
Stefan Walzer, Stefan Hermann
ITI Prof. Sanders

winter term 2025/2026

Exercise Sheet 3 – Important Random
Variables and How to Sample Them

Probability and Computing

Exercise 1 – Ber(1/3) from Ber(1/2)

Design an algorithm that, given a sequence 𝐵1, 𝐵2, . . . ∼ Ber(1/2) of random bits, computes
a sample 𝐵 ∼ Ber(1/3) in expected time O(1).

Solution 1
We interpret 𝐵1, 𝐵2, 𝐵3, . . . as the binary expansion of a number 𝑈 = (0.𝐵1𝐵2𝐵3 . . .)2. Then
𝑈 ∼ U([0, 1]). We define 𝐵 := 1𝑈<1/3. This immediately implies 𝐵 ∼ Ber(1/3) as desired.
The binary expansion of 1/3 is 1/3 = (0.01010101 . . .)2. Thus, the following algorithm results,
which always takes the next two digits of𝑈 ’s binary representation and checks whether they
allow a decision:
for 𝑖 = 1 to∞ do
(𝑥,𝑦) ← (𝐵2𝑖−1, 𝐵2𝑖)
if (𝑥,𝑦) = (0, 0) then

return 1
else if (𝑥,𝑦) = (1, 0) or (𝑥,𝑦) = (1, 1) then

return 0

Each round leads to a decision with probability 3/4. If 𝑅 is the number of rounds, then

E[𝑅] =
∑︁
𝑖∈N0

Pr[𝑅 > 𝑖] =
∑︁
𝑖∈N0

1
4𝑖

=
1

1 − 1
4
=
4
3
.

Remark: In practice, one wouldn’t actually do it this way. Instead, as in the next exercise,
one assumes that one can directly sample 𝑈 ∼ U([0, 1]) (as accurately as floating-point
numbers allow).
Remark: The runtime is unbounded — and this is unavoidable. We can show this by contra-
diction. Suppose there exists an algorithm that always terminates after reading only a fixed
prefix 𝐵1, . . . , 𝐵𝐶 of the random bit sequence for some𝐶 ∈ N0. Then its output 𝐵 is a random
variable 𝐵 : Ω → {0, 1} on the probability space Ω = {0, 1}𝐶 (with uniform distribution).
Each outcome has probability 2−𝐶 . Hence, any event (and thus also the event {𝐵 = 1}) must
have probability that is an integer multiple of 2−𝐶 . This contradicts the requirement that
Pr[𝐵 = 1] = 1/3.

1

Exercise 2 – Ber(𝒑) and U({1, . . . , 𝒏}) from U([0, 1])

We now assume a machine model that can handle real numbers and allows us to sample𝑈 ∼
U([0, 1]). Show that we can also sample 𝐵 ∼ Ber(𝑝) for 𝑝 ∈ [0, 1] and 𝑋 ∼ U({1, . . . , 𝑛})
for 𝑛 ∈ N.

Hint: For the rest of this sheet and the course, we take this result as given.

Solution 2
Given𝑈 ∼ U([0, 1]), define 𝐵 := 1𝑈<𝑝 and 𝑋 := ⌈𝑈 · 𝑛⌉. Then indeed:

Pr[𝐵 = 1] = Pr[𝑈 < 𝑝] = 𝑝, and
for 1 ≤ 𝑖 ≤ 𝑛: Pr[𝑋 = 𝑖] = Pr

[
𝑈 · 𝑛 ∈ (𝑖 − 1, 𝑖]

]
= Pr

[
𝑈 ∈ (𝑖−1

𝑛
, 𝑖
𝑛
]
]
= 1

𝑛
.

Remark: Strictly speaking, since𝑈 ∼ U([0, 1]), the value𝑈 = 0 is possible, which would
yield 𝑋 = 0, even though we want 𝑋 ∈ {1, . . . , 𝑛}. However, this happens with probability 0.
One can fix this by defining that 0 rounds up to 1, or simply ignore such minor edge cases.

