
Probability and Computing – Cuckoo Hashing

Stefan Walzer | WS 2025/2026

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

https://onlineumfrage.kit.edu/evasys/online.php?p=RF73W

2/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Evaluation

https://onlineumfrage.kit.edu/evasys/online.php?p=RF73W
https://onlineumfrage.kit.edu/evasys/online.php?p=RF73W

1. Classic Cuckoo Hashing
Algorithm
Analysis

2. Generalised Cuckoo Hashing

3/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Content

Setup

S ⊆ D key set of size n
T0, T1 two tables of size m

h0, h1 ∼ U([m]D) two hash functions (SUHA)
n
m = 1− β for some β > 0

(! load factor α = n
2m)

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

a

a

b

b

d

d

e

eT0 :

T1 :

Algorithm lookup(x):
return x ∈ {T0[h0(x)], T1[h1(x)]}

Algorithm delete(x):
if T0[h0(x)] = x then

T0[h0(x)]← ⊥
else if T1[h1(x)] = x then

T1[h1(x)]← ⊥

Algorithm insert(x):
for i = 0 to LIMIT do

b ← i mod 2
swap(x , Tb[hb(x)])
if x = ⊥ then

return SUCCESS

return FAILURE

4/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Classic Cuckoo Hashing

Algorithm insert(x):
for i = 0 to LIMIT do

b ← i mod 2
swap(x , Tb[hb(x)])
if x = ⊥ then

return SUCCESS

return FAILURE

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

a

a

b

b

d

d

e

eT0 :

T1 :

Theorem (Analysis with LIMIT =∞)
Assume we insert all x ∈ S and then another key y . Let
E be the event that this succeeds and

T =

{
insertion time of y if E occurs

0 otherwise

Then i Pr[E] = 1−O(1/m) and ii E[T] = O(1).

Theorem (full analysis, not here)
If we

set LIMIT = Ω(log n) appropriately

rebuild the table with fresh hash functions when
LIMIT is reached

we obtain a hash table where lookup and delete take
O(1) time and insert takes expected O(1) time.

5/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Cuckoo Hashing Theorem

The Cuckoo Graph
Consider the bipartite cuckoo graph

G = ([m], [m], {(h0(x), h1(x)) | x ∈ S})

the key x corresponds to the edge (h0(x), h1(x))
and each table position to a vertex.

⇝

// Duplicate edges possible, don’t worry about it.

Connection to Erdős-Renyi Graphs
G is a bipartite Erdős-Renyi variant

much like GUE(2m, n) // uniform endpoint model

a bit like G(2m, n) // original Erdős-Renyi

a bit like G(2m, n/(2m2)) // Gilbert

Confusing: n is a number of edges and 2m a number of vertices.

Exercise
Design a variant of cuckoo hashing such that the
“Sudden Emergence” result for the GUE(m, n) model
implies success for load factor α < 1

2 .

Next: Completely self-contained analysis without reference to Erdős-Renyi.

6/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Proof of i : Success probability is 1−O(1/m)

Keys and buckets in the infinite loop
Assume Ē occurs, i.e. an insertion fails due to an
infinite loop. Let G∗ = (V∗,E∗) be the subgraph of G
with

V∗: table positions touched in the infinite loop

E∗: keys touched in the infinite loop.

Properties of G∗:

connected

|E∗| = |V∗|+ 1 // can you see why?

degE∗(v) ≥ 2 for v ∈ V∗.

Possibilities for G∗

There are three options:

In all three cases: Simple path through |V∗| and
two extra edges connecting inwards:

7/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Proof of i : Success probability is 1−O(1/m)

Pr[Ē] = Pr[∃path as shown]

= Pr[∃k ∈ N : ∃x0, . . . , xk+1 ∈ S : x0, . . . , xk+1 form a path as shown]

union bound
≤

n∑
k=1

∑
x0,...,xk+1∈S

Pr[x0, . . . , xk+1 form a path as shown]

≤
n∑

k=1

nk+2︸︷︷︸
a

· 2︸︷︷︸
b

· 1
mk+1︸︷︷︸

c

·
(

k+1
2m

)2︸ ︷︷ ︸
d

≤ 1
2

n∑
k=1

mk+2−k−1−2(1− β)k+2(k + 1)2

≤ 1
2m

∞∑
k=1

(1− β)k+2(k + 1)2 = 1
m · O(

1
β3) = O(1

m)

x2 x3 x4
... xk

xk+1x0

x1

a Choose sequence of k + 2 keys.

b Choose to start in top or bottom table.

c Neighbouring keys share a hash.

d Two bordering keys connect back
inward.

