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Zwei spieltheoretische Aspekte

In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschéftigen, sogenannte
Und-Oder-Baume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbdumen, der selbst
aber auch eine Rolle spielt, zum Beispiel in manchen Theorembeweisern. Wir beschranken uns
der Bequemlichkeit halber im Folgenden auf Baume mit Verzweigungsgrad 2. Man kann aber
analoge Ergebnisse allgemein fiir Verzweigungsgrad d > 2 beweisen.
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Und-Oder-Baume und ihre deterministische Auswertung

DEerINITION Fiir k > 1 sei Ty der wie folgt rekursiv definierte vollstindige bindre Baum der Hohe
2k, dessen innere Knoten abwechselnd mit “/\” und “\VV” markiert sind.

e Die Wurzel von T; ist ein /A-Knoten und hat zwei V-Knoten als Nachfolger. Jeder dieser
Knoten hat zwei Blitter als Nachfolger.

e Fir k > 2 ergibt sich Ty aus Ty, indem man dessen Bldtter durch Kopien von Ty_ ersetzt.
<&

Wie man leicht sieht, konnte man in obiger Definition den Rekursionschritt auch vollig dquivalent
so formulieren:

e Firk > 2und 1 <1< k ergibt sich Ty aus Ty, indem man dessen Blétter durch Kopien von
Ty_1 ersetzt.

Im Folgenden bezeichne n stets die Anzahl der Blatter eines UOB. Ty besitzt also n = 4% Blitter,
die mit x1,...,%,4x bezeichnet werden.

Durch die Festlegung von booleschen Werten an allen Bléttern eines UOB wird auf naheliegende
Weise auch fiir alle inneren Knoten und damit auch fiir die Wurzel des Baumes ein Wert festgelegt.

In den beiden ersten Abschnitten dieses Kapitels wollen wir uns mit deterministischen und einem
randomisierten Algorithmus zur Bestimmung der Wurzelwerte von UOB beschiftigen. Dabei
wollen wir uns insbesondere dafiir interessieren, wieviele Blétter der Algorithmus besucht, um
den Wurzelwert zu bestimmen.

Offensichtlich kann durch den Besuch aller n = 4% Blatter und die Berechnung der Werte aller
inneren Knoten ,bottom up” den der Wurzel bestimmen.

Zunichst stellt sich die Frage, ob deterministische Algorithmen auch geschickter vorgehen konnen.
Die Antwort ist nein:

Sartz. Fiir jedes k > 1 und jeden deterministischen Algorithmus A zur Auswertung von UOB gilt: Es
gibt eine Folge x1, ..., x4« von Bits, so dass A bei der Auswertung von Ty, mit den x; als Blattwerten alle
n = 4% Blitter besucht. Dabei ist der Wert der Wurzel gleich dem des zuletzt besuchten Blattes und es
kann also sowohl erzwungen werden, dass dieser gleich 0 ist, als auch, dass er gleich 1 ist.
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5.5 BEwers. Durch Induktion:

k = 1: Es ist klar, dass A mindestens ein Blatt besuchen muss. O.B. d. A. sei dies x1. Wir setzen
x7 = 0. Damit ist weder der Wert des iibergeordneten VV-Knotens noch der der Wurzel
bereits festgelegt und A muss ein weiteres Blatt besuchen. Wieder gibt es 0.B.d. A. zwei
Moglichkeiten:

1. Das als zweites besuchte Blatt ist x,. Wir setzen x, = 1. Damit ist nur der Wert des
tibergeordneten V-Knotens klar aber noch nicht der der Wurzel und A muss ein
weiteres Blatt besuchen. O.B. d. A. sei dies x3. Wir setzen x3 = 0. Damit muss A auch
noch x4 besuchen, denn dessen Wert ist der der Wurzel.

2. Das als zweites besuchte Blatt ist x3. Wir setzen x3 = 0. Damit ist weder der Wert des
tibergeordneten V-Knotens noch der der Wurzel bereits festgelegt und A muss ein
weiteres Blatt besuchen. O.B. d. A. sei dies x,. Wir setzen x, = 1. Damit muss A auch
noch x4 besuchen, denn dessen Wert ist der der Wurzel.

k — 1~ k: Wir fassen Ty auf als einen T;-Baum, dessen Blitter durch Ty _1-Bdume ersetzt sind.
Wir bezeichnen die , Blatter” von Ty mit yy,...,y4. Analog zur tiberlegung fiir den Induk-
tionsanfang ist klar, dass A mindestens einen der Werte y; bestimmen muss. Mehr noch,
man kann durch geschickte Wahl der y; in Abhdngigkeit von der Reihenfolge, in der A
sie berechnet, erzwingen, dass A sogar alle Werte y1, Yy, y3 und y4 ermitteln muss. Nach
Induktionsvoraussetzung gibt es fiir jeden der Ty_1-Bdume eine Belegung der Blattwerte,
die das gewtinschte y; liefert und gleichzeitig erzwingt, dass A zu dessen Berechnung
jeweils alle darunter liegenden Blétter besuchen muss.

Also muss A in diesem Fall alle Blitter tiberhaupt besuchen.

5.2 Analyse eines randomisierten Algorithmus fiir die Auswertung
von UOB

5.6 ALGORITHMUS.

proc AndNodeEval(T)
if IsLeaf (T) then return value(T) fi
(andernfalls:)
T’ « (zufillig gewihlter Unterbaum von T)
r + OrNodeEval(T")
if r =0 then
return 0
else
T" < (der andere Unterbaum von T)
return OrNodeEval(T")
fi

proc OrNodeEval(T)
T’ « (zufillig gewdihlter Unterbaum von T)
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r + AndNodeEval(T")
if r =1 then

else

fi

return 1

T" <« (der andere Unterbaum von T)
return AndNodeEval(T")

AndNodeEval(root)

5.7 Satz. Der Erwartungswert fiir die Anzahl der von Algorithmus 5.6 besuchten Bliitter fiir einen Ty.-Baum

ist fiir jede Folge x1, .. .,%x4x von Blattwerten hichstens 3% = nl°813 ~ n

0.792...

5.8 BEwels. Durch Induktion.

k = 1: Diesen Fall erledigt man durch systematisches tiberpriifen aller 16 moglichen Kombinatio-
nen fiir die x1, ..., x4. Beispielhaft betrachten wir den Fall 0100:

1.

