

Probability and Computing – Randomised Complexity Classes

Stefan Walzer | WS 2025/2026



Lecture Notes

Lecture notes by Thomas Worsch available:

Today: Decision Problems Only

- approximation algorithms
- average case analysis
- data structures
- optimisation problems
- decision problems
 - for some language L such as L = PRIMES
 - decide for input x the question "is $x \in L$?"
 - can you do it in polynomial time?
 - does randomisation help?

Turing machines

(Non-) deterministic Turing machine

- S: finite state set
- B: finite tape alphabet including blank symbol □
- $A \subseteq B \{\Box\}$: input alphabet
- one tape, one head
- transition functions
 - deterministic: one $\delta: S \times B \rightarrow (S \cup \{YES, NO\}) \times B \times \{-1, 0, 1\}$
 - non-deterministic two (or more) $\delta_0, \delta_1: S \times B \rightarrow (S \cup \{YES, NO\}) \times B \times \{-1, 0, 1\}$ (alternatively: general transition relation)
 - in states YES and NO: "T halts"
- accepted language $L(T) = \{ w \in A^+ \mid \exists YES$ -computation for $w \}$

Probabilistic Turing machine

- definition like non-deterministic TM
- uses δ_0 or δ_1 with probability 1/2 in each step
- output T(w) is random variable
- difference to NTM:
 - quantified non-determinism
 - can study e.g. probability of acceptance

Prelimilaries

Probabilistic Turing Machines

Complexity Classes

Relationships between Complexity Classes

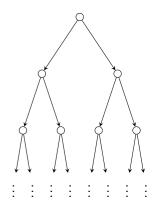
When is a PTM polynomial time?

Annoying

Running time for input *x* is random variable $T(x) \in \mathbb{N} \cup \{\infty\}$.

Simplification for Today: PTM in normal form

- For all inputs of length n, the PTM halts and does so after the same number of steps t(n).
- computation tree of PTM in normal form is complete binary tree of depth t(n).
- \blacksquare call t(n) the running time
- PTM runs in *polynomial time*, if $t(n) \le p(n)$ for a polynomial p(n).
- acceptance probability is the
 number of accepting computations
 acceptance probability is the



"Classic" Complexity Classes

class $\mathcal C$	requirement for $L \in \mathcal{C}$
P NP PSPACE	polynomial time DTM can decide <i>L</i> polynomial time NTM can decide <i>L</i> polynomial space TM can decide <i>L</i>

Complement Classes

For class C let $co-C = \{L \mid \overline{L} \in C\} = \{\overline{L} \mid L \in C\}$, e.g.

- $\mathbf{P} = \mathbf{co} \mathbf{P}$
- $P \subseteq NP \cap co-NP$
- relationship between NP and co-NP unknown
- NP \cup co-NP \subseteq PSPACE

Polynomial time reduction from L_1 to L_2

- in polynomial time computable function $f: A^+ \to A^+$, such that
- \hookrightarrow then e.g. $L_2 \in \mathbf{NP}$ implies $L_1 \in \mathbf{NP}$.

Hardness

- A language H is C-hard, if every language $L \in C$ can be reduced to *H* in polynomial time.
- A language is C-complete, if it is C-hard and in C.

Prelimilaries

Probabilistic Turing Machines

Complexity Classes nonno

Relationships between Complexity Classes

Probabilistic Complexity Classes

A language L is in class P/RP/BPP/PP, if there exists a probabilistic polynomial time turing machine T such that...

