

Probability and Computing – The Power of Randomness

Stefan Walzer | WS 2025/2026

1. Organisation

- Improve (Worst-Case) Running Time
- Model Performance in the Real-World Average Case Analysis
- Achieve Load Balancing with Pseudorandomness
- Approximate in Sublinear Time using Random Sampling

3/24

Organisation

Lectures by

Dr. Stefan Walzer

likes elephants

Exercises by

Stefan Hermann

- lectures every Thursday, 11:30
- exercises every second Tuesday, 9:45
- exception: switched in first week
- Website: https://ae.iti.kit.edu/4994.php
- Ilias: https://ilias.studium.kit.edu/goto_ produktiv_crs_2777317.html
 - discuss exercises
 - ask questions
 - report typos / mistakes

- oral exam
- literature:
 - Probability and Computing (Mitzenmacher + Upfal)
 - Randomised Algorithms (Motwani + Raghavan)
 - Modern Discrete Probability (Roch)

Exercises

Organisation

- one sheet published with each lecture
- one exercises session every two weeks
 two sheets per exercises session
- solutions provided after the exercise session
- optional, no hand-in, no grading. But:
- content of sheets relevant for exam
 - you may be asked to reproduce/rediscover solutions in the exam

Recommendation

- You should, prior to the exercise session
 - think about the exerices or
 - discuss them in your study group.
- You should do at least one of the following
 - solve the exercises
 - attend the exercise sessions and follow along
 - work through the provided solutions
- We hope that some of you will
 - present your own solutions during sessions

5/24

1. Organisation

2. The Power of Randomness

- Improve (Worst-Case) Running Time
- Model Performance in the Real-World Average Case Analysis
- Achieve Load Balancing with Pseudorandomness
- Approximate in Sublinear Time using Random Sampling

3. Semester Outline

7/24

Can Randomness Improve (Worst-Case) Running Time?

it depends on what you mean by "worst case"...

Worst Input & Worst Luck

Any random decision is the worst decision.

 \hookrightarrow randomness is useless.

Finding Hay According to This View

Worst Input & Average Luck

Randomness can help. See next slide.

this is what we lowing

In other words:

- We fix a randomised algorithm.
- Adversary fixes an input.
- Random choices made independently.

Organisation

The Power of Bandomness

Example 1: Finding an Empty Slot

Task

Input: array A[1..n] where n/2 slots are empty

Output: $i \in [n]$ with A[i] = EMPTY

Observation

For any *deterministic* algorithm *D* there exists an input A such that D inspects > n/2 entries of A.

Observation

The randomised algorithm R that inspects slots of A at random finds an empty slot after X attempts where

$$\mathbb{E}[X] \stackrel{\mathsf{TSF}}{=} \sum_{i \in \mathbb{N}_0} \Pr[X > i] = \sum_{i \in \mathbb{N}_0} 2^{-i} = 2.$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ x & z & & & y & & w \end{bmatrix}$$

Note

- the analysis of R holds for any input
- "E" relates to choices of R (not to input)
- input is fixed before random choices

9/24

Example 2 and 3: Verifying Identities

Exercise: Verifying Polynomial Identities

Let f and g be two polynomial functions over a field \mathbb{F} . For instance:

$$f(x) = (x^3 + 2x^2 - 5x - 6)(x^2 + x - 20)(x - 6)$$
 and $g(x) = x^6 - 7x^3 + 25$.

Check whether $f \equiv g$ with a randomised algorithm!

Exercise: Verifying Matrix Identities (Freivalds' Algorithm)

Let $A, B, C \in \mathbb{F}^{n \times n}$ be matrices over the field \mathbb{F} . Check whether $A \cdot B = C$ with a randomised algorithm!

Organisation The Power of Randomness

¹The algorithm may occasionally accept incorrect identities. Precise statements on the exercise sheet.