2.

Falls zuerst der linke Teilbaum ausgewertet wird: Mit gleicher Wahrscheinlichkeit wird
erst und nur die 1 oder erst die 0 und danach die 1 besucht. Anschlieffend werden im
rechten Teilbaum beide Bldtter besucht. Erwartungswert: 7/2.

Falls zuerst der rechte Teilbaum untersucht wird: Nach dem Besuch beider Blitter ist
klar, dass der T;-Baum den Wert 0 liefert. Erwartungswert: 2.

Da beide Félle gleich wahrscheinlich sind, ergibt sich insgesamt 1/2-7/2+1/2-2 =11/4 < 3.

k — 1~ k: Wir betrachten zunéchst nicht einen ganzen Ty -Baum, sondern einen V-Knoten, an
dem zwei Ty,_1-Baume ,hingen”. Es gibt zwei Falle:

O1.

O2.

Der V-Knoten wird eine 1 liefern: Dann muss mindestens einer der Ti._1-Bdume dies
auch tun. Da gleichwahrscheinlich jeder der beiden zuerst untersucht wird, wird mit
einer Wahrscheinlichkeit p > 1/2 als erstes ein (und nur ein) Unterbaum untersucht, der
eine 1 liefert. Mit Wahrscheinlichkeit 1 —p < 1/2 werden beide Unterbdume untersucht.
Der Erwartungswert ist also hochstens p - 314 (1—p)-2-3k T =(2—p)-3kT K
3/2-3k1

Der V-Knoten wird eine 0 liefern: Dann miissen beide Ty_1-Bdume dies auch tun. Mit
der Induktionsvoraussetzung ergibt sich, dass der Erwartungswert fiir die Anzahl der
in diesem Fall besuchten Blitter hochstens 2 - 3% ist.

Betrachten wir nun die Wurzel des Ty-Baumes, an der zwei der eben untersuchten Baume
héngen. Es gibt zwei Falle:

Ul.

U2.

Der A\-Knoten wird eine 0 liefern: Dann muss mindestens einer der Unterbdume dies
auch tun. Da gleichwahrscheinlich jeder der beiden zuerst untersucht wird, wird mit
einer Wahrscheinlichkeit p > 1/2 als erstes ein (und nur ein) Unterbaum untersucht, der
eine 0 liefert. Mit Wahrscheinlichkeit 1 —p < 1/2 werden beide Unterbdume untersucht.
Gemif der tiberlegungen in OO1. und OO2. ist der Erwartungswert folglich hochstens
p-2-3% T4 (1—p)-(3/2-3% T 42.3% 1) =7/2.3k71 _p.3/2.3 1 <11/4.3k71 L
3k,

Der A-Knoten wird eine 1 liefern: Dann miissen beide Unterbdume dies auch tun. Nach
Fall OOL. ist daher der Erwartungswert fiir die Anzahl besuchter Bldtter 2-3/2 - k=1 ¢
3k,
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5.3
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5.10

5.11

5.12

5.13

5.14

5.15

Zwei-Personen-Nullsummen-Spiele

In diesem Abschnitt sind ein wenig Notation und Ergebnisse zu einem Thema aus der Spieltheorie
zusammen gestellt.

Im allgemeinen hat man es mit n > 2 Spielern zu tun. Jeder Spieler i hat eine (endliche) Menge
Si sogenannter reiner Strategien s} zur Auswahl. Fir jeden Spieler i gibt es eine Funktion u; :
S1 % -+ xSy — R, die fiir jede Kombination von Strategien angibt, welchen Nutzen oder Gewinn
Spieler i hat, wenn die Spieler sich fiir eine bestimmte Kombination von Strategien entscheiden.

Bei Zwei-Personen-Nullsummen-Spielen gibt es n = 2 Spieler und fiir die Nutzenfunktionen gilt:
uj = —uy. Es gentigt also zum Beispiel u; anzugeben; das kann man dann in Form einer Matrix
M mit [S1] Zeilen und |S;| Spalten tun, bei der Eintrag M;; gerade u4 (sg, sjz) ist.

Deshalb spricht man dann auch manchmal vom Zeilenspieler und vom Spaltenspieler. Identifi-
ziert man die Wahl einer reinen Strategie i mit dem Einheitsvektor e; (jeweils passender Lange

und in Spaltenform), dann ist u, (sl , sz) = eiTMej.

Eine gemischte Strategie ist eine Wahrscheinlichkeitsverteilung p auf der Menge der reinen Strate-
gien eines Spielers.

Sind p und q gemischte Strategien fiir Zeilen- und Spaltenspieler, dann ist p' Mq der zu
erwartende Gewinn fiir den Zeilenspieler.

Satz. (NEUMANN 1928) Fiir Zwei-Personen-Nullsummen-Spiele mit Matrix M gilt:
. T . T
maxminp' Mg = minmaxp' M
e p Mq P p Mq

Wir werden diesen Satz hier nicht beweisen. Man kennt verschiedene Moglichkeiten, es zu
tun. Zum Beispiel kann man Verteilungen p* und q*, fiir die der Wert aus von Neumanns
Satz angenommen wird, nach Brouwers Fixpunktsatz als Fixpunkt einer geeigneten Abbildung
erhalten.

KoroLLAR. (Loomis 1946) Fiir Zwei-Personen-Nullsummen-Spiele mit Matrix M gilt:

max min pTMej = min max eiTMq
P ) q i
Beweis. Es geniigt zu zeigen, dass fiir jedes p gilt: ming p' Mq = min; p" Me; und analog fiir
die rechten Seiten der beiden Gleichungen aus Satz 5.12 und Korollar 5.13.
Fiir beliebiges p ist p" M ein Zeilenvektor v'. Es sei j eine Stelle in v, an der der kleinste aller
in v vorkommenden Werte steht. Dann ist offensichtlich v'e; der kleinste iiberhaupt mégliche
Wert, der fiir ein qu auftreten kann. ]

Aus Korollar 5.13 ergibt sich offensichtlich die folgende Aussage, die wir im anschlieSenden
Abschnitt ausnutzen werden.

