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The Probabilistic Method (pioneered by Paul Erdős)
Show that something exists by proving that it has a positive probability of
arising from a random process.

Used to proved statements that don’t involve randomness at all.

Probabilistic arguments replace combinatorial arguments.
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The Name of the Game



Definition: Ramsey Number
R(k , k) := min{n ∈ N | any red-blue colouring of the edges of Kn contains a monochromatic k -clique}. a

aThe general definition of R(r , b) asks for red r -clique or blue b-clique.
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Definition: Ramsey Number
R(k , k) := min{n ∈ N | any red-blue colouring of the edges of Kn contains a monochromatic k -clique}. a

aThe general definition of R(r , b) asks for red r -clique or blue b-clique.

R(3, 3) > 5 R(3, 3) ≤ 6

v

v has 3 incident edges of the same colour

wlog that colour is red

if there is no red triangle then w1,w2,w3 form a
blue triangle.

Hence: R(3, 3) = 6.
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First Example: Ramsey Numbers



Definition: Ramsey Number
R(k , k) := min{n ∈ N | any red-blue colouring of the edges of Kn contains a monochromatic k -clique}.

Theorem: R(k , k) > 2k/2 for k ≥ 6. // actually k ≥ 3 suffices

Proof.

To show: Edges of Kn with n ≤ 2k/2 can be coloured while avoiding a monochromatic k -clique.

Plan: Show that uniformly random colouring avoids monochromatic k -clique with positive probability.

There are
(n

k

)
k -cliques. Each is monochromatic with probability 2−(k

2)+1.

The number M of monochromatic k -cliques satisfies:

E[M] =

(
n
k

)
· 2−(k

2)+1 ≤ nk

k!
· 2−k2/2+k/2+1 ≤ (2k/2)k

(k/2)k/2
· 2−k2/22k/22 = 2

(4
k

)k/2
< 1.

Since E[M] < 1 it is possible that M = 0. In particular a colouring with no monochromatic k -cliques exists.
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We have implicitly used:
Pr[X ≤ E[X ]] > 0 and Pr[X ≥ E[X ]] > 0.

Probabilistic Method with Expectation Argument

Show that an object x with f (x)
≤
≥ b exists by proving that a random object X satisfies E[f (X)]

≤
≥ b.

Simple Use Case
Any graph G = (V ,E) admits a cut of weight at least |E |/2.

Proof.
Assign each v ∈ V to V1 or V2 uniformly at random.

Each edge crosses the cut (V1,V2) with probability 1/2.

E[weight of (V1,V2)] = E
[∑

e∈E [e crosses (V1,V2)]
]
=

∑
e∈E Pr[e crosses (V1,V2)] = |E | · 1

2 .
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Expectation Argument



Theorem
Let G = (V ,E) with n = |V |, m = |E | and m ≥ n

2 .

Then there exists an independent set of size n2

4m . // = n
2·average degree

Proof.
sampleAndReject computes an independent set V+ \ V−.

E[|V+|] = n · n
2m

=
n2

2m
.

E[|V−|] ≤
∑

{u,v}∈E

Pr[u ∈ V+, v ∈ V+] =
∑

{u,v}∈E

( n
2m

)2
=

n2

4m
.

E[|V+ \ V−|] = E[|V+|]− E[|V−|] ≥ n2

2m
− n2

4m
=

n2

4m
.

Algorithm sampleAndReject:
// pick random vertex set:

V+ ← ∅
for v ∈ V do

with probability n
2m do

V+ ← V+ ∪ {v}

// destroy induced edges:

V− ← ∅
for {u, v} ∈ E do

if u ∈ V+ and v ∈ V+ then
V− ← V− ∪ {u} // or v

return V+ \ V−

Remark: sampleAndReject seems suitable for a parallel / distributed setting.
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Context
Given: Family E = {E1, . . . ,En} of “bad” events with Pr[Ei ] ≤ p < 1.

Want: Show Pr[Ē1 ∩ . . . ∩ Ēn] = Pr[none of E ] > 0.

Observation: Easy if E is independent

If E is an independent family then Pr[none of E ] =
∏n

i=1 Pr[Ēi ] ≥ (1− p)|E| > 0.

Observation: Expectation arguments only gets us so far
If np < 1 then E[#events from E occuring] ≤ np < 1, hence Pr[none of E ] > 0.
If np = 1 then Pr[none of E ] = 0 is possible, e.g. X ∼ U([n]) and Ei := {X = i}.

Lovász Local Lemma (László Lovász and Paul Erdős, 1973)
If each E ∈ E has Pr[E ] ≤ p and depends on at most d eventsa from E and 4pd ≤ 1 then Pr[none of E ] > 0.

aLittle challenge: State what this means formally.
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Lovász Local Lemma (László Lovász and Paul Erdős, 1973)
If each E ∈ E has Pr[E ] ≤ p and depends on at most d events from E and 4pd ≤ 1 then Pr[none of E ] > 0.

