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5 Zwei spieltheoretische Aspekte


In diesem Kapitel wollen wir uns mit dem algorithmischen Problem beschäftigen, sogenannte
Und-Oder-Bäume (kurz UOB) auszuwerten. Sie sind ein Spezialfall von Spielbäumen, der selbst
aber auch eine Rolle spielt, zum Beispiel in manchen Theorembeweisern. Wir beschränken uns
der Bequemlichkeit halber im Folgenden auf Bäume mit Verzweigungsgrad 2. Man kann aber
analoge Ergebnisse allgemein für Verzweigungsgrad d > 2 beweisen.


5.1 Und-Oder-Bäume und ihre deterministische Auswertung


5.1 Definition Für k > 1 sei Tk der wie folgt rekursiv definierte vollständige binäre Baum der Höhe
2k, dessen innere Knoten abwechselnd mit “∧” und “∨” markiert sind.


• Die Wurzel von T1 ist ein ∧-Knoten und hat zwei ∨-Knoten als Nachfolger. Jeder dieser
Knoten hat zwei Blätter als Nachfolger.


• Für k > 2 ergibt sich Tk aus T1, indem man dessen Blätter durch Kopien von Tk−1 ersetzt.
3


Wie man leicht sieht, könnte man in obiger Definition den Rekursionschritt auch völlig äquivalent
so formulieren:


• Für k > 2 und 1 6 l < k ergibt sich Tk aus Tl, indem man dessen Blätter durch Kopien von
Tk−l ersetzt.


Im Folgenden bezeichne n stets die Anzahl der Blätter eines UOB. Tk besitzt also n = 4k Blätter,
die mit x1, . . . , x4k bezeichnet werden.


5.2 Durch die Festlegung von booleschen Werten an allen Blättern eines UOB wird auf naheliegende
Weise auch für alle inneren Knoten und damit auch für die Wurzel des Baumes ein Wert festgelegt.


In den beiden ersten Abschnitten dieses Kapitels wollen wir uns mit deterministischen und einem
randomisierten Algorithmus zur Bestimmung der Wurzelwerte von UOB beschäftigen. Dabei
wollen wir uns insbesondere dafür interessieren, wieviele Blätter der Algorithmus besucht, um
den Wurzelwert zu bestimmen.


5.3 Offensichtlich kann durch den Besuch aller n = 4k Blätter und die Berechnung der Werte aller
inneren Knoten „bottom up“ den der Wurzel bestimmen.


Zunächst stellt sich die Frage, ob deterministische Algorithmen auch geschickter vorgehen können.
Die Antwort ist nein:


5.4 Satz. Für jedes k > 1 und jeden deterministischen Algorithmus A zur Auswertung von UOB gilt: Es
gibt eine Folge x1, . . . , x4k von Bits, so dass A bei der Auswertung von Tk mit den xi als Blattwerten alle
n = 4k Blätter besucht. Dabei ist der Wert der Wurzel gleich dem des zuletzt besuchten Blattes und es
kann also sowohl erzwungen werden, dass dieser gleich 0 ist, als auch, dass er gleich 1 ist.
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5.5 Beweis. Durch Induktion:


k = 1: Es ist klar, dass A mindestens ein Blatt besuchen muss. O. B. d. A. sei dies x1. Wir setzen
x1 = 0. Damit ist weder der Wert des übergeordneten ∨-Knotens noch der der Wurzel
bereits festgelegt und A muss ein weiteres Blatt besuchen. Wieder gibt es o. B. d. A. zwei
Möglichkeiten:


1. Das als zweites besuchte Blatt ist x2. Wir setzen x2 = 1. Damit ist nur der Wert des
übergeordneten ∨-Knotens klar aber noch nicht der der Wurzel und A muss ein
weiteres Blatt besuchen. O. B. d. A. sei dies x3. Wir setzen x3 = 0. Damit muss A auch
noch x4 besuchen, denn dessen Wert ist der der Wurzel.


2. Das als zweites besuchte Blatt ist x3. Wir setzen x3 = 0. Damit ist weder der Wert des
übergeordneten ∨-Knotens noch der der Wurzel bereits festgelegt und A muss ein
weiteres Blatt besuchen. O. B. d. A. sei dies x2. Wir setzen x2 = 1. Damit muss A auch
noch x4 besuchen, denn dessen Wert ist der der Wurzel.


k− 1 ; k: Wir fassen Tk auf als einen T1-Baum, dessen Blätter durch Tk−1-Bäume ersetzt sind.
Wir bezeichnen die „Blätter“ von T1 mit y1, . . . ,y4. Analog zur überlegung für den Induk-
tionsanfang ist klar, dass A mindestens einen der Werte yi bestimmen muss. Mehr noch,
man kann durch geschickte Wahl der yi in Abhängigkeit von der Reihenfolge, in der A


sie berechnet, erzwingen, dass A sogar alle Werte y1, y2, y3 und y4 ermitteln muss. Nach
Induktionsvoraussetzung gibt es für jeden der Tk−1-Bäume eine Belegung der Blattwerte,
die das gewünschte yi liefert und gleichzeitig erzwingt, dass A zu dessen Berechnung
jeweils alle darunter liegenden Blätter besuchen muss.


Also muss A in diesem Fall alle Blätter überhaupt besuchen.


5.2 Analyse eines randomisierten Algorithmus für die Auswertung
von UOB


5.6 Algorithmus.


proc AndNodeEval(T)
if IsLeaf (T) then return value(T) fi
〈andernfalls:〉
T ′ ← 〈zufällig gewählter Unterbaum von T〉
r← OrNodeEval(T ′)
if r = 0 then


return 0


else
T ′′ ← 〈der andere Unterbaum von T〉
return OrNodeEval(T ′′)


fi


proc OrNodeEval(T)
T ′ ← 〈zufällig gewählter Unterbaum von T〉
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r← AndNodeEval(T ′)
if r = 1 then


return 1


else
T ′′ ← 〈der andere Unterbaum von T〉
return AndNodeEval(T ′′)


fi
AndNodeEval(root)


5.7 Satz. Der Erwartungswert für die Anzahl der von Algorithmus 5.6 besuchten Blätter für einen Tk-Baum
ist für jede Folge x1, . . . , x4k von Blattwerten höchstens 3k = nlog4 3 ≈ n0.792....


