

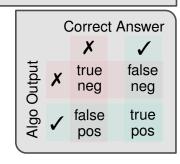
Probability & Computing

Probability Amplification

Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

- In decision problems *p* is the probability of giving the correct answer
 - One-sided error: either false-biased or true-biased

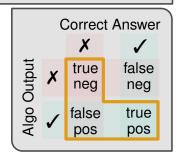


Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

- In decision problems *p* is the probability of giving the correct answer
 - One-sided error: either false-biased or true-biased

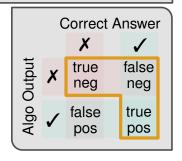
x answers are always correct

✓ answers may be incorrect



Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

- In decision problems *p* is the probability of giving the correct answer
 - One-sided error: either false-biased or true-biased
 - ✓ answers are always correct
 - x answers may be incorrect

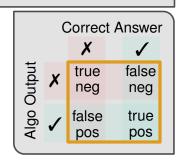


Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

- In decision problems *p* is the probability of giving the correct answer
 - One-sided error: either false-biased or true-biased
 - Two-sided error: no bias

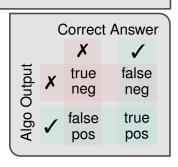
x answers may be incorrect

✓ answers may be incorrect



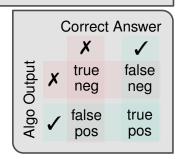
Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

- In decision problems *p* is the probability of giving the correct answer
 - One-sided error: either false-biased or true-biased
 - Two-sided error: no bias
- \blacksquare In optimization problems p is the probability of finding the optimum



Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

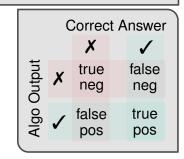
- In decision problems *p* is the probability of giving the correct answer
 - One-sided error: either false-biased or true-biased
 - Two-sided error: no bias
- \blacksquare In optimization problems p is the probability of finding the optimum



Definition: **Probability amplification** is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

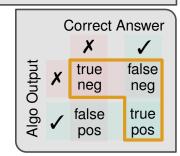
- \blacksquare In decision problems p is the probability of giving the correct answer
 - One-sided error: either false-biased or true-biased
 - Two-sided error: no bias
- \blacksquare In optimization problems p is the probability of finding the optimum



Definition: **Probability amplification** is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

- \blacksquare In decision problems p is the probability of giving the correct answer
 - One-sided error: either false-biased or true-biased
 - Two-sided error: no bias
- In optimization problems *p* is the probability of finding the optimum



Definition: **Probability amplification** is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

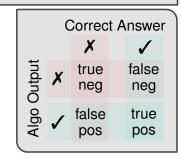
Probability Amplification for true-biased algorithms

- Execute independently t times.
 - If ✓at least once: Return ✓. (surely correct)
 - Otherwise: Return X. $\Pr[\text{"correct"}] \ge 1 (1-p)^t \ge 1 e^{-pt}$

$$1+x \leq e^x ext{ for } x \in \mathbb{R}$$

Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

- \blacksquare In decision problems p is the probability of giving the correct answer
 - One-sided error: either false-biased or true-biased
 - Two-sided error: no bias
- \blacksquare In optimization problems p is the probability of finding the optimum



Definition: **Probability amplification** is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for true-biased algorithms

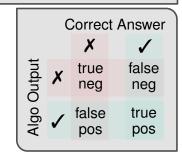
Exercise: For two-sided error.

- Execute independently t times.
 - If ✓at least once: Return ✓. (surely correct)
 - Otherwise: Return X. $\Pr[\text{"correct"}] \ge 1 (1-p)^t \ge 1 e^{-pt}$

$$1+x \leq e^x \text{ for } x \in \mathbb{R}$$

Definition: A **Monte Carlo Algorithm** is a randomized algorithm with bounded running time that, for each input, answers correctly with probability at least $p \in (0, 1)$.

- \blacksquare In decision problems p is the probability of giving the correct answer
 - One-sided error: either false-biased or true-biased
 - Two-sided error: no bias
- \blacksquare In optimization problems p is the probability of finding the optimum



Definition: **Probability amplification** is the process of increasing the success probability of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for optimization algorithms

- Execute independently t times.
 - output best result

$$Pr["optimal"] \ge 1 - (1 - p)^t \ge 1 - e^{-pt}$$

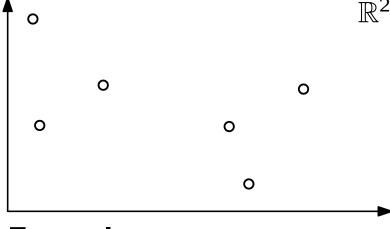
Input

- Set P of points in a feature space (e.g., \mathbb{R}^d)
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_+$

Karlsruhe Institute of Technology

Input

- Set P of points in a feature space (e.g., \mathbb{R}^d)
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_+$



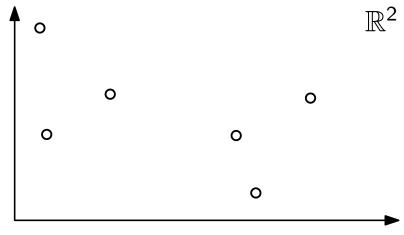
- six points in \mathbb{R}^2
- lacksquare σ is the inversed Euclidean distance

