). Hence E[T] = O(klogk).

(c) The idea is to explicitly manage the set of elements that can still be drawn. In the
following, Array[1..n] is used, which always contains a permutation of the set {1, ..., n}.
At the beginning of iteration i, Array|[1..i — 1] contains the elements already drawn, and
Array[i..n] contains those still available.

Algorithm SampleWithoutReplacement(n, k):
Array = [1,2,...,n] // everything still drawable

fori=1tok do
sample j ~ U{i,...,n})
swap Array[j] and Array[i] // does nothing if j = i

| return Array[1..k]

Unfortunately, this results in a runtime of O(n + k) because of the array initialization.
However, this can be fixed. Clearly, at most 2k indices i can satisfy Array[i] # i. It
therefore suffices to store only these exceptional positions in a search tree. This yields a

runtime of O(k logk).

(d) See https://github.com/ciphergoth/sansreplace/blob/master/cardchoose.md

https://github.com/ciphergoth/sansreplace/blob/master/cardchoose.md