5.8 Beweis. Durch Induktion.


k = 1: Diesen Fall erledigt man durch systematisches überprüfen aller 16 möglichen Kombinatio-
nen für die x1, . . . , x4. Beispielhaft betrachten wir den Fall 0100:


1. Falls zuerst der linke Teilbaum ausgewertet wird: Mit gleicher Wahrscheinlichkeit wird
erst und nur die 1 oder erst die 0 und danach die 1 besucht. Anschließend werden im
rechten Teilbaum beide Blätter besucht. Erwartungswert: 7/2.


2. Falls zuerst der rechte Teilbaum untersucht wird: Nach dem Besuch beider Blätter ist
klar, dass der T1-Baum den Wert 0 liefert. Erwartungswert: 2.


Da beide Fälle gleich wahrscheinlich sind, ergibt sich insgesamt 1/2 · 7/2+ 1/2 · 2 = 11/4 < 3.


k− 1 ; k: Wir betrachten zunächst nicht einen ganzen Tk-Baum, sondern einen ∨-Knoten, an
dem zwei Tk−1-Bäume „hängen“. Es gibt zwei Fälle:


O1. Der ∨-Knoten wird eine 1 liefern: Dann muss mindestens einer der Tk−1-Bäume dies
auch tun. Da gleichwahrscheinlich jeder der beiden zuerst untersucht wird, wird mit
einer Wahrscheinlichkeit p > 1/2 als erstes ein (und nur ein) Unterbaum untersucht, der
eine 1 liefert. Mit Wahrscheinlichkeit 1−p 6 1/2 werden beide Unterbäume untersucht.
Der Erwartungswert ist also höchstens p · 3k−1 + (1− p) · 2 · 3k−1 = (2− p) · 3k−1 6
3/2 · 3k−1.


O2. Der ∨-Knoten wird eine 0 liefern: Dann müssen beide Tk−1-Bäume dies auch tun. Mit
der Induktionsvoraussetzung ergibt sich, dass der Erwartungswert für die Anzahl der
in diesem Fall besuchten Blätter höchstens 2 · 3k−1 ist.


Betrachten wir nun die Wurzel des Tk-Baumes, an der zwei der eben untersuchten Bäume
hängen. Es gibt zwei Fälle:


U1. Der ∧-Knoten wird eine 0 liefern: Dann muss mindestens einer der Unterbäume dies
auch tun. Da gleichwahrscheinlich jeder der beiden zuerst untersucht wird, wird mit
einer Wahrscheinlichkeit p > 1/2 als erstes ein (und nur ein) Unterbaum untersucht, der
eine 0 liefert. Mit Wahrscheinlichkeit 1−p 6 1/2 werden beide Unterbäume untersucht.
Gemäß der überlegungen in OO1. und OO2. ist der Erwartungswert folglich höchstens
p · 2 · 3k−1+(1−p) · (3/2 · 3k−1+ 2 · 3k−1) = 7/2 · 3k−1−p · 3/2 · 3k−1 6 11/4 · 3k−1 6
3k.


U2. Der ∧-Knoten wird eine 1 liefern: Dann müssen beide Unterbäume dies auch tun. Nach
Fall OO1. ist daher der Erwartungswert für die Anzahl besuchter Blätter 2 · 3/2 · 3k−1 6
3k.
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5.3 Zwei-Personen-Nullsummen-Spiele


In diesem Abschnitt sind ein wenig Notation und Ergebnisse zu einem Thema aus der Spieltheorie
zusammen gestellt.


5.9 Im allgemeinen hat man es mit n > 2 Spielern zu tun. Jeder Spieler i hat eine (endliche) Menge
Si sogenannter reiner Strategien sij zur Auswahl. Für jeden Spieler i gibt es eine Funktion ui :


S1 × · · · × Sn → R, die für jede Kombination von Strategien angibt, welchen Nutzen oder Gewinn
Spieler i hat, wenn die Spieler sich für eine bestimmte Kombination von Strategien entscheiden.


5.10 Bei Zwei-Personen-Nullsummen-Spielen gibt es n = 2 Spieler und für die Nutzenfunktionen gilt:
u1 = −u2. Es genügt also zum Beispiel u1 anzugeben; das kann man dann in Form einer Matrix
M mit |S1| Zeilen und |S2| Spalten tun, bei der Eintrag Mij gerade u1(s


1
i , s2j ) ist.


Deshalb spricht man dann auch manchmal vom Zeilenspieler und vom Spaltenspieler. Identifi-
ziert man die Wahl einer reinen Strategie i mit dem Einheitsvektor ei (jeweils passender Länge
und in Spaltenform), dann ist u1(s


1
i , s2j ) = eTi Mej.


5.11 Eine gemischte Strategie ist eine Wahrscheinlichkeitsverteilung p auf der Menge der reinen Strate-
gien eines Spielers.


Sind p und q gemischte Strategien für Zeilen- und Spaltenspieler, dann ist pTMq der zu
erwartende Gewinn für den Zeilenspieler.


5.12 Satz. (Neumann 1928) Für Zwei-Personen-Nullsummen-Spiele mit Matrix M gilt:


max
p


min
q


pTMq = min
q


max
p


pTMq


Wir werden diesen Satz hier nicht beweisen. Man kennt verschiedene Möglichkeiten, es zu
tun. Zum Beispiel kann man Verteilungen p∗ und q∗, für die der Wert aus von Neumanns
Satz angenommen wird, nach Brouwers Fixpunktsatz als Fixpunkt einer geeigneten Abbildung
erhalten.


5.13 Korollar. (Loomis 1946) Für Zwei-Personen-Nullsummen-Spiele mit Matrix M gilt:


max
p


min
j


pTMej = min
q


max
i


eTi Mq


5.14 Beweis. Es genügt zu zeigen, dass für jedes p gilt: minq pTMq = minj pTMej und analog für
die rechten Seiten der beiden Gleichungen aus Satz 5.12 und Korollar 5.13.