class	name	requirement	visualisation	
P	polynomial time	$\forall w \notin L : \Pr[T(w) = YES] = 0$ $\forall w \in L : \Pr[T(w) = YES] = 1$	$\notin L \in L$	no error
RP	randomised poly- nomial time	$\forall w \notin L : \Pr[T(w) = \text{YES}] = 0$ $\forall w \in L : \Pr[T(w) = \text{YES}] \ge 1/2$	$\notin L \longrightarrow \in L$	one-sided error
BPP	bounded-error probabilistic polynomial time	$\forall w \notin L : \Pr[T(w) = \text{YES}] < 1/4$ $\forall w \in L : \Pr[T(w) = \text{YES}] > 3/4$	$\notin L \ge \in L$	two-sided error
PP	probabilistic poly- nomial time	$\forall w \notin L : \Pr[T(w) = \text{YES}] \le 1/2$ $\forall w \in L : \Pr[T(w) = \text{YES}] > 1/2$	$\notin L \lesssim \in L$	two-sided error
		zero error probabilistic polynomial time achines, one for RP, one for co-RP.	0 1	

We say a polynomial time PTM is an RP-PTM, BPP-PTM or PP-PTM if it is of the corresponding form.

Prelimilaries Probabilistic Turing Machines Complexity Classes Relationships between Complexity Classes Conclusion 000000

Probability Amplification

Theorem

Instead of "1/2" we can use "1 $-2^{-q(n)}$ " in the definition of RP without affecting the class.

Proof.

Let *T* be the Turing machine witnessing $L \in \mathbf{RP}$. By running T independently q(n) times the error probability is $2^{-q(n)}$. Running time increases by polynomial factor q(n).

for
$$i = 1$$
 to $q(n)$ do

if $T(w) = YES$ then

return YES

Prelimilaries

Probabilistic Turing Machines

Complexity Classes 000000

Relationships between Complexity Classes

Probability Amplification (2)

Theorem

Instead of "1/4" and "3/4" we can use " $2^{-q(n)}$ " and "1 – $2^{-q(n)}$ " in the definition of **BPP** without affecting the class.

Proof.

Repeat $\mathcal{O}(q(n))$ times and take the majority answer. See exercise sheet on probability amplification.

ZPP: Zero-Error-Probabilistic Polynomial Time

Theorem: $L \in \mathbf{ZPP} \Rightarrow \mathsf{Las-Vegas}$ Algorithm for L

If $L \in \mathbf{ZPP} := \mathbf{RP} \cap \mathbf{co} - \mathbf{RP}$ then there exists a PTM that

- decides L with no error
- has expected polynomial running time

Las Vegas Algorithm

Randomised Algorithm that never outputs an incorrect result

Some definitions allow the algorithm to "give-up". reporting failure.

Proof

Let T be an RP-PTM for L with running time p(n).

 \hookrightarrow never errs for $x \notin L$

Let \bar{T} be an **RP**-PTM for \bar{L} with running time p(n).

 \hookrightarrow never errs for $x \notin \bar{L}$

• Every round gives $r_1 = r_2$ with probability $\geq 1/2$.

return
$$r_1$$
 ery round gives $r_1 = r_2$ with probability $\geq 1/2$.

 $\mathbb{E}[\text{running time}] \leq 2p(|w|) \cdot \mathbb{E}[\text{#rounds}] \stackrel{\text{TSF}}{=} 2p(|w|) \cdot \sum_{i \geq 1} \Pr[\text{#rounds} \geq i] \leq 2p(n) \cdot \sum_{i \geq 1} 2^{-(i-1)} = 2p(n) \cdot \sum_{i \geq 0} 2^{-i} = 4p(n)$.

repeat
$$\begin{vmatrix}
r_1 \leftarrow T(w) \\
r_2 \leftarrow \text{not} \overline{T}(w)
\end{vmatrix}$$
until $r_1 = r_2$
return r_1

$$2^{-(i-1)} = 2p(n) \cdot \sum_{i \ge 0} 2^{-i} = 4p(n)$$
.

Prelimilaries

10/17

Probabilistic Turing Machines

Complexity Classes 0000000

Relationships between Complexity Classes

Complete Problems?

Remark

The classes RP, co-RP and BPP are not believed to have complete problems unless, e.g. BPP = P.

