
Stefan Walzer, Stefan Hermann
ITI Prof. Sanders

winter term 2025/2026

Exercise Sheet 2 – The Power of
Randomness

Probability and Computing

Exercise 1 – Checking Polynomial Equations
Let F be a field, for example F = Q. Given is a polynomial equation, for example:

(𝑥3 + 2𝑥2 − 5𝑥 − 6) (𝑥2 + 𝑥 − 20) (𝑥 − 6) ?
= 𝑥6 − 7𝑥3 + 25

(a) Argue: In the case that the example equation does not hold, there are at most 6 values of
𝑥 for which both sides yield the same result.

(b) Describe a randomized algorithm that decides whether a polynomial equation holds or
not. This algorithm may accept false polynomial equations as correct with a small prob-
ability. What can be said about this probability?

Solution 1
(a) The equation has the form 𝑓 (𝑥) = 𝑔(𝑥) and can be rewritten as 𝑓 (𝑥) − 𝑔(𝑥) = 0. If the

equation does not hold, then 𝑓 (𝑥) − 𝑔(𝑥) is a polynomial of degree 0 ≤ 𝑑 ≤ 6. Such
a polynomial has at most 6 roots. Therefore, there are at most 6 values of 𝑥 for which
𝑓 (𝑥) − 𝑔(𝑥) = 0, and hence 𝑓 (𝑥) = 𝑔(𝑥).

(b) First, consider the case |F| < ∞. We then choose 𝑋 ∼ U(F) uniformly at random and
substitute𝑋 into the equation. If the polynomial equation holds universally, it also holds
for this 𝑋 . If it does not hold, then as in (a) we can consider the maximum degree 𝑑 of
both sides. There are at most 𝑑 elements of F for which both sides give the same result,
and the probability that we picked one of them is at most 𝑑/|F|.
If |F| = ∞, there is no uniform distribution over F. This is somewhat inconvenient, but
we can choose 𝑋 uniformly at random from a large finite subset 𝑆 ⊆ F. Then the upper
bound on the error probability 𝑑/|𝑆 | can be made arbitrarily small.
Remark: This is a false-biased Monte Carlo algorithm (see the lecture on Probability
Amplification).

1



Exercise 2 – Checking Matrix Products1

Let F be a field, and 𝑛 ∈ N.

(a) Show: If 𝐶,𝐶′ ∈ F𝑛×𝑛 are two different matrices and 𝑣 ∈ {0, 1}𝑛 is chosen uniformly at
random, then Pr[𝐶 · 𝑣 ≠ 𝐶′ · 𝑣] ≥ 1

2 .

(b) Describe an algorithm that, given 𝐴, 𝐵,𝐶 ∈ F𝑛×𝑛 , outputs a bit 𝑋 with 𝑋 = 1 if 𝐴 · 𝐵 = 𝐶

and Pr[𝑋 = 1] ≤ 1/2 if 𝐴 · 𝐵 ≠ 𝐶 . The algorithm should perform only O(𝑛2) field
operations.

Solution 2
(a) Let 𝐶1, . . . ,𝐶𝑛 ∈ F𝑛 and 𝐶′1, . . . ,𝐶

′
𝑛 ∈ F𝑛 be the columns of 𝐶 and 𝐶′ respectively, and let

𝑣1, . . . , 𝑣𝑛 ∈ {0, 1} be the entries of 𝑣. Furthermore, let 𝑖 ∈ [𝑛] be an index with 𝐶𝑖 ≠ 𝐶′𝑖 ,
which must exist by assumption. We can then write:

𝐷 := 𝐶 · 𝑣 −𝐶′ · 𝑣 =
𝑛∑︁
𝑗=1
𝑗≠𝑖

(𝐶 𝑗 −𝐶′𝑗 ) · 𝑣 𝑗

︸              ︷︷              ︸
𝑤

+(𝐶𝑖 −𝐶′𝑖 ) · 𝑣𝑖 .

Imagine that all entries of 𝑣 except the 𝑖-th have already been chosen, and only 𝑣𝑖 remains
random. There are two cases:
Case 1. 𝑤 = 0. In this case, 𝑣𝑖 = 1 leads to 𝐷 = 𝐶𝑖 −𝐶′𝑖 ≠ 0𝑛 .
Case 2. 𝑤 ≠ 0. In this case, 𝑣𝑖 = 0 leads to 𝐷 = 𝑤 ≠ 0𝑛 .
In both cases, at least one of the two possibilities for 𝑣𝑖 results in 𝐷 ≠ 0𝑛 . Hence overall,
Pr[𝐶 · 𝑣 ≠ 𝐶′ · 𝑣] = Pr[𝐷 ≠ 0𝑛] ≥ 1

2 .

(b) We use (a) with 𝐶′ = 𝐴 · 𝐵.

sample 𝑣 ←U({0, 1}𝑛)
𝑤1 ← 𝐶 · 𝑣
𝑤2 ← 𝐴 · 𝐵 · 𝑣 // Computation order: 𝐴 · (𝐵 · 𝑣)
return 𝑋 = 1𝑤1=𝑤2

Clearly, 𝑋 = 1 is guaranteed if 𝐴 · 𝐵 = 𝐶 . If 𝐴 · 𝐵 ≠ 𝐶 , then by (a) Pr[𝑋 = 1] = Pr[𝐶 · 𝑣 =
𝐶′ · 𝑣] ≤ 1

2 .
The three matrix–vector products can each be computed in O(𝑛2) field operations. In
particular, this is faster than a full matrix–matrix multiplication, which (with a naive
algorithm) requires Ω(𝑛3) field operations.
Remark: This is a false-biased Monte Carlo algorithm (see the lecture on Probability
Amplification).

1Known as Freivalds’ Algorithm.

2



Exercise 3 – Deterministic Evaluation of ∧̄-Trees
Let 𝐴 be a deterministic algorithm that takes as input a bit vector 𝐼 ∈ {0, 1}𝑛 (with 𝑛 = 2𝑑 )
and computes the value of the complete balanced ∧̄-tree whose leaves are labeled according
to 𝐼 . Show: There exists an input 𝐼𝐴 ∈ {0, 1}𝑛 such that 𝐴 must inspect every leaf label.

Solution 3
We act as an adversary to the algorithm and assign the value of a leaf only when it is queried.
We ensure that it must query all leaves. The resulting leaf labeling is then the worst-case
input 𝐼𝐴 for 𝐴.

We prove the statement by induction. For 𝑑 = 1 (leaf = root), there is nothing to show —
the algorithm must obviously query the only leaf.

For 𝑑 > 1, there are two subtrees of depth 𝑑 − 1. In both, we use the strategy given by the
induction hypothesis. Thus, the outcome of a subtree can only be determined once all 2𝑑−1

leaves have been queried. Since the last leaf affects the result of the subtree, we can even
choose its value at the end so that the entire subtree evaluates to 1. Hence, the total result at
the root is 1∧̄𝑏, where 𝑏 is the result of the other subtree. The algorithm therefore also needs
to determine 𝑏, and thus must query all leaves in the second subtree as well.

3