Für beliebiges p ist pTM ein Zeilenvektor vT . Es sei j eine Stelle in v, an der der kleinste aller
in v vorkommenden Werte steht. Dann ist offensichtlich vTej der kleinste überhaupt mögliche
Wert, der für ein vTq auftreten kann.


Aus Korollar 5.13 ergibt sich offensichtlich die folgende Aussage, die wir im anschließenden
Abschnitt ausnutzen werden.


5.15 Korollar. Für alle Verteilungen p und q gilt:


min
j


pTMej 6 max
i


eTi Mq
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5.4 Untere Schranken für randomisierte Algorithmen


Im letzten Abschnitt dieses Kapitels soll eine Technik vorgestellt werden, um untere Schranken
für den Ressourcenverbrauch randomisierter Algorithmen nachzuweisen. Tatsächlich handelt es
sich wohl um die derzeit einzige solche Methode.


5.16 Stellen Sie sich nun vor, dass es zwei Spieler gibt:


• Spaltenspieler ist jemand der als verschiedene Strategien deterministische Algorithmen A


zur Auswahl hat.
• Zeilenspieler ist ein böser Widersacher, der als verschiedene Strategien Eingaben I zur


Auswahl hat.


Der Gewinn des Widersachers ist jeweils C(I,A). Das sei zum Beispiel die Laufzeit von Algorith-
mus A für Eingabe I (oder der Verbrauch irgendeiner anderen Ressource).


Der Widersacher versucht, C(I,A) zu maximieren, der Algorithmenentwerfer versucht, C(I,A)


zu minimieren.


• Eine gemischte Strategie des Widersachers ist eine Wahrscheinlichkeitsverteilung auf der
Menge der Eingaben.
• Eine gemischte Strategie des Algorithmenentwerfers ist ein randomisierter Algorithmus.


Stellt man sich nun noch vor, dass M die Werte C(I,A) enthält, dann ist klar:


5.17 Satz. (Minimax-Methode von Yao) Es sei P ein Problem für eine endliche Menge I von Eingaben
gleicher Größe n und A eine endliche Menge von Algorithmen für dieses Problem. Für I ∈ I und A ∈ A


bezeichne C(I,A) den Ressourcenverbrauch, z. B. die Laufzeit, von Algorithmus A für Eingabe I.
Weiter bezeichne p bzw. q eine Wahrscheinlichkeitsverteilung auf I bzw. A. Mit Ip bzw. Aq werde ein


gemäß der Verteilung p bzw. q aus I bzw. A gewählte Eingabe bzw. Algorithmus bezeichnet.
Dann gilt für alle p und q:


min
A∈A


E [C(Ip,A)] 6 max
I∈I


E [C(I,Aq)]


5.18 Einige Erläuterungen erscheinen angebracht:


• Der Erwartungswert auf der linken Seite ergibt sich durch die zufällige Wahl von Ip
gemäß Verteilung p. Für jeden deterministischen Algorithmus A handelt es sich dabei
also um die „erwartete Laufzeit“ von A für gewisse Eingabeverteilungen. Das Minimum
der Erwartungswerte, also der Erwartungswert für den „besten“ Algorithmus ist in der
Ungleichung von Bedeutung.


• Der Erwartungswert auf der rechten Seite ergibt sich durch die zufällige Wahl von Aq


gemäß q. Für jede Eingabe I handelt es sich dabei also um die „erwartete Laufzeit“ gewisser
deterministischer Algorithmen für I.


• Wir erinnern an Punkt 1.1. Jeder (randomisierte) Las-Vegas-Algorithmus kann als eine
Menge deterministischer Algorithmen aufgefasst werden, aus denen nach einer gewissen
Wahrscheinlichkeitsverteilung bei jeder Ausführung einer ausgewählt wird. Das Maxi-
mum über verschiedene Eingaben des Erwartungswertes auf der rechten Seite ist also die
interessierende Größe.
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• Mit anderen Worten: minA∈A E [C(Ip,A)] ist eine untere Schranke für Laufzeit des rando-
misierten Algorithmus (für gewisse Eingaben).


5.19 Bemerkung. Einen Satz analog zu 5.17 kann man auch für Monte-Carlo-Algorithmen beweisen.
Hierauf gehen wir nicht weiter ein.


Wir wollen nun die Minimax-Methode auf das Problem der Auswertung von UOB anwenden.


5.20 Als erstes beobachte man, dass wegen


(x1 ∨ x2)∧ (x3 ∨ x4) = (x1 ∨ x2)∨ (x3 ∨ x4) = (x1∨x2)∨(x3∨x4)


jeder UOB äquivalent auch als Baum dargestellt werden kann, dessen innere Knoten alle die
nor-Funktion ∨ berechnen.


5.21 Ein ∨-Gatter liefert genau dann eine 1, wenn an beiden Eingängen eine 0 vorliegt.
Die Zahl p = 3−


√
5


2 hat die Eigenschaft (1− p)2 = p (wie man durch einfaches Nachrechnen
sieht). Wenn an jedem Eingang eines ∨-Gatters unabhängig mit Wahrscheinlichkeit p eine 1


vorliegt, ist daher mit gleicher Wahrscheinlichkeit p auch die Ausgabe eine 1.


Als letzten vorbereitenden Schritt benötigen wir noch die folgende Tatsache.


5.22 Satz. Es sei T ein vollständiger balancierter Baum aus ∨-Knoten, dessen Blätter alle unabhängig vonein-
ander mit einer Wahrscheinlichkeit q den Wert 1 haben. Es sei W(T) das Minimum (genommen über alle
deterministischen Algorithmen) der erwarteten Anzahl von Schritten zur Auswertung von T .


Dann gibt es auch einen Algorithmus A, der eine erwartete Anzahl von nur W(T) Schritten macht
und außerdem die folgende Eigenschaft hat: Besucht A ein Blatt v ′, das zu einem Teilbaum T ′ gehört und
später ein Blatt u, das nicht zu T ′ gehört, dann gilt für alle Blätter a ′′ von T ′, die A überhaupt besucht:
A besucht a ′′ vor u.


Damit können wir nun beweisen:


5.23 Satz. Die erwartete Anzahl der Blätter, die ein randomisierter Algorithmus zur Auswertung von UOB
mit n Blättern besucht, ist mindestens nlog2((1+


√
5)/2) = n0.694....