Input

- Set P of points in a feature space (e.g., \mathbb{R}^d)
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_+$

Output: P_1, \ldots, P_k such that

- Points within a P_i have high similarity
- \blacksquare Points in distinct P_i , P_i have low similarity



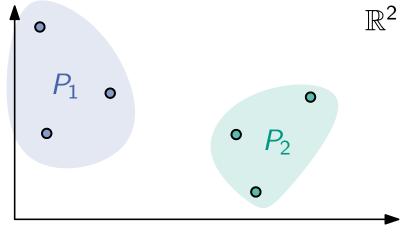
- six points in \mathbb{R}^2
- \bullet σ is the inversed Euclidean distance
- partition into two sets

Input

- Set P of points in a feature space (e.g., \mathbb{R}^d)
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_+$

Output: P_1, \ldots, P_k such that

- \blacksquare Points within a P_i have high similarity
- \blacksquare Points in distinct P_i , P_i have low similarity



- six points in \mathbb{R}^2
- lacksquare of is the inversed Euclidean distance
- partition into two sets

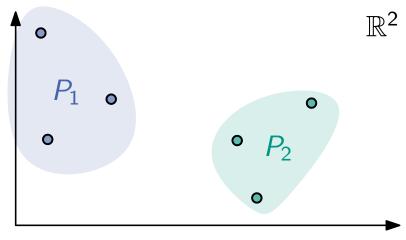
Input

- Set P of points in a feature space (e.g., \mathbb{R}^d)
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_+$

Output: P_1, \ldots, P_k such that

- Points within a P_i have high similarity
- \blacksquare Points in distinct P_i , P_i have low similarity

Applications: Compression, medical diagnosis, etc.



- six points in \mathbb{R}^2
- \bullet σ is the inversed Euclidean distance
- partition into two sets

Input

- Set P of points in a feature space (e.g., \mathbb{R}^d)
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_+$

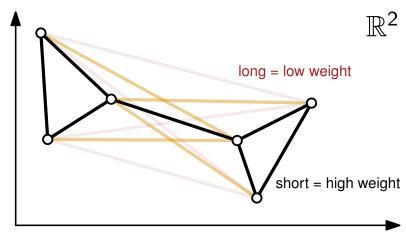
Output: P_1, \ldots, P_k such that

- Points within a P_i have high similarity
- \blacksquare Points in distinct P_i , P_i have low similarity

Applications: Compression, medical diagnosis, etc.

Approach: Model as graph

- Each point is a node
- Edges between all node pairs, with the weight given by the similarity of the two nodes



- six points in \mathbb{R}^2
- \bullet σ is the inversed Euclidean distance
- partition into two sets

Input

- Set P of points in a feature space (e.g., \mathbb{R}^d)
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_+$

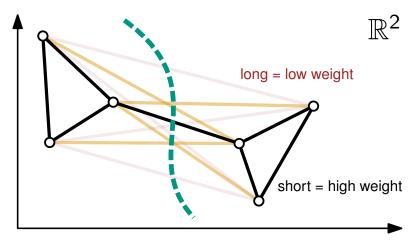
Output: P_1, \ldots, P_k such that

- \blacksquare Points within a P_i have high similarity
- \blacksquare Points in distinct P_i , P_i have low similarity

Applications: Compression, medical diagnosis, etc.

Approach: Model as graph

- Each point is a node
- Edges between all node pairs, with the weight given by the similarity of the two nodes
- Find *cut-set* (edges to remove) of minimal weight such that the graph decomposes into *k* components.



- six points in \mathbb{R}^2
- \bullet σ is the inversed Euclidean distance
- partition into two sets

Input

- Set P of points in a feature space (e.g., \mathbb{R}^d)
- Similarity measure $\sigma: P \times P \mapsto \mathbb{R}_+$

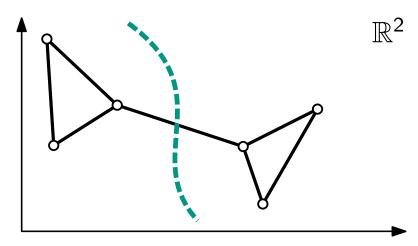
Output: P_1, \ldots, P_k such that

- \blacksquare Points within a P_i have high similarity
- \blacksquare Points in distinct P_i , P_i have low similarity

Applications: Compression, medical diagnosis, etc.

Approach: Model as graph

- Each point is a node
- Edges between all node pairs, with the weight given by the similarity of the two nodes
- Find *cut-set* (edges to remove) of minimal weight such that the graph decomposes into *k* components.



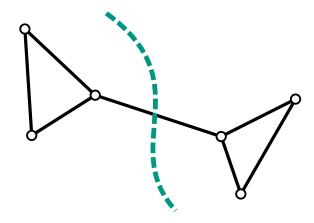
Example

- six points in \mathbb{R}^2
- \bullet σ is the inversed Euclidean distance
- partition into two sets

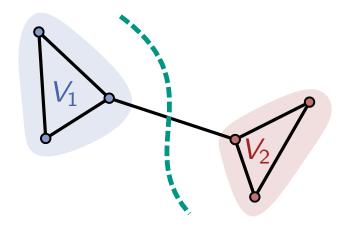
Today

k = 2 and $\sigma: P \times P \mapsto \{0, 1\}$

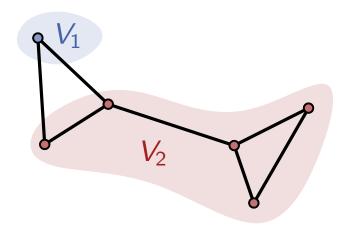
- ullet G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into non-empty parts V_1 , V_2 .



