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Classic Cuckoo Hashing

SCD
To, T+ two tables of size m
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Algorithm lookup(x):
L return x € {To[ho(X)], T1[h1(X)]}

Algorithm delete(x):

if To[ho(X)] = x then
‘ To[ho(X)] — L

else if T;[hi(x)] = x then
L Ti[h(x)] + L

Algorithm insert(x):
fori =0to LIMIT do
b < imod 2
swap(x, To[ho(x)])
if x = L then
L return SUCCESS

L return FAILURE
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Cuckoo Hashing Theorem ﬂ(IT
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Algorithm insert(x):
fori=0to LIMIT do

N I R X I I

b <+ imod 2 J ~.
swap(x, Tp[hp(x)]) )

if x = L then e

L return SUCCESS To:[@TTi[rJTeli]1]

return FAILURE

Theorem (Analysis with LIMIT = o0) Theorem (full analysis, not here)

Assume we insert all x € S and then another key y. Let If we
E be the event that this succeeds and

® set LIMIT = Q(log n) appropriately
insertion time of y if E occurs ® rebuild the table with fresh hash functions when
= LIMIT is reached

0 otherwise
we obtain a hash table where lookup and delete take

Then®l Pr[E] =1 — O(1/m) and @ E[T] = O(1). O(1) time and insert takes expected O(1) time.
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The Cuckoo Graph

Consider the bipartite cuckoo graph

G = ([m], [m]. {(Ao(x), 1y (x)) | x € S})

the key x corresponds to the edge (ho(x), hy(x))
and each table position to a vertex.

LT 1T
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L 11 OJrd [ |
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// Duplicate edges possible, don’t worry about it.

Proof of ll: Success probability is 1 — O(1/m) ﬂ(IT

Karlsruhe Institute of Technology

Connection to Erd6s-Renyi Graphs

G is a bipartite Erdés-Renyi variant
® much like GY8(2m, n) // uniform endpoint model
® a bit like G(2m, n) // original Erdés-Renyi
® abit like G(2m, n/(2m?)) // Gilbert

Confusing: nis a number of edges and 2m a number of vertices.

Exercise

Design a variant of cuckoo hashing such that the
“Sudden Emergence” result for the GYE(m, n) model
implies success for load factor a < 3.

Next: Completely self-contained analysis without reference to Erdds-Renyi.
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Proof of ll: Success probability is 1 — O(1/m) ﬂ(".
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(- (..

Possibilities for G*
N | N | | | There are three options:

Keys and buckets in the infinite loop

Assume E occurs, i.e. an insertion fails due to an
infinite loop. Let G* = (V*, E*) be the subgraph of G

with
® V*: table positions touched in the infinite loop In all three cases: Simple path through |V*| and
® E*: keys touched in the infinite loop. two extra edges connecting inwards:

Properties of G*:
® connected m
@ |E*| = |V*| 4+ 1 // can you see why?

® degg.(v) > 2forv e V.
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Proof of ll: Success probability is 1 — O(1/m) ﬂ(IT
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Pr[E] = Pr[3path as shown]
=Pr[3k e N:3xp,...,X+1 € S: X, ..., Xk+1 form a path as shown]

union bound n
< E E Pr[Xo, - - ., Xk+1 form a path as shown]
k=1 xg,...,Xk+1E€S

>

< F2 o ) (@)2 B Choose sequence of k + 2 keys.
B el GINEY) Ch i b bl
— B o \./ T [ Choose to start in top or bottom table.
, N Neighbouring keys share a hash.
< % mk+2*k*1*2(1 — 5)k+2(k 4 1)2 El Two bordering keys connect back
K—1 inward.
<o > (1 =Bk +1P = L-0(F) = 0(F) O
k=1
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Pr[E] = Pr[3path as shown]

=Pr[3k e N:3xp,...,X+1 € S: X, ..., Xk+1 form a path as shown] 1
Xg
. n
union bound
< Z Z Pr[Xo, - - ., Xk+1 form a path as shown] M
k=1 Xo,.... X441 €S X1 X2 X3 X4 Xk

>

Lo 1. (k+1 )2 B Choose sequence of k + 2 keys.
k+1
VE vl! N \%—/ @ Choose to start in top or bottom table.