Setting
Consider a necklace of ck beads with k beads of each of c colours.
An independent rainbow is a set of beads

containing one bead of each colour // rainbow

and not containing a pair of adjacent beads. // independent

c = 6
k = 3

1
2

4651
3

3

2

6
5

1 4 5 6
4

3

2

Claim: If k ≥ 16 then an independent rainbow always exists. // k ≥ 11 also suffices

Consider any necklace. Let R contain a random bead
of each color. // Goal: Pr[R independent] > 0.
One bad event per pair of adjacent beads:

E{u,v} := {u ∈ R ∧ v ∈ R}, Pr[E ] ≤ 1
k2 =: p.

E{u,v} depends on E{u′,v ′} only if u′ or v ′ share the
colour of u or v .
2k relevant beads, hence 4k − 2 relevant pairs.
⇒ d = 4k − 2, 4pd ≤ 4 1

k2 (4k − 2) < 16
k ≤ 1.

Pr[R independent] = Pr[none of (E{u,v})u,v ]
LLL
> 0.
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Lovász Local Lemma (László Lovász and Paul Erdős, 1973)
If each E ∈ E has Pr[E ] ≤ p and depends on at most d events from E and 4pd ≤ 1 then Pr[none of E ] > 0.

Claim: ∀S ⊆ E : ∀E∗ ∈ E \ S : Pr[E∗ | none of S] ≤ 2p.

8/9 WS 2025/2026 Stefan Walzer: Probabilistic Method ITI, Algorithm Engineering

Proof of Lovász Local Lemma



Lovász Local Lemma (László Lovász and Paul Erdős, 1973)
If each E ∈ E has Pr[E ] ≤ p and depends on at most d events from E and 4pd ≤ 1 then Pr[none of E ] > 0.

Claim: ∀S ⊆ E : ∀E∗ ∈ E \ S : Pr[E∗ | none of S] ≤ 2p.

Proof of LLL using the Claim.

Pr[none of E ] =
∏n

i=1 Pr[Ēi | none of {E1, . . . ,Ei−1}] ≥ (1− 2p)n
4pd ≤ 1
≥ 2−n > 0.
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Partition S = I ∪̇ D such that E∗ is independent of I and 1 ≤ |D| ≤ d . // ≤ d possible by assumption, > 0 is our choice.

Pr[none of D | none of I] = 1 − Pr[
⋃

E∈D

E | none of I]
UB
≥ 1 −

∑
E∈D

Pr[E | none of I]︸ ︷︷ ︸
≤2p (Induction, using |I| < |S|)

≥ 1 − 2dp
4pd≤1
≥ 1

2
. ( ).

Pr[E∗ | none of S] =
Pr[E∗ ∧ none of S]

Pr[none of S]
≤ Pr[E∗ ∧ none of I]

Pr[none of D | none of I] Pr[none of I]

=
Pr[E∗] Pr[none of I]

Pr[none of D | none of I] Pr[none of I]
≤ p

Pr[none of D | none of I]

( )
≤ p

1/2
= 2p.
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What the Probabilistic Method is all About
Goal: Prove the existence of objects with certain properties.
Use probabilistic language as a tool.

Vanilla Variant:
Goal: Show that P ⊆ Ω is not empty.

1 Define a random object X ∈ Ω.
2 Show: Pr[X ∈ P] > 0.
3 Conclude: ∃x ∈ Ω : x ∈ P.

Variant with Expectation Argument
Goal: Show that f : Ω→ R has maximum at least q.

1 Define a random object X ∈ Ω.
2 Show: E[f (X)] ≥ q.
3 Conclude: ∃x ∈ Ω : f (x) ≥ q.

Variant with Lovász Local Lemma
Goal: Show that P ⊆ Ω is not empty.

1 Define random object X .
2 Define family E of bad events

such that
⋂

E∈E Ē ⇒ X ∈ P.

4 Show that E ∈ E satisfies Pr[E ] ≤ p.
5 Show E ∈ E depends on at most d other events from E .
6 Show 4dp ≤ 1.
7 Conclude with LLL: ∃x : x ∈ P.
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Summary



What is the goal of the probabilistic method?
Concerning the basic method:

What kind of “creative step” is required, and what must then be computed?
Illustrate the method with an example.

Concerning expectation arguments:
What kind of “creative step” is required, and what must then be computed?
Illustrate the method with an example.
We showed that every graph has a cut of weight |E |/2. How?

We showed that every graph has an independent set of size n2

4m . How?

Concerning the Lovász Local Lemma:
State the lemma.
What is the connection to the probabilistic method?
We showed that colored graphs have independent rainbow sets of a certain size. How did we proceed?
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Appendix: Possible Exam Questions I