Example 4: Evaluating Games without Draws

Three Types of Game States

value(S) = 1 = W // active player has winning strategy

value(S) = 0 = L // inactive player has winning strategy

value(S) = D // draw in optimal play

Task: Evaluating a Game

Input: (Implicit representation of) a game.

Output: value of start state.

Observation

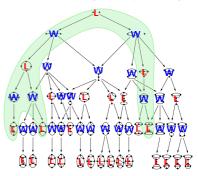
A state S is winning if and only if some successor state is losing.

$$value(S) = \bigwedge_{S' \text{ successor of } S} value(S').$$

Organisation

The Power of Bandomness

Game of Sprouts (see wikipedia)



Observation

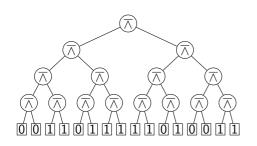
May not have to inspect entire tree to derive value at root.

Problem

Input: $I \in \{0,1\}^n$ for $n = 2^d$.

Output: Value of complete binary $\overline{\wedge}$ -tree with leaf values from *I*.

Cost Model: Number of inspected entries of *I*.



Exercise

For any deterministic algorithm A there exists an input $I_A \in \{0,1\}^n$ such that A inspects all n entries of I.

Our Goal

Randomised algorithm that, for any input, inspects only X entries with

$$\mathbb{E}[X] = \mathcal{O}(n^{0.793}).$$

The Power of Randomness

Algorithm randEval(T):

if T = Leaf(b) then

```
return b
(T_0, T_1) \leftarrow T
// coin flip:
sample r \sim \mathcal{U}(\{0,1\})
b_r \leftarrow \text{randEval}(T_r)
if b_r = 0 then
     return 1
```

return 1 – randEval(T_{1-r})

Lemma

Assume randEval is excecuted for a tree T of depth d > 2. Let X be the number of resulting calls with subtrees of depth d-2. Then $\mathbb{E}[X] \leq 3$.

Proof.

Let
$$T = (T_0, T_1) = ((T_{00}, T_{01}), (T_{10}, T_{11})).$$

Case 1: value(T) = 1.

- Then value(T_0) = 0 or value(T_1) = 0 (or both).
- Assume (wlog) value(T_0) = 0.
- With probability 1/2 we select r = 0 and T_1 need not be evaluated.

$$T_0$$
 T_1 T_1 T_2

$$\Rightarrow \mathbb{E}[X] \leq \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 4 = 3.$$

Organisation The Power of Bandomness

Algorithm randEval(T):

if T = Leaf(b) then

```
return b
(T_0, T_1) \leftarrow T
// coin flip:
sample r \sim \mathcal{U}(\{0,1\})
b_r \leftarrow \text{randEval}(T_r)
if b_r = 0 then
     return 1
```

return 1 – randEval(T_{1-r})

Lemma

Assume randEval is excecuted for a tree T of depth d > 2. Let X be the number of resulting calls with subtrees of depth d-2. Then $\mathbb{E}[X] \leq 3$.

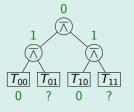
Proof.

Let
$$T = (T_0, T_1) = ((T_{00}, T_{01}), (T_{10}, T_{11})).$$

Case 2: value(
$$T$$
) = 0.

- Then value(T_0) = value(T_1) = 1.
- Like before: T₀₁ and T₁₁ only evaluated with probability 1/2 each.

$$\Rightarrow \mathbb{E}[X] \leq 2 + \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1 = 3.$$



Organisation

The Power of Bandomness


```
Algorithm randEval(T):
    if T = \text{Leaf}(b) then
         return b
    (T_0, T_1) \leftarrow T
    // coin flip:
    sample r \sim \mathcal{U}(\{0,1\})
    b_r \leftarrow \text{randEval}(T_r)
    if b_r = 0 then
         return 1
```

return 1 – randEval(T_{1-r})

Lemma

Assume randEval is excecuted for a tree T of depth d > 2. Let X be the number of resulting calls with subtrees of depth d-2. Then $\mathbb{E}[X] \leq 3$.