KoroLrar. Fiir alle Verteilungen p und q gilt:

min pTMe)- < max eiTMq
) 1
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5.16

5.17

5.18

Untere Schranken fiir randomisierte Algorithmen

Im letzten Abschnitt dieses Kapitels soll eine Technik vorgestellt werden, um untere Schranken
fiir den Ressourcenverbrauch randomisierter Algorithmen nachzuweisen. Tatsdchlich handelt es
sich wohl um die derzeit einzige solche Methode.

Stellen Sie sich nun vor, dass es zwei Spieler gibt:

e Spaltenspieler ist jemand der als verschiedene Strategien deterministische Algorithmen A
zur Auswahl hat.

o Zeilenspieler ist ein boser Widersacher, der als verschiedene Strategien Eingaben I zur
Auswahl hat.

Der Gewinn des Widersachers ist jeweils C(I, A). Das sei zum Beispiel die Laufzeit von Algorith-
mus A fiir Eingabe I (oder der Verbrauch irgendeiner anderen Ressource).

Der Widersacher versucht, C(I, A) zu maximieren, der Algorithmenentwerfer versucht, C(I, A)
Zu minimieren.

¢ Eine gemischte Strategie des Widersachers ist eine Wahrscheinlichkeitsverteilung auf der
Menge der Eingaben.
e Eine gemischte Strategie des Algorithmenentwerfers ist ein randomisierter Algorithmus.

Stellt man sich nun noch vor, dass M die Werte C(I, A) enthélt, dann ist klar:

Satz. (MINIMAX-METHODE VON YAO) Es sei P ein Problem fiir eine endliche Menge J von Eingaben
gleicher Grofie n und A eine endliche Menge von Algorithmen fiir dieses Problem. Fiir 1 € Jund A € A
bezeichne C(1, A) den Ressourcenverbrauch, z. B. die Laufzeit, von Algorithmus A fiir Eingabe 1.

Weiter bezeichne p bzw. q eine Wahrscheinlichkeitsverteilung auf J bzw. A. Mit 1, bzw. A q werde ein
gemdf$ der Verteilung p bzw. q aus J bzw. A gewihlte Eingabe bzw. Algorithmus bezeichnet.

Dann gilt fiir alle p und q:

in E[C(I,, A)] < E[C(LA
min [C(Ip, A)l max [C(L,Ag)]

Einige Erlauterungen erscheinen angebracht:

e Der Erwartungswert auf der linken Seite ergibt sich durch die zufillige Wahl von I,
gemdfl Verteilung p. Fiir jeden deterministischen Algorithmus A handelt es sich dabei
also um die ,erwartete Laufzeit” von A fiir gewisse Eingabeverteilungen. Das Minimum
der Erwartungswerte, also der Erwartungswert fiir den , besten” Algorithmus ist in der
Ungleichung von Bedeutung.

e Der Erwartungswert auf der rechten Seite ergibt sich durch die zufdllige Wahl von A4
gemdf q. Fiir jede Eingabe I handelt es sich dabei also um die , erwartete Laufzeit” gewisser
deterministischer Algorithmen fiir 1.

e Wir erinnern an Punkt 1.1. Jeder (randomisierte) Las-Vegas-Algorithmus kann als eine
Menge deterministischer Algorithmen aufgefasst werden, aus denen nach einer gewissen
Wahrscheinlichkeitsverteilung bei jeder Ausfiihrung einer ausgewéhlt wird. Das Maxi-
mum iiber verschiedene Eingaben des Erwartungswertes auf der rechten Seite ist also die
interessierende Grofle.
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e Mit anderen Worten: mina ¢ 4 E [C(I,, A)] ist eine untere Schranke fiir Laufzeit des rando-
misierten Algorithmus (fiir gewisse Eingaben).

BEMERKUNG. Einen Satz analog zu 5.17 kann man auch fiir Monte-Carlo-Algorithmen beweisen.
Hierauf gehen wir nicht weiter ein.

Wir wollen nun die Minimax-Methode auf das Problem der Auswertung von UOB anwenden.

Als erstes beobachte man, dass wegen

(x1 Vx2) A(x3Vxa) = (x1 Vx2) V (x3Vxa) = (x1Vx2)V(x3Vx4)

jeder UOB &quivalent auch als Baum dargestellt werden kann, dessen innere Knoten alle die
Nor-Funktion V berechnen.

Ein V-Gatter liefert genau dann eine 1, wenn an beiden Eingéngen eine 0 vorliegt.

Die Zahl p = 3%5 hat die Eigenschaft (1 —p)? = p (wie man durch einfaches Nachrechnen
sieht). Wenn an jedem Eingang eines \/-Gatters unabhéngig mit Wahrscheinlichkeit p eine 1
vorliegt, ist daher mit gleicher Wahrscheinlichkeit p auch die Ausgabe eine 1.

Als letzten vorbereitenden Schritt benttigen wir noch die folgende Tatsache.

Satz. Es sei T ein vollstindiger balancierter Baum aus \/-Knoten, dessen Bliitter alle unabhiingig vonein-
ander mit einer Wahrscheinlichkeit q den Wert 1 haben. Es sei W(T) das Minimum (genommen iiber alle
deterministischen Algorithmen) der erwarteten Anzahl von Schritten zur Auswertung von T.

Dann gibt es auch einen Algorithmus A, der eine erwartete Anzahl von nur W(T) Schritten macht
und auflerdem die folgende Eigenschaft hat: Besucht A ein Blatt v', das zu einem Teilbaum T’ gehiort und
spiiter ein Blatt u, das nicht zu T’ gehort, dann gilt fiir alle Blitter o’ von T, die A iiberhaupt besucht:
A besucht a’ vor u.

Damit konnen wir nun beweisen:

Sarz. Die erwartete Anzahl der Blitter, die ein randomisierter Algorithmus zur Auswertung von UOB
mit n Bliittern besucht, ist mindestens n1082((1 +v5)/2) — n0.694....