8/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Proof of i : Success probability is 1−O(1/m)

Pr[Ē] = Pr[∃path as shown]

= Pr[∃k ∈ N : ∃x0, . . . , xk+1 ∈ S : x0, . . . , xk+1 form a path as shown]

union bound
≤

n∑
k=1

∑
x0,...,xk+1∈S

Pr[x0, . . . , xk+1 form a path as shown]

≤
n∑

k=1

nk+2︸︷︷︸
a

· 2︸︷︷︸
b

· 1
mk+1︸︷︷︸

c

·
(

k+1
2m

)2︸ ︷︷ ︸
d

≤ 1
2

n∑
k=1

mk+2−k−1−2(1− β)k+2(k + 1)2

≤ 1
2m

∞∑
k=1

(1− β)k+2(k + 1)2 = 1
m · O(

1
β3) = O(1

m)

1
m

1
m

1
m

1
m

1
m

1
m

1
m

1
m

1
m

1
m

k+1
2m

k+1
2m

a Choose sequence of k + 2 keys.

b Choose to start in top or bottom table.

c Neighbouring keys share a hash.

d Two bordering keys connect back
inward.

8/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Proof of i : Success probability is 1−O(1/m)

Lemma
If the insertion of y takes t ∈ N steps then the cuckoo graph G contained (previously) a path of length
⌈(t − 2)/3⌉ starting from h0(y) or from h1(y).

Proof.

no turning back
⇝ path of length t − 1

starting from h0(y)

turn back once
⇝ path of length ⌈(t − 2)/3⌉
starting from h0(y) or h1(y)

turn back twice
impossible: insertion would fail

9/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Proof of ii : Expected insertion time is O(1)

E[T] =
∑
t≥1

Pr[T ≥ t] tail sum formula

≤
∑
t≥1

Pr[∃path of length ⌈(t − 2)/3⌉ starting from h0(y) or h1(y)] by Lemma

≤ 2 ·
∑
t≥1

Pr[∃path of length ⌈(t − 2)/3⌉ starting from h0(y)] union bound + symmetry

≤ 2

(
2 + 3 ·

∑
t≥1

Pr[∃path of length t starting from h0(y)]

) ∑
i≥1

f (⌈t/3⌉) = 3 · f (1) + 3 · f (2) + . . .

≤ 4 + 6 ·
∑
t≥1

∑
x1,...,xt∈S

Pr[x1, . . . , xt form path starting from h0(y)] union bound

≤ 4 + 6 ·
∑
t≥1

ntm−t ≤ 6
∑
t≥0

(1− β)t = 6/β = O(1).

10/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Proof of ii : Expected insertion time is O(1) (continued)

1. Classic Cuckoo Hashing
Algorithm
Analysis

2. Generalised Cuckoo Hashing

11/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Content

n ∈ N keys
m ∈ N table size
α = n

m load factor
h1, . . . , hk ∼ U([m]D) hash functions

↪→ Could also use a separate table per hash function.

randomWalkInsert(x)

while x ̸= ⊥ do // TODO: limit

sample i ∼ U([k])
swap(x ,T [hi(x)])

(some improvements possible)

Theorem (without proof)
For each k ∈ N there is a threshold c∗

k such that:

if α < c∗
k all keys can be placed with probability 1−O(1

m).
if α > c∗

k not all keys can be placed with probability 1−O(1
m).

c∗
2 = 1

2 , c∗
3 ≈ 0.92, c∗

4 ≈ 0.98, . . .

Theorem (Bell, Frieze, 2024; retracted in 2025; re-announced for 2026)
If k ≥ 3 and α < c∗k then, conditioned on a high probability eventa, the expected insertion time is O(1).

aWithout this conditioning, randomWalkInsert might be trapped in an infinite loop.