Corollary

Let *T* be a tree of depth $d \in \{0, 2, 4, ...\}$, i.e. $n = 2^d$. The number L of leafs visited by randEval(T) satisfies

$$\mathbb{E}[L] \leq 3^{d/2} = 4^{\log_4(3^{d/2})} = 4^{d/2 \log_4(3)} = 2^{d \log_4(3)} = n^{\log_4(3)}.$$
proof on blackboard

Organisation

13/24

The Power of Bandomness

1. Organisation

2. The Power of Randomness

- Improve (Worst-Case) Running Time
- Model Performance in the Real-World Average Case Analysis
- Achieve Load Balancing with Pseudorandomness
- Approximate in Sublinear Time using Random Sampling

Average Case Analysis

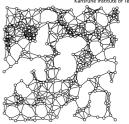
Theory-Practice Gap

SAT is NP-complete $\stackrel{???}{\longleftrightarrow}$ modern SAT-solvers handle relevant instances with millions of clauses

Similar observations for NP-hard graph problems on relevant graph classes, e.g. social networks.

Explaining the Gap

- **11** Define a distribution \mathcal{I} on inputs.
 - \blacksquare I should be realistic, i.e. model real world instances
 - lacksquare should have simple mathematical structure
- 2 Show that time to solve $I \sim \mathcal{I}$ is small in expectation.



Goals

- model real world instances
- identify useful properties of these instances
- build algorithms exploiting these properties

Organisation

The Power of Randomness

Toy Example: Unbalanced Search Trees

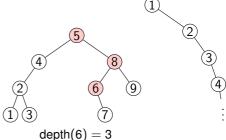
Setting

Inserted 1, ..., *n* into search tree *in some order*. Consider: Depth of Element $y \in \{1, ..., n\}$.

Worst Case

Sorted order: depth(y) = y.

Possible Observation



Average Case Analysis

- Alice sees good performance in her setting.
- Can we explain why that might be?

- **1** Model: Elements of $\{1, \dots, n\}$ are inserted in random order. → Note: May or may not reflect Alice's setting...
- **2** Goal: Show that $y \in \{1, ..., n\}$ has expected depth $\mathcal{O}(\log n)$.

Organisation

The Power of Bandomness

Toy Example: Unbalanced Search Trees – Analysis

Lemma

For any $x, y \in [n] : \Pr[E_{xy}] = \frac{1}{|y-x|+1}$.

Proof.

Assume wlog x < y.

Let v be the element of $\{x, \ldots, y\}$ inserted first.

Note: All elements of $\{x, \ldots, y\}$ are descendents of v.

Case 1: v = x. Then x is ancestor of y.

Case 2: v = y. Then y is ancestor of x.

Case 3: $v \notin \{x, y\}$. Then x is in left subtree of v and y in right subtree of v.

Hence E_{xv} occurs $\Leftrightarrow x = v \Leftrightarrow Case 1$.

Therefore: $Pr[E_{xy}] = Pr[Case \ 1] = \frac{1}{|\{x = y\}|} = \frac{1}{|y = y+1|}$.

Context

Elements $\{1, \ldots, n\}$ inserted into search tree in uniformly random order.

Definition

Event $E_{xy} = \{x \text{ is ancestor of } y\}$

// x counts as ancestor of x

Organisation

The Power of Bandomness

Toy Example: Unbalanced Search Trees – Analysis

Lemma

For any $x, y \in [n]$: $\Pr[E_{xy}] = \frac{1}{|y-y|+1}$.

Theorem

Let $y \in [n]$ and ℓ_v the depth y. Then $\mathbb{E}[\ell_v] \leq 2 \ln(n) + 2$.

Proof.