5.24 Beweis. Wir betrachten nun einen Algorithmus wie in Satz 5.22 und die Auswertung von ∨-
Bäumen, deren Blätter unabhängig voneinander mit Wahrscheinlichkeit p = 3−


√
5


2 auf 1 gesetzt
sind. In Abhängigkeit von der Höhe h sei W(h) die erwartete Anzahl besuchter Blätter.


Offensichtlich ist


W(h) = W(h− 1) + (1− p)W(h− 1) = (2− p)W(h− 1)


also W(h) = (2− p)h−1W(1) = (2− p)h


Einsetzen von h = log2 n und p ergibt


W(T) = W(log2 n) = (2− p)log2 n = 2(log2(2−p))(log2 n) = nlog2(2−p) = n0.694...


5.25 Durch eine genauere (und schwierigere) Analyse kann man sich davon überzeugen, dass sogar
die obere Schranke von nlog4 3 ≈ n0.792... aus Satz 5.7 gleichzeitig auch untere Schranke ist.
Algorithmus 5.6 ist also optimal.
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Zum Abschluss dieses Kapitels wollen wir noch auf einen anderen Aspekt aufmerksam machen,
der sich hinter Satz 5.7 verbirgt.


5.26 Da der Erwartungswert für die Anzahl besuchter Blätter n0.792... ist, muss es mindestens eine
Berechnung geben, während der höchstens so viele Blätter besucht werden. (Würden stets mehr
Blätter besucht, könnte der Erwartungswert nicht so klein sein.)


Oder anders formuliert: Mit einer gewissen Wahrscheinlichkeit echt größer 0 findet der
randomisierte Algorithmus eine Teilmenge von höchstens n0.792... Blättern, aus deren Werten
bereits der der Wurzel folgt.


Also existiert, und zwar für jede Eingabe (i. e. Verteilung von Bits auf alle Blätter), eine solche
„kleine“ Teilmenge von Blättern, deren Kenntnis für die Bestimmung des Wertes an der Wurzel
ausreicht.


Andererseits haben wir in Satz 5.4 gesehen, dass jeder deterministische Algorithmus für man-
che Eingaben alle Blätter besuchen muss. Es ist also manchmal „sehr schwierig“, deterministisch
eine solche kleine Teilmenge zu finden.


Zusammenfassung


1. Bei der Auswertung von Und-Oder-Bäumen kann man randomisiert weniger Blattbesuche
erwarten, als jeder deterministische Algorithmus für manche Bäume durchführen muss.


2. Die Minimax-Methode von Yao liefert eine Möglichkeit, untere Schranken für die erwartete
Laufzeit randomisierter Algorithmen herzuleiten.
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Definition: Equilibrium
Combination of strategies such that no one can profit by unilaterally switching his or her own strategy.
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What a Game is
Finite sets S1,S2 of pure strategies.

Utility functions u1, u2 : S1 × S2 → R.

How a Game is played
Players pick a strategy simultaneously
↪→ gives pair (s1, s2) ∈ S1 × S2.

player 1 gets payoff u1(s1, s2) and
player 2 gets payoff u2(s1, s2).

Existence of Mixed-Strategy Nash Equilibria
There exist distributions S∗1 on S1 and S∗2 on S2, called mixed strategies such that (S∗1 ,S∗2 ) is an equilibrium:

player 1 cannot increase expected payoff: Es1∼S∗
1 ,s2∼S∗

2
[u1(s1, s2)] = max

s1∈S1

Es2∼S∗
2
[u1(s1, s2)].

player 2 cannot increase expected payoff: Es1∼S∗
1 ,s2∼S∗

2
[u2(s1, s2)] = max

s2∈S2

Es1∼S∗
1
[u2(s1, s2)].

Remark: Theorem holds for n ≥ 3 players as well.
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😺

🧀 🧶

🐭
🧀 -4\2 2\1
🕳 0\0 0\1

Equilibrium

S🐭 = {🧀 : 1
2 ,

🕳 : 1
2}

S😺 = {🧀 : 1
3 ,

🧶 : 2
3}

Verification of Equilibrium Property: Calculating Expected Payoffs

for 🐭:

playing 🧀 gives expected payoff
1
3 · (−4) + 2

3 · 2 = 0

playing 🕳 gives expected payoff
1
3 · 0 + 2

3 · 0 = 0

playing S🐭 is a mix of both
↪→ also expected payoff 0.

for 😺:

playing 🧀 gives expected payoff
1
2 · 2 + 1

2 · 0 = 1

playing 🧶 gives expected payoff
1
2 · 1 + 1

2 · 1 = 1

playing S😺 is a mix of both
↪→ also expected payoff 1.
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Two Player Zero Sum Games

and their Matrix Formulation

Finite sets of pure strategies
S1 for player 1
S2 for player 2

utility function u : S1 × S2 → R
player 1 gets u(s1, s2)
player 2 gets −u(s1, s2)

Implicit sets of pure strategies
S1 = [n] for the row player
S2 = [m] for the column players

matrix M ∈ Rn×m

row player gets Ms1,s2

column player gets −Ms1,s2
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column player gets −Ms1,s2

🤓

🪨 📃 ✂ 

👧

🪨 0 -1 1
📃 1 0 -1
✂ -1 1 0

Unique equilibrium of 🪨 📃 ✂ 

S1 = S2 = {🪨 : 1
3 ,📃 : 1

3 ,
✂ : 1

3}
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Nash’s Theorem (1950), Special Case
For any M ∈ Rn×m there exist distributions S∗1 on [n] and S∗2 on [m] such that

Es1∼S∗
1 ,s2∼S∗

2
[Ms1,s2 ] = max

s1∈[n]
Es2∼S∗

2
[Ms1,s2 ] = min

s2∈[m]
Es1∼S∗

1
[Ms1,s2 ].

Intuition
When the players play according to S∗1 and
S∗2 , then no player can benefit by deviating
from his strategy.