12/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Cuckoo Hashing with one table and k hash functions

picture illustrates k = 2, ℓ = 3

k = 2 has best cache efficiency

larger ℓ improves space efficiency

Thresholds for the load factor
ℓ\k 2 3 4 5 6 7

1 0.5 0.9179352767 0.9767701649 0.9924383913 0.9973795528 0.9990637588
2 0.8970118682 0.9882014140 0.9982414840 0.9997243601 0.9999568737 0.9999933439
3 0.9591542686 0.9972857393 0.9997951434 0.9999851453 0.9999989795 0.9999999329
4 0.9803697743 0.9992531564 0.9999720661 0.9999990737 0.9999999721 0.9999999992
5 0.9895513619 0.9997746588 0.9999958681 0.9999999374 0.9999999992 ≈ 1
6 0.9940727066 0.9999281468 0.9999993570 0.9999999956 ≈ 1 ≈ 1

13/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Cuckoo Hashing with k buckets of size ℓ

picture illustrates k = 2, ℓ = 3

note: unaligned block may cross cache
line boundary

Thresholds for the load factor (slightly better than for buckets)
ℓ\k 2 3 4 5 6 7

1 0.5 0.9179352767 0.9767701649 0.9924383913 0.9973795528 0.9990637588
2 0.9649949234 0.9968991072 0.9996335076 0.9999529036 0.9999937602 0.9999991631
3 0.9944227538 0.9998255112 0.9999928198 0.9999996722 0.9999999843 0.9999999992
4 0.9989515932 0.9999896830 0.9999998577 0.9999999977 ≈ 1 ≈ 1
5 0.9997922174 0.9999993863 0.9999999972 ≈ 1 ≈ 1 ≈ 1
6 0.9999581007 0.9999999635 0.9999999999 ≈ 1 ≈ 1 ≈ 1

14/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Cuckoo Hashing with k unaligned blocks of size ℓ

General Idea
construct cuckoo table for key set S ⊆ D

store fp(x) instead of x ∈ S for random
fingerprint function fp : D → {0, 1}r

query(x) checks for fp(x) in positions
associated with x

State of the Art Variant1

uses k = 2 unaligned blocks of size ℓ = 2
threshold ≈ 0.965
queries check 4 positions

false positive probability ε ≤ 4 · 2−r = 2−r+2

space ≈ r
0.965 n = 1.04(log2(1/ε) + 2)n bits

// compared to Bloom ≈ 1.44 log2(1/ε)n bits

Supporting Insertions and Deletions
Complication: Need to evict fingerprints fp(x)
without knowing x .
Solution: Positions and fingerprints are related.
Tricky details.

1Schmitz, Zentgraf, Rahman: Smaller and More Flexible Cuckoo Filters, ALENEX 2026.

15/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Back to Approximate Membership: Cuckoo Filters

Classic Cuckoo Hashing
hash table with worst case constant access times

analysis considers paths in graphs similar to the Erdős-Renyi model

Practical Cuckoo Hashing
uses buckets (or unaligned blocks) e.g. k = 2 buckets of size ℓ = 8

better than conventional hash tables, if high load factors are needed

cuckoo filters are state of the art dynamic AMQ data structures

very difficult to analyse

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

a

a

b

b

d

d

e

eT0 :

T1 :

16/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Conclusion

Was ist und was kann Cuckoo Hashing?
Was ist die Grundidee? Wie funktionieren die Operationen?
Worauf ist bei der Wahl der Tabellengröße / beim Load Factor zu achten?
Was kann man über die Laufzeit der Operationen sagen?
Welche Vorteile und Nachteile ergeben sich im Vergleich zu anderen Techniken wie linearem Sondieren?

Analyse:
Eine Einfügung, die fehlschlägt, entspricht gewissen Strukturen im Cuckoo-Graphen. Welchen?
Wie haben wir gezeigt, dass solche Strukturen unwahrscheinlich sind?
Wie haben wir die erwartete Einfügezeit abgeschätzt?

17/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering

Anhang: Mögliche Prüfungsfragen I

	Classic Cuckoo Hashing
	Algorithm
	Analysis

	Generalised Cuckoo Hashing