Exercise 3 – Rejection Sampling in General
Let D1 and D2 be distributions over a finite set 𝐷 . Assume:

1. We can sample 𝑋 ∼ D1 in time O(1).

2. For any 𝑥 ∈ 𝐷 , 𝑝1(𝑥) := Pr𝑋∼D2 [𝑋 = 𝑥] as well as
𝑝2(𝑥) := Pr𝑋∼D1 [𝑋 = 𝑥] can be computed in O(1).

3. There exists 𝐶 > 0 such that for all 𝑥 ∈ 𝐷 ,

𝑝2(𝑥) ≤ 𝐶 · 𝑝1(𝑥).

1 2 3 4 5 6 7 8
Possible histogram for D1 (blue,
left) and D2 (red, right). It
always holds that
“red ≤ 2 · blue”, so condition (3)
holds with 𝐶 = 2.

Design an algorithm that samples 𝑌 ∼ D2 in expected time O(𝐶).

Solution 3
The algorithm works as follows:
while True do

sample 𝑋 ∼ D1 // O(1)
sample𝑈 ∼ U([0, 1]) // O(1)
if 𝑈 <

𝑝2 (𝑋)
𝐶 ·𝑝1 (𝑋) then // O(1)

return 𝑋

To verify correctness, note that 𝑝2 (𝑋)
𝐶 ·𝑝1 (𝑋) ∈ [0, 1] by assumption (3). Let 𝑌 be the outcome of

a single iteration: 𝑌 = 𝑋 if 𝑋 is accepted, and 𝑌 = ⊥ otherwise. Then, for 𝑥 ∈ 𝐷 :

Pr[𝑌 = 𝑥] = Pr[𝑋 = 𝑥] · Pr
[
𝑈 <

𝑝2(𝑥)
𝐶 · 𝑝1(𝑥)

]
= 𝑝1(𝑥) ·

𝑝2(𝑥)
𝐶 · 𝑝1(𝑥)

=
𝑝2(𝑥)
𝐶

.

2

Thus, Pr[𝑌 = 𝑥] is proportional to 𝑝2(𝑥), and so Pr[𝑌 = 𝑥 | 𝑌 ≠ ⊥] = 𝑝2(𝑥). In other
words: whenever a sample is returned, it follows the distributionD2 as desired. The success
probability per iteration is Pr[𝑌 ≠ ⊥] = ∑

𝑥∈𝐷 Pr[𝑌 = 𝑥] = 1/𝐶 . Hence, the expected number
of rounds until success is 𝐶 .

Intuition: You can visualize this process. If we draw the histograms of the two distribu-
tions on top of each other:

1 2 3 4 5 6 7 8

If we scale up the blue bars by a factor of 𝐶 , the red bars are always below the blue ones.

1 2 3 4 5 6 7 8

To sample from the red distribution, it suffices to draw a random red point and return the
index of the bar in which it lies. To achieve this, we draw a random blue point (in the illus-
tration: a point that is blue or purple) and keep it if it is red.

In the algorithm, a random blue point is drawn by first choosing a bar𝑋 , and then selecting
a random height 𝑈 · 𝐶 · 𝑝1(𝑋) along that bar. This height is then compared with the height
of the corresponding red bar.

Exercise 4 – 𝑮 ∼ Geom1(𝒑) with Inverse Transform Sampling
Design an algorithm that, for a given 𝑝 ∈ (0, 1], samples a random variable 𝐺 ∼ Geom1(𝑝)
in time O(1).

Solution 4
The cumulative distribution function of 𝐺 is:

𝐹𝐺 (𝑖) = Pr[𝐺 ≤ 𝑖] = 1 − (1 − 𝑝)𝑖 .

For the (generalized) inverse, it follows for 𝑢 ∈ (0, 1]:

𝐹−1𝐺 (𝑢) := min{𝑖 ∈ N0 | 𝐹𝐺 (𝑖) ≥ 𝑢} = min{𝑖 ∈ N0 | 1 − (1 − 𝑝)𝑖 ≥ 𝑢}

= min

{
𝑖 ∈ N0 | 𝑖 ≥

log(1 − 𝑢)
log(1 − 𝑝)

}
=

⌈
log(1 − 𝑢)
log(1 − 𝑝)

⌉
.