Corollary: Loomis (1946) Von Neumann (1928)

For any M ∈ Rn×m we have

max
S1

min
s2∈[m]

Es1∼S1 [Ms1,s2 ] = min
S2

max
s1∈[n]

Es2∼S2 [Ms1,s2 ]

Intuition
No first-mover disadvantage if

first player choses mixed strategy
second player answers with pure
strategy
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Setting
P: a computational problem
Inputs: finite set of inputs
Algos: finite set of deterministic algorithms
C(A, I) ∈ R cost of A ∈ Algos on I ∈ Inputs.

Example: Sorting
P = “sort n numbers comparison-based”a

Inputs = Sn //permutations of [n]
Algos = e.g. suitable set of decision trees
C(A, I) = # of comparisons of A for input I

an finite, though possibly n → ∞ later.

A Two-Player Zero-Sum Game
Designer chooses (randomised) algorithm,
i.e. a distribution on Algos.
↪→ Goal: Minimise (expected) cost.
Adversary chooses (randomised) input,
i.e. a distribution on Inputs.
↪→ Goal: Maximise (expected) cost.

Sorting (x , y , z)
Adversary

(1, 2, 3) (3, 1, 2) (2, 3, 1) . . .

A
lg

or
ith

m
D

es
ig

ne
r x < y then y < z then∗ z < x 2 3 3

y < z then z < x then∗ x < y 3 2 3
. . .

∗ Only if needed.
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an finite, though possibly n → ∞ later.

A Two-Player Zero-Sum Game
Designer chooses (randomised) algorithm,
i.e. a distribution on Algos.
↪→ Goal: Minimise (expected) cost.
Adversary chooses (randomised) input,
i.e. a distribution on Inputs.
↪→ Goal: Maximise (expected) cost.

Sorting (x , y , z)
Adversary

(1, 2, 3) (3, 1, 2) (2, 3, 1) . . .

A
lg

or
ith

m
D

es
ig

ne
r x < y then y < z then∗ z < x 2 3 3

y < z then z < x then∗ x < y 3 2 3
. . .

∗ Only if needed.
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Definition: Randomised Complexity of a Problem

C := min
A dist. on Algos

max
I∈Inputs

EA∼A[C(A, I)] designer moves first

Loomis
= max

I dist. on Inputs
min

A∈Algos
EI∼I [C(A, I)] adversary moves first

Yao’s Principle: (

Upper

and) Lower

Bounds on C
Let A0 be a distribution on Algos

and I0 a distribution on Inputs. Then

max
I∈Inputs

EA∼A0 [C(A, I)]
(old news)
≥ C

“Yao’s Principle”
≥ min

A∈Algos
EI∼I0 [C(A, I)].

Tightness: Loomis implies that “=” is possible.

↪→ Can attain (tight) lower bounds on C by thinking about deterministic algorithm only!
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1. Nash Equilibria in 2-Player Zero-Sum Games
Games and Nash Equilibria
Two Player Zero Sum Games
Loomis’ Theorem for Two-Player Zero Sum Games

2. Yao’s Minimax Principle

3. Applications of Yao’s Principle
Evaluation of ∧-Trees

Proof Sketch of Tarsi’s Theorem (not relevant for the exam)
The Ski-Rental Problem

4. Conclusion
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Content



Problem: Evaluate ∧-Tree of depth d
Inputs = {0, 1}n for n = 2d . Specify bits at leafs.
Algos = Algorithms computing value at root.
C(A, I) = # bits of I that A examines
↪→ query complexity of A on I

Goal
Bound randomised query complexity

C = min
A dist. on Algos

max
I∈Inputs

EA∼A[C(A, I)].
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∧

∧
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1 1

∧
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∧

∧

0 1

∧
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Computational Problem: ∧-Tree-Evaluation



Problem: Evaluate ∧-Tree of depth d
Inputs = {0, 1}n for n = 2d . Specify bits at leafs.
Algos = Algorithms computing value at root.
C(A, I) = # bits of I that A examines
↪→ query complexity of A on I

Goal
Bound randomised query complexity

C = min
A dist. on Algos

max
I∈Inputs

EA∼A[C(A, I)].

Example and possible formalisation of Algos (that we won’t use)

Each A ∈ Algos corresponds to a decision
tree. In the example:

C(A, (1, 0, 1, 0)) = 4
C(A, (0, 1, 0, 1)) = 2

Each leaf queried at most once per path
⇒ depth ≤ n⇒ |Algos| <∞

I:

∧

∧

1 0

∧

1 0
1 2 3 4

input bit:
leaf index:

A:

1

3

0 4

0 1

2

3

0 4

0 1

1

1
1

1

1

1

1

0
0

0

0

0

0
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∧-∨-trees are ∨-trees are ∧-trees
∧

∨

b1 b2

∨

b3 b4

De Morgan←→

∨

∨

b1 b2

∨

b3 b4

swap meaning
of 1 and 0

↭

∧

∧

b̄1 b̄2

∧

b̄3 b̄4
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What we already know



∧-∨-trees are ∨-trees are ∧-trees

Deterministic Query Complexity is n (Sheet 2, Exercise 3)

For all A ∈ Algos there exists I ∈ Inputs such that C(A, I) = n.

Randomised Query Complexity is O(nlog4(3)) ≈ O(n0.792) (Lecture “The Power of Randomness”)

Let A be the randomised algorithm that evaluates one of the two depth d − 1 subtrees at random (recursively)
and, if that yields 1, also evaluates the other subtree (recursively).

max
I∈Inputs

EA∼A[C(A, I)] = O(3d/2) = O(nlog4(3)).

Goal: Show lower bound of Ω(φd) ≈ Ω(n0.694) using Yao’s Principle (φ is the golden ratio).
Remark: actual complexity is Θ(nlog4(3)), but that’s more difficult.
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Observation
For any even d ∈ N and A ∈ Algos we have C(A, (0, . . . , 0)) ≥ 2d/2.

∧
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0 0
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Observation
For any even d ∈ N and A ∈ Algos we have C(A, (0, . . . , 0)) ≥ 2d/2.
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Observation
For any even d ∈ N and A ∈ Algos we have C(A, (0, . . . , 0)) ≥ 2d/2.

∧

∧

∧
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∧

0 0

∧

∧

0 0

∧

0 0

∧

∧

∧

0 0

∧

0 0

∧

∧

0 0
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0 0

0

1 1

0 00 0

1 1 1 1 1 1 1 1

0 0 0 0

Proof
in the end A knows that the root is 0.

knowing a 0 requires knowing that both children are 1.

