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Karlsruhe Institute of Technology

[Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running )

time that, for each input, answers correctly with probability at least p € (0, 1).

® In decision problems p is the probability of giving the correct answer

m One-sided error: either false-biased or true-biased
a Two-sided error: no bias

® [n optimization problems p is the probability of finding the optimum

Algo Output

\

Correct Answer
X Ve
true false
X neg neg

false true
v pos pos

~

[Definition: Probability amplification is the process of increasing the success probability\

of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for true-biased algorithms

|Exercise: For two-sided error.|

m Execute independently t times.
e |[f vat least once: Return V..

= Otherwise: Return X.  Pr[“correct”] > 1 — (1 —p)* >1— e " [1+x<eforxeRr)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering
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[Definition: Probability amplification is the process of increasing the success probability\

of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for optimization algorithms
m Execute independently t times.
® output best result

Pr[“optimal’] >1— (1 —p)" >1—e P!

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering
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The Clustering Problem A“(IT

Input A R2
m Set P of points in a feature space (e.g., RY)
® Similarity measure o: P x P — R
Output: P, ..., P such that
m Points within a P; have high similarity
>

= Points in distinct P;, P; have low similarity
Applications: Compression, medical diagnosis, etc. a six points in R?

Approach: Model as graph m o is the inversed Euclidean
® Each point is a node distance

m Edges between all node pairs, with the weight given by w partition into two sets
the similarity of the two nodes

m Find cut-set (edges to remove) of minimal weight such
that the graph decomposes into kK components.

Example

Today
k=2ando: Px P+—{0,1}

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Computing Min Cuts

Cuts V4
® G = (V, E) an unweighted, undirected, connected graph

m Cut: partition of V' into non-empty parts V4, \%.

m Cut-set: set of edges with endpoints in \; and \,
a Welght Ofa cut: Size Of the cut-set (or sum of weights in a weighted graph)

i.e. a cut of minimum weight or cut-set of minimum size
the weight of the min-cut is known as the edge-connectivity of G

Today Goal: Compute a Min-Cut

= Known deterministic strategies have worst case running time Q(n?).
= We'll see randomised algorithm with running time O(n? - log>(n)).

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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A Trivial Algorithm: Random Cut

LObservation: There are 2"~! — 1 cuts in a graph with n nodes.w

(2-2) /2
® Number of possible assignments of n nodes to 2 partsJ‘ |
m Partitions with empty parts that do not represent cuts
® Swapping parts does not yield a new partition

Algorithm: Random Cut

® Return a uniformly random cut.
® Minor challenge: How to uniformly sample cuts?
= Represent cut using bit-string

Karlsruhe Institute of Technology

011111
V2

= Have to uniformly sample bit-string while avoiding 11...1 and 00...07

= intution: sample from U({0, 1}") and use rejection sampling

= gctually for bounded running time: declare failure rather than sampling again

= samples each cut with probability 1/2"~1

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Random Cut: Analysis

Running time: O(n)  much better than the Q(n®) in the deterministic setting , but...
Success probability: > 1/2"-1 “="if there is only one min-cut.
— exponentially small!

Amplification
m Repeat the algorithm to obtain t independent random cuts, return the smallest

Pr[“min cut found”] > 1— (1—1/2""Y)" >1—e /2" [1+x<eforxeR)
® For t = 2"~ min cut found with constant probability 1 — 1/e ~ 0.63 this is terrible
m For t = 271 - In(n) min cut found with high probability 1 — 1/n so far...

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger’s Algorithm

Edge Contraction non-essential

m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential

as well as essential edges
& hope there are few essential ones  m Consider min-cut in Gy with cut-set C and |C| = k

Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

w

LObservation: A cut-set in G; is a cut-set In GO.W

fori=1ton—2do // O(n) Pri&i] =1 - % l (holds for all G; due to 1st observation)
sample e ~U(E;_1) // O(1) >1— f5 o %Zdeg(v)z %Zkz %nk
G; + G;_1.contract(e)// O(n) =12 eV vev

return unique cut-set in G,_»
® Running time in O(n?)
® Can be implemented to run in O(m)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering



7

Karger’s Algorithm A“(IT

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential T - ;
as well as essential edges LObservatlon. A cut-set in G; is a cut-set in GO}

& hope there are few essential ones  m Consider min-cut in Gy with cut-set C and |C| = k
Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

w

fori=1ton—2do // O(n) Pri&1] > 1 — % (holds for all G; due to 1st observation)
sample e ~U(E;—1) // O(1) Pri&2 | &] > 1 - 2 —Pr&|&n...N&EL]>1— 2
G; + G;_1.contract(e)// O(n) Pri€n_] = Prl&] - Prl& | 1] - ... PrEn—a | E1 ... N En_s]
return unique cut-set in G,_» S (=2 _n—=3 =\ [ 2 1
= Running time in O(n?) ( . ) 2”_1 S5 ) =)
® Can be implemented to run in O(m) BRI G

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

: 1 Success probability > p\
T _ 9 > . _l _ — - -
Pr[ min-cut founa ] > 1 exp( n t) 1 n Number of repetitions t
for + — n; In(n) \Amplified prob. > 1 — e F*