BewEis. Wir betrachten nun einen Algorithmus wie in Satz 5.22 und die Auswertung von V-

Bdumen, deren Blétter unabhingig voneinander mit Wahrscheinlichkeit p = 3%5 auf 1 gesetzt
sind. In Abhéngigkeit von der Hohe h sei W(h) die erwartete Anzahl besuchter Blitter.
Offensichtlich ist

Wh) = Wh-1+1-pWh-1)=2—p)W(h—1)
also  W(h) = 2-p"'wi)=@2-p"

Einsetzen von h = log, n und p ergibt
W(T) = W(logz n) = (2 _p)logz no_ z(logZ(Zf‘p))(logZ n) _ nlogz(zfp) _ n0‘694...
]

Durch eine genauere (und schwierigere) Analyse kann man sich davon iiberzeugen, dass sogar
die obere Schranke von n!°843 ~ n%792- aus Satz 5.7 gleichzeitig auch untere Schranke ist.
Algorithmus 5.6 ist also optimal.
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Zum Abschluss dieses Kapitels wollen wir noch auf einen anderen Aspekt aufmerksam machen,
der sich hinter Satz 5.7 verbirgt.

526 Da der Erwartungswert fiir die Anzahl besuchter Blatter n%792..- ist, muss es mindestens eine

Berechnung geben, wihrend der hochstens so viele Blatter besucht werden. (Wiirden stets mehr
Blétter besucht, konnte der Erwartungswert nicht so klein sein.)

Oder anders formuliert: Mit einer gewissen Wahrscheinlichkeit echt grofier 0 findet der
randomisierte Algorithmus eine Teilmenge von hochstens n®792-- Blittern, aus deren Werten
bereits der der Wurzel folgt.

Also existiert, und zwar fiir jede Eingabe (i. e. Verteilung von Bits auf alle Blitter), eine solche
,kleine” Teilmenge von Bldttern, deren Kenntnis fiir die Bestimmung des Wertes an der Wurzel
ausreicht.

Andererseits haben wir in Satz 5.4 gesehen, dass jeder deterministische Algorithmus fiir man-
che Eingaben alle Blitter besuchen muss. Es ist also manchmal ,,sehr schwierig”, deterministisch
eine solche kleine Teilmenge zu finden.

Zusammenfassung

1. Bei der Auswertung von Und-Oder-Bdumen kann man randomisiert weniger Blattbesuche
erwarten, als jeder deterministische Algorithmus fiir manche Baume durchfiihren muss.

2. Die Minimax-Methode von Yao liefert eine Moglichkeit, untere Schranken fiir die erwartete
Laufzeit randomisierter Algorithmen herzuleiten.

Literatur
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Setting
2 ® strategies and < available to both
@
@ o players
w -1 -3\0 @ table shows payoffs for players depending on
¥ oo los 22 chosen strategies

® here: always better to choose O
— pair (Q, Q) is unique equilibrium

Definition: Equilibrium

Combination of strategies such that no one can profit by unilaterally switching his or her own strategy.
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Someone always regrets their decision
o &1 reaction
@ ® @ should have played @
@ -4\2-2\1 @® %3 should have played ®
®
3

should have played @

should have played £

— No combination of pure strategies is an equilibrium.

Equilibrium

Combination of strategies such that no one can profit by unilaterally switching his or her own strategy.

! 7
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How a Game is played
What a Game /s ® Players pick a strategy simultaneously

a Finite sets S;, S, of pure strategies. — gives pair (s1,S2) € Sy x S,.

a Utility functions uy, s : Sy X S, — R. ® player 1 gets payoff u; (s, s2) and
player 2 gets payoff ux(s1, S2).

Existence of Mixed-Strategy Nash Equilibria

There exist distributions S on Sy and S on Sy, called mixed strategies such that (S5, S5) is an equilibrium:

player 1 cannot increase expected payoff: Es, s s,~s; [U1(51, 82)] = max Es,~s5 [u1(s1, 82)]-
S$1E€S51

player 2 cannot increase expected payoff: Es, s s,~s; [U2(51, 52)] = max Es,~sx [Ua(s1, 52)]-
S2€92

Remark: Theorem holds for n > 3 players as well.
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) “ © Equilibrium

B | a2 2 Sp={B:1,@®: 1}
® | 00 O\ Sy={3:1,8:2
Payoffs
for €: for &=}
. E)Iaying 55 gives expected payoff . glaying 1@ gives expected payoff
5.(-4)—’—5.2:0 2" —'0:1
m playing @ gives expected payoff ® playing ® gives expected payoff
1:0+2.0=0 T1+1.1=1

® playing Sgy is @ mix of both
— also expected payoff 0.
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Karlsruhe Institute of Technology

1. Nash Equilibria in 2-Player Zero-Sum Games

a Two Player Zero Sum Games
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Two Player Zero Sum Games and their Matrix Formulation

® Finite sets of pure strategies ® |mplicit sets of pure strategies

u S for player 1 ® S; = [n] for the row player

a S, for player 2 ® S, = [m] for the column players
& matrix M € R™<™

& row player gets Ms, s,
® column player gets —Ms, s,

& utility functionu : S X So -+ R

® player 1 gets  u(s1, S2)
® player 2 gets —u(s1, S2)

1 1 Unique equilibrium of

& B R
0
10 - S=5={®:§8: 1R}

@
b July

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao’s Principle Conclusion
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Two Player Zero Sum Games and their Matrix Formulation

® Finite sets of pure strategies
a S, for player 1
a S, for player 2
& utility functionu : S X So -+ R
® player 1 gets  u(s1, S2)
® player 2 gets —u(s1, S2)

® |mplicit sets of pure strategies

® S; = [n] for the row player

® S, = [m] for the column players
® matrix M € R™™

& row player gets Ms, s,

® column player gets —Ms, s,

®
& @ % Equilibria of
-1

Work it out yourself!

1 1
& o

R B

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle
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Nash Equilibria for Two-Player Zero-Sum Games ﬂ(l'l'

Karlsruhe Institute of Technology

Nash’s Theorem (1950), Special Case

For any M € R™™ there exist distributions S5 on [n] and S5 on [m] such that When the players play according to S; and

) S5, then no player can benefit by deviating
Eg sy 508y M, .5,] = s’j‘ea[;(] Es,ns; Ms, ,] = 32'2'[’,},] Esi~s; [Ms, .- from his strategy.