Knowing a 1 requires knowing of one child that it is 0.

↪→ A knows of ≥ 2d/2 leafs that they are 0 and must have
checked them.
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Observation
For any even d ∈ N and A ∈ Algos we have C(A, (0, . . . , 0)) ≥ 2d/2.
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Corollary: Randomised Complexity is Ω(
√

n)

C = min
A dist. on Algos

max
I∈Inputs

EA∼A[C(A, I)]

≥ min
A dist. on Algos

EA∼A[C(A, (0, . . . , 0))]

= min
A∈Algos

[C(A, (0, . . . , 0))]

≥ 2d/2 = 2log2(n)/2 = n1/2.

Note Yao’s spirit: Lower bound on randomised complexity
from result on deterministic algorithms.
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Theorem (Tarsi 1984)
For any p ∈ [0, 1] simpleEval is optimal for input distribution Ip, i.e.

min
A∈Algos

EI∼Ip0
[C(A, I)] = EI∼Ip0

[C(simpleEval, I)].

Lemma

Let φ =
√

5+1
2 be the golden ratio and p0 = φ− 1. Then

EI∼Ip0
[C(simpleEval, I)] = (1 + p0)

d = φd .

Corollary: C = Ω(φd) ≈ Ω(n0.694)

C
Yao
≥ min

A∈Algos
EI∼Ip0

[C(A, I)]
Tarsi
= EI∼Ip0

[C(simpleEval, I)]

Lemma
= φd = φlog2 n = nlog2 φ ≈ n0.694.

Independent Bernoulli Inputs
Let Ip = Ber(p)n be the distribution where leafs
are assigned independently values with
distribution Ber(p).

Deterministic Algorithm

Algorithm simpleEval(T ):
if T = leaf(b) then

return b
else

(Tℓ,Tr )← T
if simpleEval(Tℓ) = 0 then

return 1
else

return ¬simpleEval(Tr )
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[C(simpleEval, I)].

Lemma

Let φ =
√

5+1
2 be the golden ratio and p0 = φ− 1. Then

EI∼Ip0
[C(simpleEval, I)] = (1 + p0)

d = φd .

Corollary: C = Ω(φd) ≈ Ω(n0.694)

C
Yao
≥ min

A∈Algos
EI∼Ip0

[C(A, I)]
Tarsi
= EI∼Ip0

[C(simpleEval, I)]

Lemma
= φd = φlog2 n = nlog2 φ ≈ n0.694.

Independent Bernoulli Inputs
Let Ip = Ber(p)n be the distribution where leafs
are assigned independently values with
distribution Ber(p).

Deterministic Algorithm

Algorithm simpleEval(T ):
if T = leaf(b) then

return b
else

(Tℓ,Tr )← T
if simpleEval(Tℓ) = 0 then

return 1
else

return ¬simpleEval(Tr )
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5−1
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Theorem (Tarsi 1984)
For any p ∈ [0, 1] simpleEval is optimal for input distribution Ip, i.e.

min
A∈Algos

EI∼Ip0
[C(A, I)] = EI∼Ip0

[C(simpleEval, I)].

Proof idea:

Take optimal Algorithm A.

Transform A into simpleEval step by step.

Show: Expected query complexity never
increases.
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Tarsi’s Theorem



Definition: Superleafs
A superleaf consists of two sibling leafs and their parent.

∧

∧

∧

r`

Lemma
For any p ∈ [0, 1] and any A ∈ Algos there exists A′ ∈ Algos
such that

EI∼Ip [C(A′, I)] ≤ EI∼Ip [C(A, I)]
A′ behaves on any superleaf T = (ℓ, r) like simpleEval:

i never visits r before ℓ
ii never visits r if ℓ = 0
iii immediately visits r after visiting ℓ if ℓ = 1

Proof Idea
We fix every superleaf one by one. Let T be
superleaf that needs fixing.
Property i : Switch roles of ℓ and r if needed.
Does not change the expected cost.
Property ii : r does not contribute to result. Not
visiting r reduces expected cost.
Property iii : More difficult. See next slide.
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Lemma: Evaluating Superleafs like simpleEval



Modified Original Modified
Algorithm B Algorithm A Algorithm D

ℓ
pp̄

A1 with cost C1

A2 with cost C2

0 1

done? yesno
ββ̄

end

end

r0 1
pp̄

A4 with cost C4

end

A1 with cost C1

end

A0 with cost C0

done? yesno

αᾱ

end

ℓ
pp̄

A1 with cost C1 A2 with cost C2

0 1

done? yesno
ββ̄

end

end
r0 1

pp̄

A3 with cost C3 A4 with cost C4

end end

A0 with cost C0

done? yesno

αᾱ

end

ℓ
pp̄

A2 with cost C2

0 1

done? yesno
ββ̄

end

r0 1
pp̄

A4 with cost C4

end

A3 with cost C3

end

A3 with cost C3

end

A0 with cost C0

done? yesno

αᾱ

end

CA := E[C(A, I)] = E[C0 + ᾱ · (1 + p̄C1 + p · (C2 + β̄(1 + p̄C3 + pC4)))]

CB := E[C(B, I)] = E[C0 + ᾱ · (1 + p̄C1 + p · (1 + p̄C1 + p(C2 + β̄C4)))]

CD := E[C(D, I)] = E[C0 + ᾱ · (C2 + β̄(1 + p̄C3 + p(1 + p̄C3 + pC4)))]

(CB − CA) + p · (CD − CA) = . . . = 0

⇒CB − CA ≤ 0 ∨ CD − CA ≤ 0

⇒B or D (or both) are at least as good as A

and both visit superleaf (ℓ, r) as desired.
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Theorem (Tarsi 1984)
For any p ∈ [0, 1] simpleEval is optimal for input distribution
Ip, i.e.

min
A∈Algos

EI∼Ip0
[C(A, I)] = EI∼Ip0

[C(simpleEval, I)].

We use induction on d . For d = 0 simpleEval is clearly
optimal. Let now d ≥ 1.