A complete problem for NP

 $L = \{(T, x) \mid T \text{ is an NP-NTM in normal form}$ and $T \text{ accepts } x\}$

L is NP-hard ✓

Assume $L' \in \mathbf{NP}$

- \Rightarrow there exists **NP**-NTM *T* for L' in normal form
- \Rightarrow reduction: $x \in L' \Leftrightarrow (T, x) \in L$
- $L \in \mathbf{NP} \checkmark$
 - check if T is **NP**-NTM in normal form $// \in \mathbb{P}$
 - check if T accepts x // simulate

A complete problem for RP?

 $L = \{(T, x) \mid T \text{ is an } \mathbf{RP}\text{-PTM in normal form}$ and $\Pr[T \text{ accepts } x] \ge 1/2\}$

L is **RP**-hard √

Assume $L' \in \mathbf{RP}$

- \Rightarrow there exists **RP-PTM** T for L' in normal form
- \Rightarrow reduction: $x \in L' \Leftrightarrow (T, x) \in L$
- $L \in \mathbf{RP} X$
 - check if T is RP-PTM in normal form X undecidable!
 - check if T accepts x // simulate

Prelimilaries

Probabilistic Turing Machines

Complexity Classes ○○○○○● Relationships between Complexity Classes

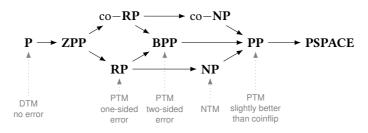
Content

- 4. Relationships between Complexity Classes

P	re	liı	m	il	а	ri	е	S
0	0							

12/17

Beziehungen zwischen Komplexitätsklassen



Exercise

- $ightharpoonup P \subset ZPP$
- $ZPP \subseteq RP$ and $ZPP \subseteq co-RP$
- $\mathbf{RP} \subseteq \mathbf{NP}$ and $\mathbf{co} \mathbf{RP} \subseteq \mathbf{co} \mathbf{NP}$
- $\mathbf{RP} \subseteq \mathbf{BPP}$ and $\mathbf{co} \mathbf{RP} \subseteq \mathbf{BPP}$
- \blacksquare BPP \subset PP

Following Slides

- $NP \subseteq PP$ and $co-NP \subseteq PP$
- \blacksquare **PP** \subseteq **PSPACE**

Prelimilaries

Probabilistic Turing Machines

Complexity Classes

Relationships between Complexity Classes 00000

"Typecasting" Turing Machines

DTM as NTM

Given DTM T with transition function δ , consider NTM T' with transition functions $\delta_0 = \delta_1 = \delta$.

 \hookrightarrow No change in behaviour: $T(w) = YES \Leftrightarrow T'(w) = YES$.

NTM as PTM

Given NTM T, we can reinterpret it as a PTM T':

$$T(w) = \text{YES} : \Leftrightarrow \exists \text{YES-computation for } T \text{ and } w \Leftrightarrow \Pr[T'(w) = \text{YES}] > 0$$

$$T(w) = NO : \Leftrightarrow \nexists YES$$
-computation for T and $w \Leftrightarrow Pr[T'(w) = YES] = 0$

PTM as DTM

Given PTM T, we can view it as DTM T' with random bitstring $b = b_1 b_2 \dots$ as additional input. In step *i* transition function δ_{b_i} is used.

$$Pr[T(w) = YES] = Pr_{b_1,b_2,...\sim Ber(1/2)}[T'(w,b) = YES].$$

Probabilistic Turing Machines Prelimilaries

Complexity Classes

Relationships between Complexity Classes

Theorem: NP \subseteq PP (analogously $co-NP \subseteq PP$)

i.e. show that each $L \in NP$ satisfies $L \in PP$

Have: NTM T certifying that $L \in \mathbf{NP}$

 $w \in L \Leftrightarrow \exists YES$ -computation for T and w

Use the NTM T as a PTM T':

$$\forall w \notin L : \Pr[T'(w) = YES] = 0$$

 $\forall w \in L : \Pr[T'(w) = YES] > 0$

Want: PTM T'' certifying that $L \in \mathbf{PP}$

 $\forall w \notin L : \Pr[T''(w) = YES] \leq 1/2$ $\forall w \in L : \Pr[T''(w) = YES] > 1/2$