Corollary: On a graph with n nodes, O(n? log(n)) Karger repetitions run in O(n* Iog(n))\
tOtaI t|me and return a mln-CUt Wlth hlgh prObablllty Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

mletCy,...,C,be all the min-cuts in G and &! , for i € [{] be the event that C; is returned
by Karger’s algorithm ——

= Just seen: Pr[€]_,] > 2

1> Pr [Uie[l] ;'1—2} — Z,’e[z] Pr[gll’.l—2] > i_2£

disjoint, since the algorithm returns only one cut

Observation: £ < ”72 }

8 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Motivation i _
® Probability that a min-cut survives i contractions K:argerSteln(Go = (10, EO).)
if [Vo| = 2 then return unique cut-set

Pri€i] = Pr[&] - Pr[& [ &] ... - Pr[&i [ &N N Ei] |V|
fori=1tos=|W| -2 —1do

More Amplification: Karger-Stein

2 2 2
> (1 n><]- n—l)( —2) ( n— I—|—2>( —|—1> Sample e ~v M(EI 1)
n—72 n—4 n—i n—i—1
:( n )(ﬁ)@,{)( n—i+2 )( ﬁ%‘ﬂ’) G; <+ G;_i.contract(e)
_(n=i(n—i=1) _ (n—i=1)(n—i-1) ~(1- I+1)2_ C,; «+ KargerStein(G,) //inde-
n(n—1) - n-n n // pendent

= Probability becomes very small only towards the €2 ¢ KargerStein(Gs) //runs

very end. return smaller of C;, G

m |dea: stop when a min-cut is still likely to exist and recurse
m After s = n — n/+/2 — 1 steps we have

Pr[&] > (1 _ Iz Z/ﬁ) - (1 —(1- 1/\6))2 = (1/v2)* ==

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein: Running Time A
Recursion KargerStein(Go = (Vp, Ep))
0 A;‘teré = .”—'/”’\/%2@;11 steps the number // O(1) if |Vp| = 2 then return unique cut-set

of nodes is n

/1O(n)  fori=1t0os=|W| — |V°| —1do
T(n) = 2T (L 4 1) +O(n?) [1O(1)  sample e ~ U(E;_ 1)
V2 /I O(n)  G; « G;_;.contract(e)
Solution (essentially by Master Theorem) C1 « KargerStein(G;) /inde.
, C, «+ KargerStein(G;) // I?uns
T(n) = O(n” log n) return smaller of Cy, C,

10 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1

L before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability  each).

What is the probability py that a green root-to-leaf path exists?

po = 1/2 //rootgreen  pg = l(1 — (1 — pg—_1)?) // root green, not no path in both left and right subtree

Claim: p, > d+2 Proof by mductlon

11
Pp=5=g53 Y l
_ 1 2 2\ __1( 2 1
pa = 5(1 = (1~ pa—1)°) > (1_(1_d+1 )—§(d+1_(d+1)2)
1 2d42-1 _ 1 2d+1 1 2d 1 2 < a1
2 (di1? T 2 di2dil 2 2 daod — dp //forl<a<bwehave § > i=

Corollary: Karger-Stein succeeds with probability at least piog_,(n) = m.

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein Amplified A“(IT

Theorem: On a graph with n nodes, Karger-Stein runs in O(n? log(n)) time and returns a
minimum cut with probability at least 1/0(log(n)).

Amplification " )
_ # 1 Success probability > p
Pr[“min-cut found”] > 1—exp (— ) =1-0 (—) Number of repetitions ¢
Ollog(n)) t " 5 Amplified prob. > 1 — e™?*
for t = log®(n) N -
Corollary: On a graph with n nodes, O(log®(n)) repetitions of Karger-Stein run in
O(n? log>(n)) total time and return a minimum cut with high probability.

» Compared to O(n* log(n)) for Karger
» Compared to Q(n?) for deterministic approaches

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Conclusion A“(IT
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Minimum Cut B

® Fundamental graph problem \i

® Many deterministic flow-based algorithms ... \‘
‘Q

® ... with worst-case running times in Q(n?)

Randomized Algorithms
m Karger’s edge-contraction algorithm

~N

Probability Amplification Gorect pnaver
= Monte Carlo algorithms with and without biases x e false

® Repetitions amplify success probability
m Karger-Stein: Amplify before failure probability gets large
Outlook

L“Minimum cuts in near-linear time”, Karger, J.Acm. ’001 L“Faster algorithms for edge connectivity via random 2-out contractions”, Ghaffari & Nowicki & Thorup, SODA’ZO]

false true
v pos pos

Algo Output

Vs

Success w.h.p. in time O(m Iog3(n)) Success w.h.p. in time O(mlog(n)) and O(m + n Iog3(n))

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Possible Exam Questions

® What is a Monte Carlo algorithm?
® Which variants exist?
® What is meant by probability amplification?
® How does probability amplification work...
® ... in the case of one-sided error?
® ... in the case of two-sided error?

® ... for optimization problems?
® How does the error probability relate to the number of repetitions?

® What is the Minimum Cut problem?
® What do the best known deterministic algorithms achieve?
m What are success probability and running time of the trivial random cut algorithm?

® How does Karger’s algorithm work?
® What does Pr[€:] mean, and how did we estimate this probability?

® What follows for the running time and success probability?

® How is the algorithm by Karger and Stein obtained from Karger’s algorithm?
® How did we estimate the success probability and running time?

® How do we achieve a success probability of 1 — %?

14 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering