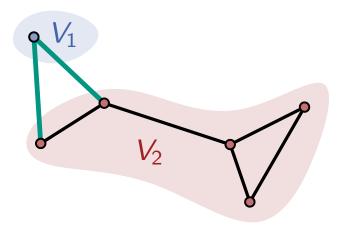
- ullet G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into non-empty parts V_1 , V_2 .



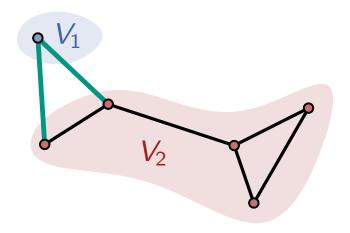
- ullet G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into non-empty parts V_1 , V_2 .



- ullet G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into non-empty parts V_1 , V_2 .
- Cut-set: set of edges with endpoints in V_1 and V_2

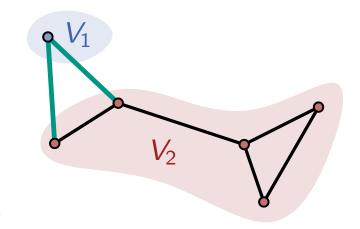


- ullet G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into non-empty parts V_1 , V_2 .
- Cut-set: set of edges with endpoints in V_1 and V_2
- Weight of a cut: size of the cut-set (or sum of weights in a weighted graph)



Cuts

- ullet G = (V, E) an unweighted, undirected, connected graph
- Cut: partition of V into non-empty parts V_1 , V_2 .
- Cut-set: set of edges with endpoints in V_1 and V_2
- Weight of a cut: size of the cut-set (or sum of weights in a weighted graph)



Today Goal: Compute a Min-Cut

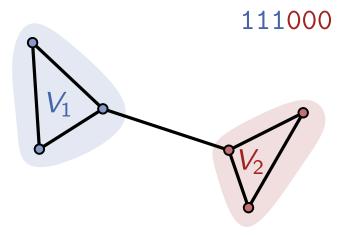
i.e. a cut of minimum weight or cut-set of minimum size the weight of the min-cut is known as the edge-connectivity of *G*

- Known deterministic strategies have worst case running time $\Omega(n^3)$.
- We'll see randomised algorithm with running time $O(n^2 \cdot \log^3(n))$.

Observation: There are $2^{n-1} - 1$ cuts in a graph with n nodes.

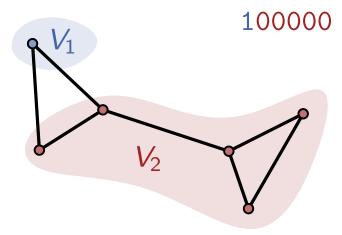
Observation: There are $2^{n-1} - 1$ cuts in a graph with n nodes.

■ Number of possible assignments of n nodes to 2 parts $^{\text{J}}$



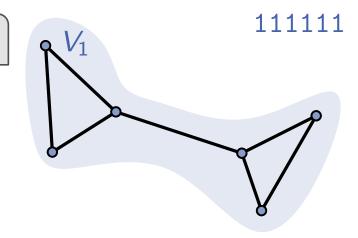
Observation: There are $2^{n-1} - 1$ cuts in a graph with n nodes.

■ Number of possible assignments of n nodes to 2 parts $^{\hat{J}}$



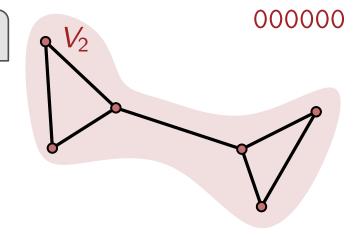
Observation: There are $2^{n-1} - 1$ cuts in a graph with n nodes.

- Number of possible assignments of n nodes to 2 parts
- Partitions with empty parts that do not represent cuts



Observation: There are $2^{n-1} - 1$ cuts in a graph with n nodes.

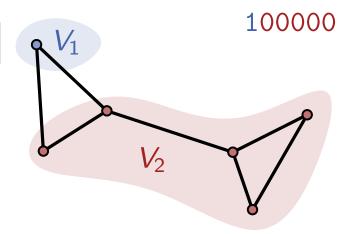
- Number of possible assignments of n nodes to 2 parts
- Partitions with empty parts that do not represent cuts



Observation: There are $2^{n-1} - 1$ cuts in a graph with n nodes.

 $(2^{n}-2)/2$

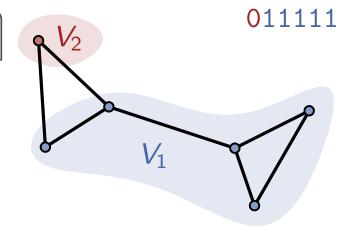
- Number of possible assignments of n nodes to 2 parts
- Partitions with empty parts that do not represent cuts
- Swapping parts does not yield a new partition -



Observation: There are $2^{n-1} - 1$ cuts in a graph with n nodes.

 $(2^{n}-2)/2$

- Number of possible assignments of n nodes to 2 parts
- Partitions with empty parts that do not represent cuts
- Swapping parts does not yield a new partition -



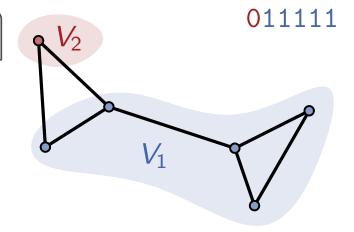
Observation: There are $2^{n-1} - 1$ cuts in a graph with n nodes.

 $(2^{n}-2)/2$

- Number of possible assignments of n nodes to 2 parts
- Partitions with empty parts that do not represent cuts
- Swapping parts does not yield a new partition -

Algorithm: Random Cut

Return a uniformly random cut.



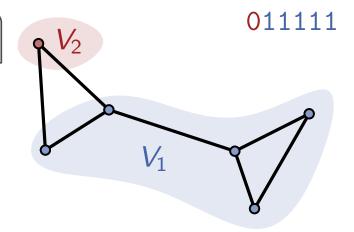
Observation: There are $2^{n-1} - 1$ cuts in a graph with *n* nodes.

 $(2^{n}-2)/2$

- Number of possible assignments of n nodes to 2 parts
- Partitions with empty parts that do not represent cuts
- Swapping parts does not yield a new partition -

Algorithm: Random Cut

- Return a uniformly random cut.
- Minor challenge: How to uniformly sample cuts?



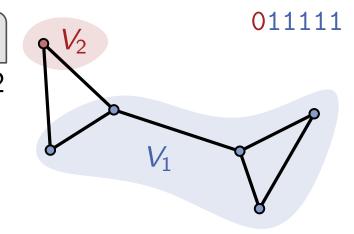
Observation: There are $2^{n-1} - 1$ cuts in a graph with *n* nodes.

 $(2^{n}-2)/2$

- Number of possible assignments of n nodes to 2 parts
- Partitions with empty parts that do not represent cuts
- Swapping parts does not yield a new partition -

Algorithm: Random Cut

- Return a uniformly random cut.
- Minor challenge: How to uniformly sample cuts?
 - Represent cut using bit-string



A Trivial Algorithm: Random Cut

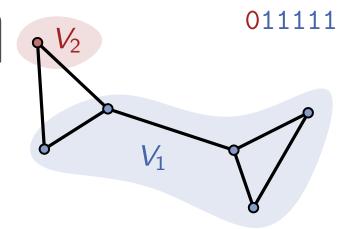
Observation: There are $2^{n-1} - 1$ cuts in a graph with *n* nodes.

 $(2^{n}-2)/2$

- Number of possible assignments of n nodes to 2 parts
- Partitions with empty parts that do not represent cuts
- Swapping parts does not yield a new partition -

Algorithm: Random Cut

- Return a uniformly random cut.
- Minor challenge: How to uniformly sample cuts?
 - Represent cut using bit-string
 - Have to uniformly sample bit-string while avoiding 11...1 and 00...0?



A Trivial Algorithm: Random Cut

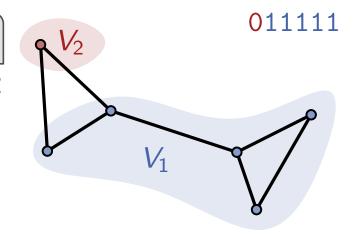
Observation: There are $2^{n-1} - 1$ cuts in a graph with n nodes.

 $(2^{n}-2)/2$

- Number of possible assignments of n nodes to 2 parts¹
- Partitions with empty parts that do not represent cuts
- Swapping parts does not yield a new partition -

Algorithm: Random Cut

- Return a uniformly random cut.
- Minor challenge: How to uniformly sample cuts?
 - Represent cut using bit-string
 - Have to uniformly sample bit-string while avoiding 11...1 and 00...0?
 - intution: sample from $\mathcal{U}(\{0,1\}^n)$ and use rejection sampling



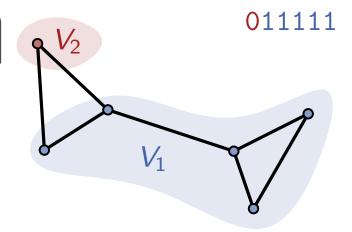
A Trivial Algorithm: Random Cut

Observation: There are $2^{n-1} - 1$ cuts in a graph with n nodes.

- $(2^n-2)/2$
- Number of possible assignments of n nodes to 2 parts¹
- Partitions with empty parts that do not represent cuts
- Swapping parts does not yield a new partition -

Algorithm: Random Cut

- Return a uniformly random cut.
- Minor challenge: How to uniformly sample cuts?
 - Represent cut using bit-string
 - Have to uniformly sample bit-string while avoiding 11...1 and 00...0?
 - intution: sample from $\mathcal{U}(\{0,1\}^n)$ and use rejection sampling
 - actually for bounded running time: declare failure rather than sampling again
 - samples each cut with probability $1/2^{n-1}$



Running time: O(n) much better than the $\Omega(n^3)$ in the deterministic setting, but...

Running time: O(n) much better than the $\Omega(n^3)$ in the deterministic setting, but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

Running time: O(n) much better than the $\Omega(n^3)$ in the deterministic setting, but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!

Running time: O(n) much better than the $\Omega(n^3)$ in the deterministic setting, but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!

Amplification

■ Repeat the algorithm to obtain t independent random cuts, return the smallest $\Pr[\text{"min cut found"}] \ge 1 - \left(1 - 1/2^{n-1}\right)^t$

Running time: O(n) much better than the $\Omega(n^3)$ in the deterministic setting, but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!

Amplification

$$\Pr[\text{"min cut found"}] \ge 1 - \left(1 - 1/2^{n-1}\right)^t$$

$$\min_{\text{minimum}}$$

Running time: O(n) much better than the $\Omega(n^3)$ in the deterministic setting, but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!

Amplification

$$\Pr[\text{"min cut found"}] \ge \underbrace{1 - \left(1 - \underbrace{1/2^{n-1}}\right)^t}_{\text{not}}$$

Running time: O(n) much better than the $\Omega(n^3)$ in the deterministic setting, but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!

Amplification

$$\Pr[\text{"min cut found"}] \ge \underbrace{1 - \left(1 - \frac{1}{2^{n-1}}\right)^t}_{\text{not}} \text{ minimum } t \text{ times}$$

Running time: O(n) much better than the $\Omega(n^3)$ in the deterministic setting, but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!

Amplification

$$\Pr[\text{"min cut found"}] \ge 1 - (1 - 1/2^{n-1})^t \ge 1 - e^{-t/2^{n-1}}$$

$$1+x \leq e^x \text{ for } x \in \mathbb{R}$$

Running time: O(n) much better than the $\Omega(n^3)$ in the deterministic setting, but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!

Amplification

Repeat the algorithm to obtain t independent random cuts, return the smallest

$$\Pr[\text{"min cut found"}] \ge 1 - \left(1 - 1/2^{n-1}\right)^t \ge 1 - e^{-t/2^{n-1}}$$

$$1+x \leq e^x \text{ for } x \in \mathbb{R}$$

■ For $t = 2^{n-1}$ min cut found with constant probability $1 - 1/e \approx 0.63$

Running time: O(n) much better than the $\Omega(n^3)$ in the deterministic setting, but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!

Amplification

$$\Pr[\text{"min cut found"}] \ge 1 - \left(1 - 1/2^{n-1}\right)^t \ge 1 - e^{-t/2^{n-1}}$$

$$1+x \leq e^x \text{ for } x \in \mathbb{R}$$

- For $t = 2^{n-1}$ min cut found with constant probability $1 1/e \approx 0.63$
- For $t = 2^{n-1} \cdot \ln(n)$ min cut found with high probability 1 1/n

Running time: O(n) much better than the $\Omega(n^3)$ in the deterministic setting, but...

Success probability: $\geq 1/2^{n-1}$ "=" if there is only one min-cut.

→ exponentially small!

Amplification

Repeat the algorithm to obtain t independent random cuts, return the smallest

$$\Pr[\text{"min cut found"}] \ge 1 - (1 - 1/2^{n-1})^t \ge 1 - e^{-t/2^{n-1}}$$

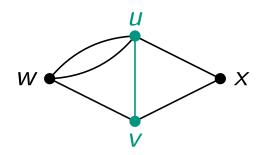
$$1+x \leq e^x \text{ for } x \in \mathbb{R}$$

- For $t = 2^{n-1}$ min cut found with constant probability $1 1/e \approx 0.63$
- For $t = 2^{n-1} \cdot \ln(n)$ min cut found with high probability 1 1/n

this is terrible so far...

Edge Contraction

Merge two adjacent nodes in a multigraph without self-loops



Edge Contraction

Merge two adjacent nodes in a multigraph without self-loops

Edge Contraction

Merge two adjacent nodes in a multigraph without self-loops

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm not part of a min-cut

Motivation: distinguish non-essential as well as *essential* edges part of a min-cut & hope there are few essential ones

Edge Contraction

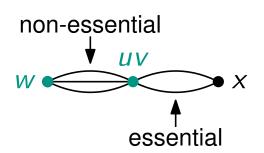
Merge two adjacent nodes in a multigraph without self-loops

not part of a min-cut

A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish non-essential as well as essential edges part of a min-cut
 & hope there are few essential ones



Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

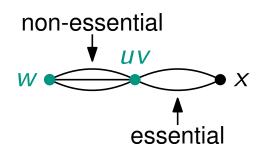
Contraction Algorithm

Motivation: distinguish non-essential as well as essential edges part of a min-cut
 & hope there are few essential ones

Karger(
$$G_0 = (V_0, E_0)$$
)

for
$$i = 1$$
 to $n - 2$ do
sample $e \sim \mathcal{U}(E_{i-1})$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)$

return unique cut-set in G_{n-2}



Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

not part of a min-cut

Motivation: distinguish non-essential as well as essential edges part of a min-cut
 & hope there are few essential ones