Let A ∈ Algos be an algorithm minimising EI∼Ip [C(A, I)].
By Lemma: There exists A′ ∈ Algos that behaves like
simpleEval on superleafs such that

EI∼Ip [C(A′, I)] ≤ EI∼Ip [C(A, I)].

Let L′ be the number of superleafs visited by A′ and L the
number of superleafs visited by simpleEval.
Superleafs evaluate to 1 with probability 1− p2 independently
and are in a complete binary tree of depth d − 1.

Apply induction for d ′ = d − 1 and p′ = 1− p2.

EI∼Ip [L]
Ind.
≤ EI∼Ip [L

′].

The expected cost for evaluating a superleaf is 1 + p.
Hence

EI∼Ip [C(A′, I)] = (1 + p)E[L′]

EI∼Ip [C(A, I)] = (1 + p)E[L]

Finally we obtain:

EI∼Ip [C(simpleEval, I)] = (1 + p)E[L] ≤ (1 + p)E[L′]

= EI∼Ip [C(A′, I)] ≤ EI∼Ip [C(A, I)].

Hence, simpleEval is optimal for Ip.
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1. Nash Equilibria in 2-Player Zero-Sum Games
Games and Nash Equilibria
Two Player Zero Sum Games
Loomis’ Theorem for Two-Player Zero Sum Games

2. Yao’s Minimax Principle
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Evaluation of ∧-Trees
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Content



Setting: You are on a ski trip
Trip lasts for unknown number of days I ∈ N
(“as long as there is snow”).
Every day, if no skis bought yet:

RENT skis for one day for cost 1 or

BUY skis for cost B ∈ N.

Framing using Online Algorithms
Inputs = N: number of days
(not known in advance)

Algos = N: specify day for choosing BUY

cost for A ∈ Algos on I ∈ Inputs:

C(A, I) =

{
I if I < A

A− 1 + B otherwise.

cost of optimum offline solution

OPT(I) =

{
I if I < B

B otherwise.
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Observation
The algorithm breakEven := B has competitive ratio 2B−1

B ≈ 2.
All other A ∈ Algos have competitive ratio ≥ 2.

Recall
B is the cost to BUY.

Proof
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Observation
The algorithm breakEven := B has competitive ratio 2B−1

B ≈ 2.
All other A ∈ Algos have competitive ratio ≥ 2.

Recall
B is the cost to BUY.

Proof

I

cost

B

OPT (I )

< 2

C (breakEven, I )
The worst ratio for breakEven is attained for input I = B.

CbreakEven = sup
I∈N

C(breakEven, I)
OPT(I)

=
C(breakEven,B)

OPT(B)

=
B − 1 + B

B
=

2B − 1
B

.
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Observation
The algorithm breakEven := B has competitive ratio 2B−1

B ≈ 2.
All other A ∈ Algos have competitive ratio ≥ 2.

Recall
B is the cost to BUY.

Proof

I

cost

B

OPT (I )
≥ 2

A

C (A, I )

The worst ratio for A ∈ Algos with A < B is attained for input I = A.

CA = sup
I∈N

C(A, I)
OPT(I)

=
C(A,A)
OPT(A)

=
A− 1 + B

A
= 1+

B − 1
A
≥ 1+1 = 2.
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Recall
B is the cost to BUY.

Proof

I

cost

B

OPT (I )

≥ 2

A

C (A, I )
The worst ratio for A ∈ Algos with A > B is attained for input I = A.

CA = sup
I∈N

C(A, I)
OPT(I)

=
C(A,A)
OPT(A)

=
A− 1 + B

B
= 1+

A− 1
B
≥ 1+1 = 2.
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Observation (assuming wlog that B is a multiple of 3)

The randomised algorithm A = U({ 2
3 B,B}) has competitive ratio ≈ 1 + 5

6 .

Proof

I

cost

B

OPT (I )

2
3
B

E[C (A, I )]

The competitive ratio of A “spikes” for inputs 2
3 B and B. It is decreasing in

between and constant after B.

EA∼A[C(A, 2
3 B)] = 2

3 B − 1︸ ︷︷ ︸
rent

+ 1
2 (1 + B)︸ ︷︷ ︸
rent or buy

< 7
6 B, OPT( 2

3 B) = 2
3 B,

EA∼A[C(A,B)] = B︸︷︷︸
buy

+ 2
3 B − 1︸ ︷︷ ︸

rent

+ 1
2 (

1
3 B)︸ ︷︷ ︸

maybe rent

< 11
6 B, OPT(B) = B.

Hence CA = sup
I∈N

EA∼A[C(A, I)]
OPT(I)

≤ max
{7/6

2/3
,

11/6
1

}
= max

{7
4
,

11
6

}
=

11
6
.
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A randomised algorithm can beat break-even



Goal: Lower bound
No randomised algorithm has competitive ratio better than e

e−1 ≈ 1.582.
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Theorem (see Online Optimization Lecture, Corollary 3.8, Prof. Yann Disser, Darmstadt, 2023)

For any distribution A0 on Algos and any distribution I0 on Inputs we have

CA0

def
= sup

I∈Inputs

EA∼A0 [C(A, I)]
OPT(I)

(∗)
≥ EI∼I0,A∼A0 [C(A, I)]

EI∼I0 [OPT(I)]
≥

infA∈Algos EI∼I0 [C(A, I)]
EI∼I0 [OPT(I)]

.

Steps to see (*)
Prove that a+c

b+d ≤ max( a
b ,

c
d ) for a, b, c, d > 0.

Conclude that a1+···+an
b1+···+bn

≤ maxi∈[n]
ai
bi

for ai , bi > 0

Conclude that for random I ∈ [n] that E[aI ]
E[bI ]
≤ maxi∈[n]

ai
bi

.

Conclude (*).
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Theorem (see Online Optimization Lecture, Corollary 3.8, Prof. Yann Disser, Darmstadt, 2023)

For any distribution A0 on Algos and any distribution I0 on Inputs we have

CA0

def
= sup

I∈Inputs

EA∼A0 [C(A, I)]
OPT(I)

(∗)
≥ EI∼I0,A∼A0 [C(A, I)]

EI∼I0 [OPT(I)]
≥

infA∈Algos EI∼I0 [C(A, I)]
EI∼I0 [OPT(I)]

.