T" achieves this shift with a simple trick

 $r \leftarrow T'(w) // T'$ is T as PTM if r = YES then return YES else

sample $b \sim \mathcal{U}(\{YES, NO\})$ // coinflip return b

Prelimilaries

Probabilistic Turing Machines

Complexity Classes

Relationships between Complexity Classes 00000

Theorem: $PP \subseteq PSPACE$

i.e. show that each $L \in PP$ satisfies $L \in PSPACE$

Proof

- Let T a PP-PTM for L with running time p(n).
- Consider DTM T' that simulates T for given w and random choices $b_1 b_2 \dots b_{p(n)}$.
- Consider DTM T" that for input w runs $T'(w, b_1b_2 \dots b_{p(n)})$ for all $2^{p(n)}$ possible $b_1b_2 \dots b_{p(n)}$. Return YES if T' returns YES in majority of cases.
- space complexity:
 - p(n) bits for counter a
 - p(n) bits for b_1, \ldots, b_k
 - \circ $\mathcal{O}(p(n))$ space for simulating T (can only use p(n) space in its p(n) steps)
- $\hookrightarrow T''$ decides L in space $\mathcal{O}(p(n))$ (and time $\Omega(2^{p(n)})$).

 $n \leftarrow |w|$

$$k \leftarrow p(n)$$
 $a \leftarrow 0 \text{ // }k\text{-bit counter}$
for $b_1 \dots b_k \leftarrow 00 \dots 0$ to 11 . . . 1 do
$$\begin{array}{c} r \leftarrow T'(w, b_1 \dots b_k) \\ \text{if } r = \text{YES then} \\ & a \leftarrow a + 1 \end{array}$$
if $a > 2^{k-1}$ then
$$\begin{array}{c} \text{return YES} \\ \text{else} \\ & \text{return NO} \end{array}$$

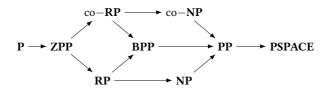
Prelimilaries

Probabilistic Turing Machines

Complexity Classes

Relationships between Complexity Classes 0000

Conclusion



What we learned – not much

- Only "obvious" inclusions known
- since $P \stackrel{?}{=} PSPACE$ is unsolved, none of the inclusions are known to be strict.
- Remark: History of PRIMES:
 - obviously: in co-NP.
 - 1976: in co-RP (Rabin).
 - 1987: in **RP**, hence in **ZPP** (Adleman, Huang).
 - 2002: in P (Agrawal, Kayal, Saxena).

A boring topic?

- People believe BPP = P
- PP is somewhat esoteric
 - → no interesting randomised classes remain?
- quantum computing may change the story. People suspect $NP \nsubseteq BQP \nsubseteq NP$
 - → https://en.wikipedia.org/wiki/BQP

Prelimilaries

Probabilistic Turing Machines

Complexity Classes

Relationships between Complexity Classes

Appendix: Possible Exam Questions

- Define: What is a PTM? What is the difference compared to an NTM?
- Define the complexity classes RP, co-RP, BPP, PP, ZPP.
- In what sense do the constants $\frac{1}{2}$, $\frac{1}{4}$, $\frac{3}{4}$ that appear in the definitions matter? In what sense are they irrelevant?
- How is the class ZPP related to the concept of a Las Vegas algorithm? What do the transformations in one direction (lecture) and in the other direction (exercise) look like?
- Which inclusion relationships between these complexity classes are known?
- Justify each of these inclusion relationships. (In the actual exam, only one or two would be selected due to time constraints.)
- Are there inclusion relationships known to be strict? Are there classes that experts suspect may actually be identical?

Prelimilaries

Probabilistic Turing Machines

Complexity Classes

Relationships between Complexity Classes