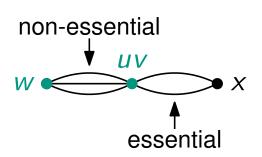
Karger(
$$G_0 = (V_0, E_0)$$
)

for $i = 1$ to $n - 2$ do // $O(n)$

sample $e \sim \mathcal{U}(E_{i-1})$ // $O(1)$
 $G_i \leftarrow G_{i-1}.$ contract(e)// $O(n)$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)



Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

not part of a min-cut

Motivation: distinguish 'non-essential' as well as essential edges part of a min-cut
 & hope there are few essential ones

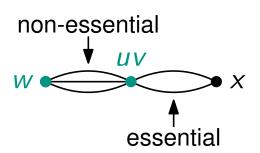
$$Karger(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do $// O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ $// O(1)$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)// O(n)$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

(the converse does not hold)

- Let C be a cut-set in G_i .
 - $lackbox{ } G_i \setminus C$ is disconnected
- Assume C is not a cut-set in G_0 .
 - $G_0 \setminus C$ is connected.
- $lackbox{ } G_i \setminus C$ arises from $G_0 \setminus C$ by i edge contractions.
- £contractions cannot disconnect a graph

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

not part of a min-cut

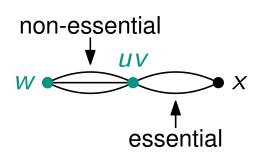
Motivation: distinguish 'non-essential' as well as essential edges part of a min-cut
 & hope there are few essential ones

$$\mathbf{Karger}(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do $// O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ $// O(1)$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)// O(n)$

- return unique cut-set in G_{n-2} Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

■ Consider min-cut in G_0 with cut-set C and |C| = k

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish 'non-essential' as well as essential edges part of a min-cut
 & hope there are few essential ones

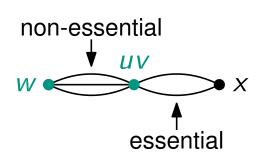
$$\mathbf{Karger}(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do // $O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ // $O(1)$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)$ // $O(n)$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C| = k
- $\mathcal{E}_i =$ "C in G_i "

$$\Pr[\mathcal{E}_1] = 1 - rac{k}{m}$$

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish 'non-essential' as well as essential edges } part of a min-cut & hope there are few essential ones

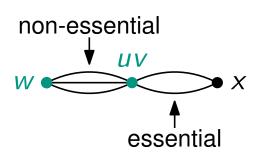
$$Karger(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do // $O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ // $O(1)$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)$ // $O(n)$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and C

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree > k

$$\Pr[\mathcal{E}_1] = 1 - rac{k}{m}$$

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

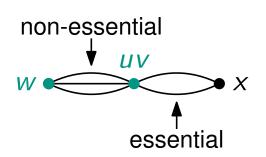
Motivation: distinguish 'non-essential' as well as essential edges \rightarrow part of a min-cut & hope there are few essential ones

$$Karger(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do $// O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ $// O(1)$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)// O(n)$
return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C|

$$\Pr[\mathcal{E}_1] = 1 - rac{k}{m}$$

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree > k

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish non-essential as well as essential edges part of a min-cut

& hope there are few essential ones

$$\mathbf{Karger}(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ **do** // $O(n)$

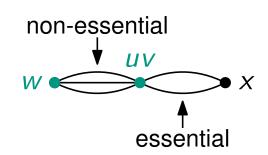
sample
$$e \sim \mathcal{U}(E_{i-1})$$
 // $O(1)$

$$G_i \leftarrow G_{i-1}.\mathbf{contract}(e) /\!/ O(n)$$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C| = k
- $\mathcal{E}_i = \mathcal{C} \text{ in } G_i$

$$\Pr[\mathcal{E}_1] = 1 - \frac{k}{m}$$

Observation: min-degree $\geq k$

$$m = \frac{1}{2} \sum_{v \in V} \deg(v) \ge \frac{1}{2} \sum_{v \in V} k \ge \frac{1}{2} nk$$

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish 'non-essential' as well as essential edges \rangle part of a min-cut & hope there are few essential ones

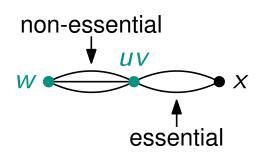
$$\mathbf{Karger}(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do // $O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ // $O(1)$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)$ // $O(n)$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C|
- $\mathcal{E}_i = \mathcal{C} \text{ in } G_i$

$$egin{aligned} \mathsf{Pr}[\mathcal{E}_1] &= 1 - rac{k}{m} \ &\geq 1 - rac{k}{nk/2} \ &= 1 - rac{2}{n} \end{aligned}$$

Observation: min-degree > k

$$m = \frac{1}{2} \sum_{v \in V} \deg(v) \ge \frac{1}{2} \sum_{v \in V} k \ge \frac{1}{2} nk$$

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

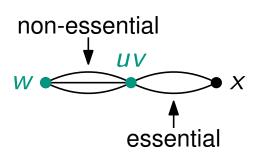
Motivation: distinguish 'non-essential' as well as essential edges } part of a min-cut & hope there are few essential ones

$$Karger(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do $// O(n)$
| sample $e \sim \mathcal{U}(E_{i-1})$ // $O(1)$
| $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)$ // $O(n)$
return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C|