3

According to the method, the following should work:
sample𝑈 ∼ U([0, 1])
return 𝐺 =

⌈ log(1−𝑈)
log(1−𝑝)

⌉
We can also verify that everything worked by checking that the𝐺 produced by the algorithm
has the desired distribution function:

Pr[𝐺 ≤ 𝑖] = Pr

[⌈
log(1 −𝑈)
log(1 − 𝑝)

⌉
≤ 𝑖

]
= Pr

[
log(1 −𝑈)
log(1 − 𝑝) ≤ 𝑖

]
= Pr[log(1 −𝑈) ≥ 𝑖 log(1 − 𝑝)]

= Pr[1 −𝑈 ≥ (1 − 𝑝)𝑖] = Pr[𝑈 ≤ 1 − (1 − 𝑝)𝑖] = 1 − (1 − 𝑝)𝑖 .

Exercise 5 – Sampling without Replacement
We consider algorithms that, for 𝑘, 𝑛 ∈ N with 0 ≤ 𝑘 ≤ 𝑛/2, compute a set 𝑆 ⊆ [𝑛] of size 𝑘 ,
chosen uniformly at random among all subsets of [𝑛] of size 𝑘 .

(a) Why can we assume 𝑘 ≤ 𝑛/2 without loss of generality?

(b) Describe an algorithm that has an expected runtime of O(𝑘 log𝑘).
Hint: Rejection sampling and search tree.

(c) Bonus: Design an algorithm that has a worst-case runtime of O(𝑘 log𝑘).

(d) Bonus: Research how to achieve a worst-case runtime of O(𝑘):
https://stackoverflow.com/a/67850443

Solution 5
(a) 𝑆 ⊆ [𝑛] is a random set of size 𝑘 if and only if [𝑛] \ 𝑆 is a random set of size 𝑛 − 𝑘 .

(b) Conceptually, the algorithm sampleswith replacement, stores the results in a search tree,
and ignores any samples that have already occurred. It continues until 𝑘 distinct results
have been obtained. This is a form of rejection sampling, and it is quite clear that it is
correct.
Algorithm SampleWithoutReplacement(𝑛, 𝑘):

𝑆 ← ∅ // as search tree
while |𝑆 | < 𝑘 do

sample 𝑋 ∼ U({1, . . . , 𝑛})
if 𝑋 ∉ 𝑆 then

𝑆 ← 𝑆 ∪ {𝑋 }

return 𝑆

By the assumption from (a) and the loop condition, at the beginning of each iteration
we have |𝑆 | < 𝑘 ≤ 𝑛/2. Thus, the probability of drawing something we already have is

4

https://stackoverflow.com/a/67850443

always at most 1/2. It follows that the number 𝐹 of unsuccessful iterations is expected
to be at most the number of successful ones, i.e. E[𝐹] ≤ 𝑘 .
The total runtime is 𝑇 = (𝑘 + 𝐹) · O(log𝑘) because there are 𝑘 + 𝐹 iterations, each
performing search tree operations in O(log𝑘). Hence E[𝑇] = O(𝑘 log𝑘).

(c) The idea is to explicitly manage the set of elements that can still be drawn. In the
following, Array[1..𝑛] is used, which always contains a permutation of the set {1, . . . , 𝑛}.
At the beginning of iteration 𝑖 , Array[1..𝑖 − 1] contains the elements already drawn, and
Array[𝑖 ..𝑛] contains those still available.

Algorithm SampleWithoutReplacement(𝑛, 𝑘):
Array = [1, 2, . . . , 𝑛] // everything still drawable
for 𝑖 = 1 to 𝑘 do

sample 𝑗 ∼ U({𝑖, . . . , 𝑛})
swap Array[𝑗] and Array[𝑖] // does nothing if 𝑗 = 𝑖

return Array[1..𝑘]

Unfortunately, this results in a runtime of O(𝑛 + 𝑘) because of the array initialization.
However, this can be fixed. Clearly, at most 2𝑘 indices 𝑖 can satisfy Array[𝑖] ≠ 𝑖 . It
therefore suffices to store only these exceptional positions in a search tree. This yields a
runtime of O(𝑘 log𝑘).

(d) See https://github.com/ciphergoth/sansreplace/blob/master/cardchoose.md

5

https://github.com/ciphergoth/sansreplace/blob/master/cardchoose.md