, Neighbouring keys share a hash.
< % mk+2*k*1*2(1 — 5)k+2(k 4 1)2 El Two bordering keys connect back
K—1 inward.
S (1=B)F(k+1) =1 -0(5%) = 0(5) O
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Proof of ll: Success probability is 1 — O(1/m) ﬂ(IT
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Pr[E] = Pr[3path as shown]
=Pr[3k e N:3xp,...,X+1 € S: X, ..., Xk+1 form a path as shown]

. n
union bound 2
< E E Pr[Xo, - - ., Xk+1 form a path as shown] i

k=1 Xo,...,.X+1ES m m m

s
3
3|
3
3|
3
3
3
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Proof of fll: Expected insertion time is O(1) ﬂ(IT
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Lemma

If the insertion of y takes t € N steps then the cuckoo graph G contained (previously) a path of length
[(t — 2)/3] starting from ho(y) or from hy(y).

Proof.
no turning back turn back once turn back twice
~~ path of length ¢ — 1 ~> path of length [(t — 2)/3] impossible: insertion would fail
starting from ho(y) starting from ho(y) or hi(y)
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Proof of Fl: Expected insertion time is O(1) (continued) A\‘(IT
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E[T] = Z Pr[T > 1] tail sum formula
£>1
< Z Pr[3path of length [(t — 2)/3] starting from hy(y) or hy(y)] by Lemma
t>1
<2 Z Pr[3path of length [(t — 2)/3] starting from hy(y)] union bound + symmetry
£>1
<2 (2 +3- Z Pr[3path of length ¢ starting from ho(y)]> Z f([t/3])=3-f(1)+3-f(2)+...
t>1 i>1

<4+6- Z Z Pr[x1, ..., x; form path starting from hy(y)]  union bound
t>1 x1,...,%ES

<4+6-) n'm <6y (1-6) =6/=0(1). O

t>1 >0
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Content A“(IT
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2. Generalised Cuckoo Hashing
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Cuckoo Hashing with one table and k hash functions ﬂ(IT

o) n 6 N keyS Karlsruhe Institute of Technology
me N table size
a= 7 load factor

y % B , hi,..., b ~U(m]P) hash functions

N I I A [TTTTT] < Could also use a separate table per hash function.

(SN

12/16 WS 2025/2026 Stefan Walzer: Cuckoo Hashing ITI, Algorithm Engineering



Cuckoo Hashing with one table and k hash functions ﬂ(l'l'

Q o) /Q o) n E N keyS Karlsruhe Institute of Technology
AL\ meN table size
/<>K9 s N a=2 load factor
N 0. K : hi,..., b ~U(m]P) hash functions
N N N Y [TTTTTTTTITTTT] < Could also use a separate table per hash function.

randomWalkInsert(x)

while x # L do // TODO: limit
sample i ~ U([K])
swap(x, T [hi(x)])

(some improvements possible)
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Cuckoo Hashing with one table and k hash functions ﬂ(l'l'

O‘\‘ ) O /Q / o n G N keys Karlsruhe Institute of Technology
»9/4 \ 7 me N table size
R\ < £/ e
g , o =2 load factor
/O, = ‘i‘f‘f'/% hi, ..., hx ~U([m]P)  hash functions
N Y Y A [TTTTTTTTTTTT] < Could also use a separate table per hash function.
randomWalkInsert(x) Theorem (without proof)
while x # L do // TODO: limit For each k € N there is a threshold c;; such that:
sample i ~ U([K]) ® if a < ¢ all keys can be placed with probability 1 — O(1).
swap(x, T[hi(x)]) ® if & > ¢; not all keys can be placed with probability 1 — O(%).
(some improvements possible) Cg = & C; ~0.92, C‘T ~0.98, ...
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Cuckoo Hashing with one table and k hash functions ﬂ(l'l'

>

O

) o8
LI T T T TTTTTTTITT

[TTTTTIITTTTT]

randomWalkInsert(x)

while x # L do // TODO: limit
sample i ~ U([K])
swap(x, T [hi(x)])

(some improvements possible)

Theorem (without proof)

Karlsruhe Institute of Technology

neN keys
me N table size
a =42 load factor
hi, ..., hx ~U([m]P)  hash functions
— Could also use a separate table per hash function.

For each k € N there is a threshold c;; such that:

® if ¢ < ¢ all keys can be placed with probability 1 — (’)(lm).
® if & > c; not all keys can be placed with probability 1 — (’)(15).

c = 3,

= c; ~0.92,

c; ~0.98,...