 $\Pr[\mathcal{E}_1] \ge 1 - \frac{2}{n}$

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree > k

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish 'non-essential' as well as essential edges \rightarrow part of a min-cut & hope there are few essential ones

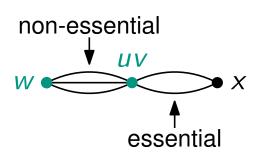
$$Karger(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do // $O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ // $O(1)$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)$ // $O(n)$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C| = k

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree > k

$$\Pr[\mathcal{E}_1] \geq 1 - \frac{2}{n}$$

(holds for all G_i due to 1st observation)

$$\Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \geq 1 - \frac{2}{n-1}$$

— none of the k edges of C contracted

do not contract k edges in an n-1-node graph

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish 'non-essential' as well as essential edges \rightarrow part of a min-cut & hope there are few essential ones

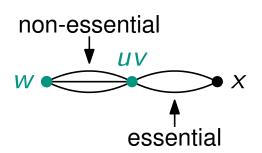
$$Karger(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do // $O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ // $O(1)$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)$ // $O(n)$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C| = k

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree $\geq k$

$$\mathsf{Pr}[\mathcal{E}_1] \geq 1 - rac{2}{n}$$

$$\Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \ge 1 - \frac{2}{n-1} \longrightarrow \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i+1}$$

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

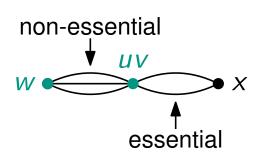
Motivation: distinguish 'non-essential' as well as essential edges \rangle part of a min-cut & hope there are few essential ones

$$Karger(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do $// O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ $// O(1)$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)// O(n)$
return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C| = k

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree $\geq k$

$$\mathsf{Pr}[\mathcal{E}_1] \geq 1 - rac{2}{n}$$

 $\Pr[\mathcal{E}_1] \geq 1 - \frac{2}{n}$ (holds for all G_i due to 1st observation)

$$\Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \ge 1 - \frac{2}{n-1} \longrightarrow \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i+1}$$

$$\Pr[\mathcal{E}_{n-2}] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_{n-2} \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$$

chain rule of probability

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish 'non-essential' as well as essential edges \rightarrow part of a min-cut & hope there are few essential ones

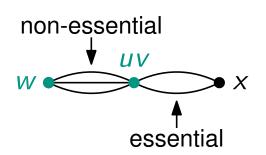
$$\mathbf{Karger}(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do $// O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ $// O(1)$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)// O(n)$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C| = k

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree $\geq k$

$$\mathsf{Pr}[\mathcal{E}_1] \geq 1 - rac{2}{n}$$

$$\Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \ge 1 - \frac{2}{n-1} \longrightarrow \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i+1}$$

$$\Pr[\mathcal{E}_{n-2}] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_{n-2} \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right)$$

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish 'non-essential' as well as essential edges } part of a min-cut

& hope there are few essential ones

$$Karger(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do // $O(n)$

sample
$$e \sim \mathcal{U}(E_{i-1})$$
 // $O(1)$

$$G_i \leftarrow G_{i-1}.\mathbf{contract}(e) /\!/ O(n)$$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C| = k

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree $\geq k$

$$\Pr[\mathcal{E}_1] \geq 1 - rac{2}{n}$$

$$\Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \ge 1 - \frac{2}{n-1} \longrightarrow \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i+1}$$

$$\Pr[\mathcal{E}_{n-2}] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_{n-2} \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$$

$$\geq \left(\frac{1}{4} - \frac{2}{n}\right) \left(\frac{1}{4} - \frac{2}{n-1}\right) \left(\frac{1}{4} - \frac{2}{n-2}\right) \cdots \left(\frac{1}{4} - \frac{2}{4}\right) \left(\frac{1}{4} - \frac{2}{3}\right)$$

$$1 = \frac{n-i}{n-i}$$

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

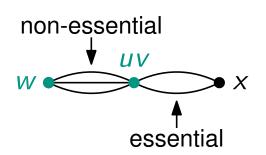
Motivation: distinguish 'non-essential' as well as essential edges \rightarrow part of a min-cut & hope there are few essential ones

$$Karger(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do $// O(n)$
| sample $e \sim \mathcal{U}(E_{i-1})$ // $O(1)$
| $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)$ // $O(n)$
return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C| = k

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree $\geq k$

$$\mathsf{Pr}[\mathcal{E}_1] \geq 1 - rac{2}{n}$$

$$\Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \ge 1 - \frac{2}{n-1} \longrightarrow \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i+1}$$

$$\Pr[\mathcal{E}_{n-2}] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_{n-2} \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$$

$$\geq \left(\frac{n}{n} - \frac{2}{n}\right) \left(\frac{n-1}{n-1} - \frac{2}{n-1}\right) \left(\frac{n-2}{n-2} - \frac{2}{n-2}\right) \cdot \cdot \cdot \left(\frac{4}{4} - \frac{2}{4}\right) \left(\frac{3}{3} - \frac{2}{3}\right)$$

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish 'non-essential' as well as essential edges \rightarrow part of a min-cut & hope there are few essential ones