Corollary: Loomis (1946) Von Neumann (1928)

For any M € R™™ we have No first-mover disadvantage if

® first player choses mixed strategy
max min_ Eg s, [Ms,,s] = min e Es,ns,[Ms, ] ® second player answers with pure
S &€lml Sz si€lnl strategy

Proof of Corollary (“>”)

max min Eg s, [Ms, 5] > min ESWS*[MS"SQ] =" max Egyns; [Me, s,] > min max Eg,s,[Ms, s,]

S1 s€[m] s2€[m] si€[n] Sz si€[n]
Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao’s Principle Conclusion
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Nash Equilibria for Two-Player Zero-Sum Games ﬂ(l'l'

Karlsruhe Institute of Technology

Nash’s Theorem (1950), Special Case

For any M € R™™ there exist distributions S5 on [n] and S5 on [m] such that When the players play according to S; and

) S5, then no player can benefit by deviating
Eg sy 508y M, .5,] = s’j‘ea[;(] Es,ns; Ms, ,] = 32'2'[’,},] Esi~s; [Ms, .- from his strategy.

Corollary: Loomis (1946) Von Neumann (1928)

For any M € R™ ™ we have No first-mover disadvantage if

® first player choses mixed strategy
max min B s, [Ms,,s,] = min max Eg, s, [Ms, s,] ® second player answers with pure
Si1 sEe[m] Sz si€[n] strategy

Proof of Corollary (“<”)

max min Eg s, [Ms, s,] = maxminEg s, s,~8,[Ms, s,] < minmaxEs, s, s,n8,[Ms,.s,] = min max Eg,s,[Ms, s,]
S s€[m] S S S S Sz s1€[n]
Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao’s Principle Conclusion
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Content A“(IT

Karlsruhe Institute of Technology

2. Yao’s Minimax Principle

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao’s Principle Conclusion
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Algorithm Design as a 2-Player Zero-Sum Game ﬂ(l'l'

Karlsruhe Institute of Technology

Example: Sortng

® P: a computational problem ® P = “sort n numbers comparison-based”?
& Inputs: finite set of inputs @ |nputs = S, //permutations of [n]

a Algos: finite set of deterministic algorithms ® Algos = e.g. suitable set of decision trees
® C(A, /) € R cost of A € Algos on / € Inputs. ® C(A, ) = # of comparisons of A for input /

2n finite, though possibly n — oo later.

A Two-Player Zero-Sum Game Sorting (x, y, z)

@ Designer chooses (randomised) algorithm, Adversary
i.e. a distribution on Algos. ‘ (1,2,3) (3,1,2) (2,3,1)

< Goal: Minimise (expected) cost. By wevimyzsio zex | 2 3 3
. . Eg-, y < zthenz < xthen* x < y 3 2 S
a Adversary chooses (randomised) input, 53
i.e. a distribution on Inputs. =0
— Goal: Maximise (expected) cost. Only if needed.
Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao’s Principle Conclusion
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Randomised Complexity and Yao’s Principle ﬂ(l'l'

Karlsruhe Institute of Technology

Definition: Randomised Complexity of a Problem

C .= i Eawa[C(A, ] designer moves first
Adism)LnAlgos lerlr?‘liz(ts A A[ ( )] '9 v I

oM max min ;. z[C(A, I)] adversary moves first
Z dist. on Inputs AcAlgos
Yao’s Principle: (Upper and) Lower Bounds on C

Let A, be a distribution on Algos and Z, a distribution on Inputs. Then

(old news)  “Yao’s Principle”
max [Ea4,[C(A, ] > min E,;.z [C(A,])].
I€Inputs A AO[ ( ’ )] - - A€Algos ! IO[ ( ’ )]
Tightness: Loomis implies that “=" is possible.

— Can attain (tight) lower bounds on C by thinking about deterministic algorithm only!

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao’s Principle Conclusion
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Content

3. Applications of Yao’s Principle
® Evaluation of A-Trees

® The Ski-Rental Problem

Nash Equilibria in 2-Player Zero-Sum Games
000000000
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Yao's Minimax Principle
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Computational Problem: A-Tree-Evaluation ﬂ(IT

Karlsruhe Institute of Technology

ATz Bl D G

® Inputs = {0,1}" for n = 2. Specify bits at leafs. Bound randomised query complexity
& Algos = Algorithms computing value at root.
® C(A, ) = # bits of / that A examines C= min ax Eawa[C(A,)].

: A dist. Al ’El t:
< query complexity of A on / st on AlgosTeinputs

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
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Computational Problem: A-Tree-Evaluation ﬂ(IT

Karlsruhe Institute of Technology

ATz Bl D G

® Inputs = {0, 1}" for n = 2°. Specify bits at leafs. Bound randomised query complexity

& Algos = Algorithms computing value at root.

. = i i =
C(A, ) = # bits qf I that A examines C= Adlstnynnmgos T Eava[C(A,)].
— query complexity of Aon /

Example and possible formalisation of Algos (that we won't use)
Each A € Algos corresponds to a decision
tree. In the example:
" C(A,(1,0,1,0)) =4
® C(A,(0,1,0,1)) =2
Each leaf queried at most once per path
= depth < n = |Algos| < oo

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle

Conclusion
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What we already know ﬂ(IT

Karlsruhe Institute of Technology

A-V-trees are V-trees are A-trees

swap meaning

of 1and 0
Raaad
Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
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What we already know ﬂ(IT

Karlsruhe Institute of Technology

A-V-trees are V-trees are A-trees

Deterministic Query Complexity is n (Sheet 2, Exercise 3)
For all A € Algos there exists | € Inputs such that C(A, /) = n.

Randomised Query Complexity is O(n n'o8s 3)) ~ O(n°7"92) (Lecture “The Power of Randomness”)

Let A be the randomised algorithm that evaluates one of the two depth d — 1 subtrees at random (recursively)
and, if that yields 1, also evaluates the other subtree (recursively).

— d/2y _ log,(3)
nax Eaa[C(A )] = OB7F) = O(n°).

Goal: Show lower bound of Q(?) ~ Q(n°®9) using Yao’s Principle (¢ is the golden ratio).
Remark: actual complexity is ©(n'°%(®)), but that's more difficult.

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
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Warm Up: A simple lower bound ﬂ(IT

Karlsruhe Institute of Technology

For any even d € N and A € Algos we have C(A, (0, ...,0)) > 29/2,

a in the end A knows that the root is 0.

® knowing a 0 requires knowing that both children are 1.
& Knowing a 1 requires knowing of one child that it is 0.