Remark
Yao’s principle exists for other settings as well.

Tightness typically follows from duality of optimisation problems or fixed point theorems.
(though I’m not sure how it works here)
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Yao’s Principle for Online Algorithms



I0 := Geom1(
1
B ).

Why I0?
distribution is memoryless, i.e. PrI∼I0 [I = i + t | I > i] = PrI∼I0 [I = t].
Assume no skis bought on day i : Minimising expected future cost is the same problem as on day 1.
↪→ wlog: either buy right away or not at all.

expectation tuned such that

EI∼I0 [C(never buy, I)] = EI∼I0 [C(immediately buy, I)] = B.

↪→ all strategies equally good
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Lemma
Let I0 := Geom( 1

B ) and q := 1− 1
B = “Pr[❄ ]”. Then

i EI∼I0 [C(A, I)] = B for all A ∈ N.

ii EI∼I0 [OPT(I)] = B(1− (1− 1
B )

B).

Tail sum formula:
For random variable X with values in N:

E[X ] =
∑
j≥1

Pr[X ≥ j].
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Lemma
Let I0 := Geom( 1

B ) and q := 1− 1
B = “Pr[❄ ]”. Then

i EI∼I0 [C(A, I)] = B for all A ∈ N.

ii EI∼I0 [OPT(I)] = B(1− (1− 1
B )

B).

Tail sum formula:
For random variable X with values in N:

E[X ] =
∑
j≥1

Pr[X ≥ j].

Proof of (i)

EI∼I0 [C(A, I)] = Pr[I ≥ A] · B︸ ︷︷ ︸
buy

+
A−1∑
i=1

Pr[I ≥ i] · 1︸ ︷︷ ︸
rent

= qA−1 · B +
A−1∑
i=1

q i−1 = qA−1 · B +
A−2∑
i=0

q i = qA−1 · B +
1− qA−1

1− q

= qA−1 · B + (1− qA−1)B = B.
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Lemma
Let I0 := Geom( 1

B ) and q := 1− 1
B = “Pr[❄ ]”. Then

i EI∼I0 [C(A, I)] = B for all A ∈ N.

ii EI∼I0 [OPT(I)] = B(1− (1− 1
B )

B).

Tail sum formula:
For random variable X with values in N:

E[X ] =
∑
j≥1

Pr[X ≥ j].

Proof of (ii)

EI∼I0 [OPT(I)]
TSF
=

∑
j≥1

Pr[OPT(I) ≥ j] =
B∑

j=1

Pr[OPT(I) ≥ j]

=
B∑

j=1

Pr[I ≥ j] =
B∑

j=1

q j−1 =
B−1∑
j=0

q j

=
1− qB

1− q
= B(1− (1− 1

B )
B).

I

cost

B

OPT (I )

Note: OPT(I) = I for I ∈ [B].
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Lemma
Let I0 := Geom( 1

B ) and q := 1− 1
B = “Pr[❄ ]”. Then

i EI∼I0 [C(A, I)] = B for all A ∈ N.

ii EI∼I0 [OPT(I)] = B(1− (1− 1
B )

B).

Tail sum formula:
For random variable X with values in N:

E[X ] =
∑
j≥1

Pr[X ≥ j].

Lower bound for Ski-Rental
By Yao’s theorem any randomised algorithm A for ski-rental has competitive ratio at least

CA
def
= sup

I∈Inputs

EA∼A[C(A, I)]
OPT(I)

Yao
≥

infA∈Algos EI∼I0 [C(A, I)]
EI∼I0 [OPT(I)]

=
B

B(1− (1− 1
B )

B)
=

1
1− (1− 1

B )
B
.

For large B the lower bound converges to lim
B→∞

1
1− (1− 1

B )
B
=

1
1− 1/e

=
e

e − 1
≈ 1.582.
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Remark: The lower bound is tight (Karlin et al. 1994)
There exists a distribution A on [B] such that cA ≤ e

e−1 .

Applications
Very basic online question:

Should I pay a small possibly recurring cost or a large one time cost?

Occurs in:

Cache management.

Networking.

Scheduling.

. . .
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Algorithm Design as a Two-Player Game
“we” choose algorithm to minimise cost

“adversary” chooses input to maximise cost

Nash/Loomis: It does not matter who moves first
if mixed strategy is allowed for first player.

Yao’s Principle
Lower bound on worst-case expected cost of any randomised algorithm A0 by analying any deterministic
algorithm on specific input distribution I0.

max
I∈Inputs

EA∼A0 [C(A, I)] ≥ C ≥ min
A∈Algos

EI∼I0 [C(A, I)].

Can narrow down randomised complexity C of underlying problem from both sides.
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Game theory:

What is a two-player game in the game-theoretic sense?

What is a Nash equilibrium?

Does a Nash equilibrium always exist?

What is a zero-sum game?

What does Nash’s Theorem state (for two-player zero-sum games)?

What does Loomis’ Theorem state?

Prove Loomis’ Theorem! (challenging task)

Yao’s principle:

What is the connection between game theory and the design of algorithms?

How is randomised complexity (with respect to a cost function C) usually defined? What alternative
viewpoint does Loomis’ Theorem provide?

State Yao’s Principle! What is it useful for?
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Application to ∧-trees:

What goal did we set ourselves when evaluating ∧-trees? (minimising query complexity)

What worst-case cost can be achieved with a deterministic algorithm?

Can randomised algorithms do better? How?

It is rather easy to see that the randomised complexity is Ω(
√

n). How?

We also saw a tighter analysis. What components did it have? In particular: how does Yao’s principle
come into play?

What does Tarsi’s theorem state?

Ski rental problem:

State the Ski Rental Problem.

What do we call this type of problem? (online problem)

Name some applications of the Ski Rental Problem.

How is the competitive ratio defined?
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What is the best deterministic algorithm? How can one see this?

Is there a randomised algorithm that can beat the break-even point? (idea only)

State Yao’s principle for online algorithms.

Which input distribution did we assume for the lower bound for ski rental? What is the intuition?

What costs arise for online and offline algorithms for this input distribution? What can we conclude about
the competitive ratio?
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