We have $\ell_y = \sum_{x \in [n]} \mathbb{1}_{E_{xy}}$. Hence:

$$\mathbb{E}[\ell_y] \stackrel{\text{lin.}}{=} \sum_{x \in [n]} \mathbb{E}[\mathbb{1}_{E_{xy}}] = \sum_{x \in [n]} \Pr[E_{xy}] = \sum_{x \in [n]} \frac{1}{|y - x| + 1}$$

$$\leq 2 \sum_{i=1}^{n} \frac{1}{i} = 2 \cdot H_n \leq 2(\ln(n) + 1).$$

Context

Elements $\{1, \ldots, n\}$ inserted into search tree in uniformly random order.

Definition

Event $E_{xy} = \{x \text{ is ancestor of } y\}$ // x counts as ancestor of x

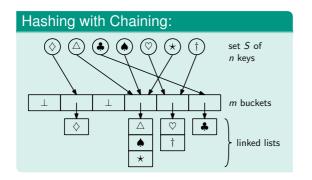
Organisation

The Power of Bandomness

2. The Power of Randomness

- Improve (Worst-Case) Running Time
- Model Performance in the Real-World Average Case Analysis
- Achieve Load Balancing with Pseudorandomness
- Approximate in Sublinear Time using Random Sampling

Achieve Load Balancing with Pseudorandomness



Stay Tuned!

- Linear Probing
- Cuckoo Hashing
- Bloom Filters
- Retrieval
- Perfect Hashing

Organisation

The Power of Randomness

1. Organisation

2. The Power of Randomness

- Improve (Worst-Case) Running Time
- Model Performance in the Real-World Average Case Analysis
- Achieve Load Balancing with Pseudorandomness
- Approximate in Sublinear Time using Random Sampling

Approximate in Sublinear Time using Random Sampling

More × or more ∘?

Stav Tuned!

Approximation algorithms can estimate quantities by random sampling.

Organisation

The Power of Bandomness 0000000000000000

- Improve (Worst-Case) Running Time
- Model Performance in the Real-World Average Case Analysis
- Achieve Load Balancing with Pseudorandomness
- Approximate in Sublinear Time using Random Sampling

3. Semester Outline

22/24

Semester Outline

Tools from Probability Theory

- Concentration Bounds
- Random Coupling
- Yao's Principle
- Method of Bounded Differences

Random Graph Models

- Erdős-Renyi Random Graphs
- Branching Processes
- Random Geometric Graphs

Other Stuff

- Randomised Complexity Classes
- Probabilistic Method

Algorithm Design

- Random Sampling
- Approximation Algorithms
- Streaming Algorithms
- Probability Amplification

Randomised Data Structures

- Classic Hash Tables
- Cuckoo Hashing
- Bloom Filters
- Retrieval Data Structures
- Perfect Hash Functions

Organisation

The Power of Randomness

Conclusion

Avoiding the Worst Case with Randomness – Example: ⊼-Tree Evaluation

Deterministic Algorithms:

- ¬ ∀Algo : ∃Input : Algo slow on Input.
- every algorithm is vulnerable to adversarial inputs

Our Randomised Algorithm:

- On any input: fast in expectation. on any input: slow if unlucky.
- not vulnerable to adversarial inputs

Average Case Analysis

- Model real world using probability distribution over inputs.
- In many cases random instances . . .
 - are easier to solve than worst-case instances
 - → NP-hard problems may be easy on average
 - ... admit simpler algorithms and data structures
 - \hookrightarrow e.g. search trees with random insertion order need no load balancing

Organisation

The Power of Randomness

Anhang: Mögliche Prüfungsfragen I

- Can we use randomness to improve worst-case running times?
 - In what sense?
 - What is an example?
- How can a randomized algorithm be used to verify a polynomial equation?
- How can a randomized algorithm be used to verify a matrix multiplication?
- With respect to the evaluation of $\overline{\wedge}$ -trees:
 - What was our optimization goal?
 - What can be achieved with deterministic algorithms?
 - How does our randomized approach work?
 - What is its running time and why?
- What is average-case analysis, and what is it supposed to achieve?
- How do search trees behave under insertions in random order?
 - What holds for the expected depth of a node, and why?