< A knows of > 29/2 |eafs that they are 0 and must have
checked them.

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
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Warm Up: A simple lower bound ﬂ(IT

Karlsruhe Institute of Technology

For any even d € N and A € Algos we have C(A, (0, ...,0)) > 29/2,

Corollary: Randomised Complexity is Q(+/n)

_ . Ea A )
C= AdlstInnAlgos Ierlrrlﬁz(ts A -A[C( )]

> IE ) PR
B Adismalnnmgos A -A[C( 7(0, ,0))]

= min [C(A (0,...,0))]

A€cAlgo
> 2d/2 _ 2|og2(n)/2 _ n1/2.

Note Yao’s spirit: Lower bound on randomised complexity
from result on deterministic algorithms.

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
000000000 000 000@0000000000000000 0000

19/36 WS 2025/2026 Stefan Walzer: Yao's Principle ITI, Algorithm Engineering



A stronger lower bound

Theorem (Tarsi 1984)
For any p € [0, 1] simpleEval is optimal for input distribution Zp, i.e.

i Evz, [C(A, I)] = Eiuz, [C(simpleEval, /)].

Lemma

Letp = @ be the golden ratio and py = ¢ — 1. Then
B/, [C(simpleEval, /)] = (1 +Po)d s

Corollary: C = Q(¢%) ~ Q(n®%4)

CS min Bz [C(AN] = Bz [C(simpleEval, 1)]
= Achigos I~Ip° 9 - I~Zp0 p )
Legma ‘Pd _ <p|°g2n _ nlogch ~ n0.694'

Nash Equilibria in 2-Player Zero-Sum Games Yao's Minimax Principle
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Karlsruhe Institute of Technology

Independent Bernoulli Inputs

Let Z, = Ber(p)" be the distribution where leafs
are assigned independently values with
distribution Ber(p).

Deterministic Algorithm

Algorithm simpleEval(T):
if T = leaf(b) then
| returnb
else
(U, T,) «— T
if simpleEval(T;) = 0 then
| return 1
else
| return —simpleEval(T;)

Applications of Yao's Principle Conclusion
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Proof of Lemma: Cost of simpleEval on 7,

Y&+ be the golden ratio and p, = ¢ — 1. Then Deterministic Algorithm

E/~z, [C(simpleEval, /)] = (1 + po)? = ¢°. Algorithm simpleEval(T):

Ui

Karlsruhe Institute of Technology

Let o =

if T = leaf(b) then
| retum b
else
® pp = Y51 is the solution to p = 1 — p2. (T T,) T
® If a, b ~ Ber(po) then aAb ~ Ber(1 — p§) = Ber(po). if simpleEval(T;) = 0 then
® For | ~ I, the probability that an internal tree node evaluates to 1 is p. ‘ return 1
® Let ¢y := Kz, [C(simpleEval, /)] for trees of depth d. Then else
® ¢y = 1//tree of depth 0 is just the leaf L return —simpleEval(T;)
® o= Comr+poCam1 = (14 p)ca—t = (14 po)(1+po)* " = (1+p0)°

/I Always one recursive call, with probability p a second one.

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
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Content

3. Applications of Yao’s Principle

® Evaluation of A-Trees
@ Proof Sketch of Tarsi’'s Theorem (not relevant for the exam)

Nash Equilibria in 2-Player Zero-Sum Games Yao's Minimax Principle
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Tarsi’s Theorem ﬂ(l'l'

Karlsruhe Institute of Technology

Theorem (Tarsi 1984)
For any p € [0, 1] simpleEval is optimal for input distribution Z,, i.e.

pleion Eivz, [C(A, )] = Ejz, [C(simpleEval, )].

Proof idea:
@ Take optimal Algorithm A.
& Transform A into simpleEval step by step.
@ Show: Expected query complexity never

increases.
Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
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Lemma: Evaluating Superleafs like simpleEval ﬂ(IT

Karlsruhe Institute of Technology

Definition: Superleafs

A superleaf consists of two sibling leafs and their parent.

Proof Idea

For any p € [0,1] and any A € Algos there exists A’ € Algos m We fix every superleaf one by one. Let T be
such that superleaf that needs fixing.
® B, 7,[C(A, )] <Eiz,[C(A )] ® Property [ll: Switch roles of £ and r if needed.
® A’ behaves on any superleaf T = (¥, r) like simpleEval: Does not change the expected cost.
I never visits r before ¢ & Property H: r does not contribute to result. Not
H never visits rif £ = 0 visiting r reduces expected cost.
il immediately visits r after visiting £ if £ = 1 & Property [l: More difficult. See next slide.
Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
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Modified
Algorithm B

Ao with cost Cy

Original
Algorithm A

Ao with cost Cy

Ay with‘cost G Az with cost Gy

A with cost C;
END
A with$ cost C; Az with cost G

END

Az with cost CG3 Ay with‘ cost Cy

3
END END

Ay with cost C; END
! END

Ca = E[C(A, )] = E[Co+ & - (1+BC, +p- (Co + (1 +BCs + pCy)))]
Cg :=E[C(B, /)] = E[Co + & (14 pCi + p- (1 4+ PCi + p(Ca + 5C4)))]
Co := E[C(D, )] = E[Co + & - (C2 + B(1 + pCs + p(1 + BCs + pCs)))]
Nash Equilibria in 2-Player Zero-Sum Games Yao's Minimax Principle
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Asz with cost C3

Modified
Algorithm D

Ao with cost Cy

N YES
a Q@

Ay with cost C, END

[

END
As with¢ cost G Ay with¢ cost Cy

END END

(Ce—Ca)+p-(Co—Ca)=...=0
=Cg—Ca<0VCp—Cs<O
=-B or D (or both) are at least as good as A
and both visit superleaf (¢, r) as desired.

Applications of Yao’s Principle Conclusion
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Theorem (Tarsi 1984)
For any p € [0, 1] simpleEval is optimal for input distribution o
T, ie. Ejz,[L] < Eg,[L].

: _ ; The expected cost for evaluating a superleaf is 1 + p.
i Eivz,, [C(A, I)] = Eiuz, [C(simpleEval, /)]. Hence

Apply inductionford’ =d —1and p’ =1 — p2.

We use induction on d. For d = 0 simpleEval is clearly
optimal. Letnow d > 1.