Theorem (Bell, Frieze, 2024; retracted in 2025; re-announced for 2026)
If Kk > 3 and « < ¢ then, conditioned on a high probability event?, the expected insertion time is O(1).

@Without this conditioning, randomWalkInsert might be trapped in an infinite loop.
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Cuckoo Hashing with k buckets of size /
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@ picture illustrates k =2,/ =3
® k = 2 has best cache efficiency

S ® larger ¢ improves space efficiency

Thresholds for the load factor

Ok 2 3 4 5 6 7

13/16
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1 0.5 0.9179352767 0.9767701649 0.9924383913 0.9973795528 0.9990637588
2 0.8970118682 0.9882014140 0.9982414840 0.9997243601 0.9999568737  0.9999933439
3 0.9591542686 0.9972857393 0.9997951434 0.9999851453 0.9999989795 0.9999999329
4 0.9803697743 0.9992531564 0.9999720661 0.9999990737  0.9999999721  0.9999999992
5 0.9895513619 0.9997746588 0.9999958681 0.9999999374  0.9999999992 ~ 1
6  0.9940727066 0.9999281468 0.9999993570 0.9999999956 ~1 ~ 1
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Cuckoo Hashing with k unaligned blocks of size /
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® picture illustrates k =2,¢ = 3

® note: unaligned block may cross cache
line boundary

Ok 2 3 4 5 6 7
1 05 0.9179352767 0.9767701649 0.9924383913 0.9973795528  0.9990637588
2 0.9649949234 0.9968991072 0.9996335076 0.9999529036 0.9999937602  0.9999991631
3 0.9944227538 0.9998255112 0.9999928198 0.9999996722 0.9999999843  0.9999999992
4  0.9989515932 0.9999896830 0.9999998577  0.9999999977 ~ 1 ~
5  0.9997922174 0.9999993863  0.9999999972 ~1 ~ 1 ~ 1
6  0.9999581007 0.9999999635 0.9999999999 ~ 1 ~ 1 ~ 1
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Back to Approximate Membership: Cuckoo Filters ﬂ(l'l'
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State of the Art Variant!
G Ld ® uses k = 2 unaligned blocks of size £ = 2
eneral ldea ® threshold ~ 0.965

® construct cuckoo table for key set S C D ® queries check 4 positions

m store fp(x) instead of x € S for random w false positive probability ¢ < 4 - 2" = 22
fingerprint function fp : D — {0,1}" ® space ~ L_n = 1.04(log,(1/¢) + 2)n bits

® query(x) checks for fp(x) in positions // compared to Bloom == 1.4 log,(1/€)n bits
associated with x

Q

Supporting Insertions and Deletions

Complication: Need to evict fingerprints fp(x)
without knowing x.

Solution: Positions and fingerprints are related.
Tricky details.

'Schmitz, Zentgraf, Rahman: Smaller and More Flexible Cuckoo Filters, ALENEX 2026.
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Conclusion ﬂ(l'l'
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Classic Cuckoo Hashing I | bId 1]
® hash table with worst case constant access times ,& ’ED
® analysis considers paths in graphs similar to the Erdés-Renyi model } R3¢ ﬁ

L e s
Practical Cuckoo Hashing

® uses buckets (or unaligned blocks) e.g. k = 2 buckets of size £ = 8

® better than conventional hash tables, if high load factors are needed
® cuckoo filters are state of the art dynamic AMQ data structures

® yery difficult to analyse
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Anhang: Mogliche Priufungsfragen | A\‘(IT
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@ Was ist und was kann Cuckoo Hashing?

a Was ist die Grundidee? Wie funktionieren die Operationen?

& Worauf ist bei der Wahl der Tabellengrée / beim Load Factor zu achten?

® Was kann man Uber die Laufzeit der Operationen sagen?

® Welche Vorteile und Nachteile ergeben sich im Vergleich zu anderen Techniken wie linearem Sondieren?
@ Analyse:

® FEine Einfligung, die fehlschlagt, entspricht gewissen Strukturen im Cuckoo-Graphen. Welchen?

® Wie haben wir gezeigt, dass solche Strukturen unwahrscheinlich sind?

® Wie haben wir die erwartete Einfligezeit abgeschétzt?
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