Let A € Algos be an algorithm minimising E;z,[C(A, /)].
By Lemma: There exists A’ € Algos that behaves like
simpleEval on superleafs such that

Bz, [C(A', )] = (1 + p)E[L]
Einz,[C(A D] = (1 + p)E[L]

]EI~ZP[C(A/, ] < Eig,[C(A 1)) Finally we obtain:
E/z,[C(simpleEval, /)] = (1 + p)E[L] < (1 + p)E[L']
Let L’ be the number of superleafs visited by A" and L the =Ejz,[C(A, )] < Eiz, [C(A, )]
number of superleafs visited by simpleEval.
Superleafs evaluate to 1 with probability 1 — p? independently ~ Hence, simpleEval is optimal for Z,,. O

and are in a complete binary tree of depth d — 1.

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
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Content

3. Applications of Yao’s Principle

® The Ski-Rental Problem

Nash Equilibria in 2-Player Zero-Sum Games
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Ski Rental — A Prototypical Online Problem ﬂ(IT

Karlsruhe Institute of Technology

Setting: You are on a ski trip Framing using Online Algorithms

Trip lasts for unknown number of days / € N ® |nputs = N: number of days
(“as long as there is snow”). (not known in advance)
Every day, if no skis bought yet: ® Algos = N: specify day for choosing BUY
® RENT skis for one day for cost 1 or ® cost for A € Algos on / € Inputs:
® BUY skis for cost B € N.
/ if <A
C(A ) = .
A— 14+ B otherwise.
Goal: Minimise Competitive Ratio
The competitive ratio of distribution A on Algos is ® cost of optimum offline solution
Eawa[C(A, 1 I iflI<B
Ca= sup LaalOAD] OPT(/) = _
ieinputs ~ OPT(/) B otherwise.
Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
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Break-Even is the best deterministic algorithm ﬂ(l'l'

Karlsruhe Institute of Technology

The algorithm breakEven := B has competitive ratio ZBT” ~ 2. Bis the cost to BUY
All other A € Algos have competitive ratio > 2. :

cost
A
The worst ratio for breakEven is attained for input / = B.
C(breakEven, I
c o C(breakEven, /)  C(breakEven, B)
OPT(I) breakEven — Ielg OPT(/) = OPT(B)
_B-1+B 2B-—1
: B B
>/
B
lgaosgoqugilo‘\térioa in 2-Player Zero-Sum Games \éaoo‘os Minimax Principle Applications of Yao's Principle Conclusion
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Break-Even is the best deterministic algorithm ﬂ(l'l'

Karlsruhe Institute of Technology

The algorithm breakEven := B has competitive ratio ZBT” ~ 2. Bis the cost to BUY
All other A € Algos have competitive ratio > 2. :

cost
A
The worst ratio for A € Algos with A < B is attained for input / = A.
C(A,l) C(AA) A—1+B B—1

(A1) Ca = sup ( ): ( ): i =14 >14+1=2.
OPT(I) /en OPT(l) — OPT(A) A A

o o > |

A B

lgaosgoqugilo‘\térioa in 2-Player Zero-Sum Games \éaoo‘os Minimax Principle Applications of Yao's Principle Conclusion
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Break-Even is the best deterministic algorithm ﬂ(l'l'

Karlsruhe Institute of Technology

The algorithm breakEven := B has competitive ratio ZBT” ~ 2. Bis the cost to BUY
All other A € Algos have competitive ratio > 2. :

cost

A : C(A 1) , , . . :
: The worst ratio for A € Algos with A > B is attained for input / = A.
] C(A,) C(AA A—14+B A1
vy Ca = sup Gl) S LR >1+1=2
/1 opT() /en OPT(l) — OPT(A) B B
0 0 > |
B A

lgaosgoqugilo‘\térioa in 2-Player Zero-Sum Games \éaoo‘os Minimax Principle Applications of Yao's Principle Conclusion
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A randomised algorithm can beat break-even ﬂ(l'l'

Karlsruhe Institute of Technology

Observation (assuming wlog that B is a multiple of 3)
The randomised algorithm A = 1/({ B, B}) has competitive ratio ~ 1 + 2

cost The competitive ratio of A “spikes” for inputs §B and B. It is decreasing in
A o between and constant after B.
]E[C(A,l)] IEANA[C(A7§B)]: %B—1+%(1 +B) < %B, OPT(%B): %B7
rent rent or buy
OPT(I) Eava[C(A,B)]= B +2B—1+ 1(iB) < B, OPT(B)=B
21y rent maybe rent
» | Eaa[C(A, ] 7/6 11/6 7 11
Hence C4 = S } {
28 B AR T opT(y =Mz

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
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What’s next? ﬂ(l'l'

Karlsruhe Institute of Technology

Goal: Lower bound

No randomised algorithm has competitive ratio better than -5 ~ 1.582.

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
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Yao’s Principle for Online Algorithms ﬂ(IT

Karlsruhe Institute of Technology

Theorem (see Online Optimization Lecture, Corollary 3.8, Prof. Yann Disser, Darmstadt, 2023)

For any distribution .4, on Algos and any distribution Z, on Inputs we have

Ca ® sup Ean o [C(A N] @) Einzy an o [C(A D] infacaigos Binz, [C(A, /)]
°  camputs  OPT(/) =  E.g[OPT()] ~ E/z,[OPT(/)]

Steps to see (*)

® Prove that 25 < max({, §) for a,b,¢,d > 0.

® Conclude that §1-+2 < maxe[, & for &, b > 0
® Conclude that for random I € [n] that % < maxie[s] -

@ Conclude (*).

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao’s Principle Conclusion
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Yao’s Principle for Online Algorithms ﬂ(IT

Karlsruhe Institute of Technology

Theorem (see Online Optimization Lecture, Corollary 3.8, Prof. Yann Disser, Darmstadt, 2023)
For any distribution .4, on Algos and any distribution Z, on Inputs we have

Ca ® sup Ean o [C(A N] @) Einzy an o [C(A D] infacaigos Binz, [C(A, /)]
°  camputs  OPT(/) =  E.g[OPT()] ~ E/z,[OPT(/)]

® Yao’s principle exists for other settings as well.

® Tightness typically follows from duality of optimisation problems or fixed point theorems.
(though I'm not sure how it works here)

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
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A hard distribution for Ski-Rental: Intuition ﬂ(l'l'

Karlsruhe Institute of Technology

Ty := Geomy(3).

® distribution is memoryless, i.e. Pr, g [/ =i+t | /> i] = Priug[l = t].
Assume no skis bought on day i: Minimising expected future cost is the same problem as on day 1.
— wlog: either buy right away or not at all.

a expectation tuned such that
E,~z,[C(never buy, I)] = E,.z,[C(immediately buy, /)] = B.

— all strategies equally good
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A hard distribution for Ski-Rental: Analysis ﬂ(IT

Karlsruhe Institute of Technology

Lemma Tail sum formula:

LetZ := Geom(g) and g := 1 — 4 = “Pr[3§%]". Then For random variable X with values in N:

M| E.z[C(A )] =Bforall AcN. E[X] = Z PrX > j].

A E/.z,[OPT(/)] = B(1 — (1 - §)?). j>1

Proof of (i)

A1
iz, [C(A, D] = Pr[l > Al- B+ > Pr[l > 1] -1
buy i=1 rent
1 A=t A—1
_ A71‘B+Zqif1 — g 'B+Zq"=qj‘71'8+1_q
! i i=0 1-q

=¢"'"-B+(1—-g*")B=8.

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
000000000 000 00000000000000000080 0000

34/36 WS 2025/2026 Stefan Walzer: Yao's Principle ITI, Algorithm Engineering



A hard distribution for Ski-Rental: Analysis ﬂ(IT

Karlsruhe Institute of Technology

Lemma Tail sum formula:

LetTy := Geom(3) and g := 1 — & = “Pr[#]" Then For random variable X with values in N:
Ml E..7,[C(A )] =Bforall Ac N. E[X] = Z Pr[X > j].
B E/.z,[OPT(/)] = B(1 - (1 - §)?). j>1
Proof of (ii)

cost

Ei~5,[OPT(N] = 3 PrOPT()) > /1 = Y PrOPT(/) >

j>1 j=1
B B B—1 .
E i— i PT(/
=S Pliz]=Yd"=>¢ “
Jj=1 j=1 j=0 : |
B B
T —B1-(1- 1))
1-gq B Note: OPT(/) = [ for / € [B].
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A hard distribution for Ski-Rental: Analysis ﬂ(IT

Karlsruhe Institute of Technology

Lemma Tail sum formula:

LetTy := Geom(3) and g := 1 — & = “Pr[#]" Then For random variable X with values in N:
| E,.7,[C(A )] = Bforall Ae N. E[X] = Z PriX > j].
Ml E..7[OPT(/)] = B(1 — (1 — 1)B). j>1

Lower bound for Ski-Rental

By Yao’s theorem any randomised algorithm A for ski-rental has competitive ratio at least

CA d_ef sup EANA[C(A, I)] Y§° ian€A|g°s EINIO [C(A, I)] _ B _ 1
IE€Inputs OPT(I) B E/NIO[OPT(/)] B(1 — (1 _ 15)3) 1— (1 _ lB)B
1
For large B the lower bound converges to I|m = -_° =~ 1.582.

—(1——)B 1—1/e e—1

Nash Equilibria in 2-Player Zero-Sum Games Yao’s Minimax Principle Applications of Yao's Principle Conclusion
000000000 000 00000000000000000080 0000

34/36 WS 2025/2026 Stefan Walzer: Yao's Principle ITI, Algorithm Engineering



Upper bound for Ski-Rental

Remark: The lower bound is tight (Karlin et al. 1994)

There exists a distribution .A on [B] such that c4 < %5.

Ui

Karlsruhe Institute of Technology

Applications

Very basic online question:

Should | pay a small possibly recurring cost or a large one time cost?

Occurs in:
@ Cache management.
a Networking.

@ Scheduling.

a. ..
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Conclusion ﬂ(l'l'

Karlsruhe Institute of Technology

Algorithm Design as a Two-Player Game

® “‘we” choose algorithm to minimise cost
® “adversary” chooses input to maximise cost

® Nash/Loomis: It does not matter who moves first
if mixed strategy is allowed for first player.

Yao’s Principle

Lower bound on worst-case expected cost of any randomised algorithm Aq by analying any deterministic
algorithm on specific input distribution Z,.

hax Bava[C(AN] 2C 2 min Bi.gz,[C(A, ])].

Can narrow down randomised complexity C of underlying problem from both sides.
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Appendix: Possible Exam Questions | A\‘(IT

Karlsruhe Institute of Technology

Game theory:
@ What is a two-player game in the game-theoretic sense?
@ What is a Nash equilibrium?
@ Does a Nash equilibrium always exist?
@ What is a zero-sum game?
@ What does Nash’s Theorem state (for two-player zero-sum games)?
@ What does Loomis’ Theorem state?
® Prove Loomis’ Theorem! (challenging task)
Yao’s principle:
@ What is the connection between game theory and the design of algorithms?

® How is randomised complexity (with respect to a cost function C) usually defined? What alternative
viewpoint does Loomis’ Theorem provide?

@ State Yao’s Principle! What is it useful for?
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Appendix: Possible Exam Questions Il A\‘(IT

Karlsruhe Institute of Technology

Application to A-trees:
@ What goal did we set ourselves when evaluating A-trees? (minimising query complexity)
@ What worst-case cost can be achieved with a deterministic algorithm?
@ Can randomised algorithms do better? How?
® |t is rather easy to see that the randomised complexity is Q(+/n). How?

® We also saw a tighter analysis. What components did it have? In particular: how does Yao’s principle
come into play?

@ What does Tarsi’s theorem state?
Ski rental problem:
@ State the Ski Rental Problem.
@ What do we call this type of problem? (online problem)
® Name some applications of the Ski Rental Problem.
® How is the competitive ratio defined?
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Appendix: Possible Exam Questions llI A\‘(IT

Karlsruhe Institute of Technology

® What is the best deterministic algorithm? How can one see this?

® |s there a randomised algorithm that can beat the break-even point? (idea only)

@ State Yao’s principle for online algorithms.

@ Which input distribution did we assume for the lower bound for ski rental? What is the intuition?

@ What costs arise for online and offline algorithms for this input distribution? What can we conclude about
the competitive ratio?
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