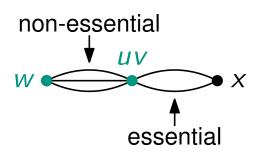
$$Karger(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do $// O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ $// O(1)$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)// O(n)$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C| = k

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree $\geq k$

$$\mathsf{Pr}[\mathcal{E}_1] \geq 1 - rac{2}{n}$$

$$\Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \ge 1 - \frac{2}{n-1} \longrightarrow \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i+1}$$

$$\Pr[\mathcal{E}_{n-2}] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_{n-2} \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$$

$$\geq \left(\frac{n-2}{n}\right)\left(\frac{n-1-2}{n-1}\right)\left(\frac{n-2-2}{n-2}\right)\cdots\left(\frac{4-2}{4}\right)\left(\frac{3-2}{3}\right)$$

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish 'non-essential' as well as essential edges \rightarrow part of a min-cut & hope there are few essential ones

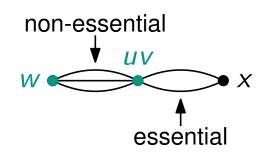
$$\mathbf{Karger}(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do $// O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ $// O(1)$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)// O(n)$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C| = k

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree $\geq k$

$$\mathsf{Pr}[\mathcal{E}_1] \geq 1 - rac{2}{n}$$

$$\Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \ge 1 - \frac{2}{n-1} \longrightarrow \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i+1}$$

$$\Pr[\mathcal{E}_{n-2}] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_{n-2} \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$$

$$\geq \left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right)\cdots\left(\frac{2}{4}\right)\left(\frac{1}{3}\right)$$

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish 'non-essential' as well as essential edges \rightarrow part of a min-cut & hope there are few essential ones

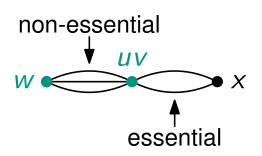
$$Karger(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do $// O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ $// O(1)$
 $G_i \leftarrow G_{i-1}.\mathbf{contract}(e)// O(n)$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C| = k

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree $\geq k$

$$\mathsf{Pr}[\mathcal{E}_1] \geq 1 - rac{2}{n}$$

$$\Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \ge 1 - \frac{2}{n-1} \longrightarrow \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i+1}$$

$$\Pr[\mathcal{E}_{n-2}] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_{n-2} \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$$

$$\geq \left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right)\cdots\left(\frac{2}{4}\right)\left(\frac{1}{3}\right)$$

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish 'non-essential' as well as essential edges \rightarrow part of a min-cut & hope there are few essential ones

$$\mathbf{Karger}(G_0 = (V_0, E_0))$$

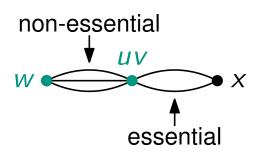
for
$$i = 1$$
 to $n - 2$ do // $O(n)$
sample $e \sim \mathcal{U}(E_{i-1})$ // $O(1)$

$$G_i \leftarrow G_{i-1}.\mathbf{contract}(e) /\!/ O(n)$$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C| = k

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree $\geq k$

$$\mathsf{Pr}[\mathcal{E}_1] \geq 1 - rac{2}{n}$$

$$\Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \ge 1 - \frac{2}{n-1} \longrightarrow \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i+1}$$

$$\Pr[\mathcal{E}_{n-2}] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_{n-2} \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$$

$$\geq \left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right)\cdots\left(\frac{2}{2}\right)\left(\frac{1}{2}\right)$$

Edge Contraction

- Merge two adjacent nodes in a multigraph without self-loops
- A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

Motivation: distinguish 'non-essential' as well as essential edges \rightarrow part of a min-cut & hope there are few essential ones

$$Karger(G_0 = (V_0, E_0))$$

for
$$i = 1$$
 to $n - 2$ do // $O(n)$

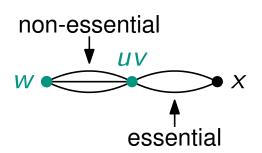
sample
$$e \sim \mathcal{U}(E_{i-1})$$
 // $O(1)$

$$G_i \leftarrow G_{i-1}.\mathbf{contract}(e) /\!/ O(n)$$

return unique cut-set in G_{n-2}

- Running time in $O(n^2)$
- Can be implemented to run in O(m)

Success Probability



Observation: A cut-set in G_i is a cut-set in G_0 .

- Consider min-cut in G_0 with cut-set C and |C| = k

• $\mathcal{E}_i =$ "C in G_i " | **Observation**: min-degree $\geq k$

$$\mathsf{Pr}[\mathcal{E}_1] \geq 1 - rac{2}{n}$$

$$\Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \ge 1 - \frac{2}{n-1} \longrightarrow \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \ge 1 - \frac{2}{n-i+1}$$

$$\Pr[\mathcal{E}_{n-2}] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_{n-2} \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{n-3}]$$

$$\geq \left(\frac{n-2}{n}\right)\left(\frac{n-3}{n-1}\right)\left(\frac{n-4}{n-2}\right)\cdots\left(\frac{2}{2}\right)\left(\frac{1}{3}\right)$$

$$=\frac{2}{n(n-1)}\geq \frac{2}{n^2}$$

Theorem: On a graph with n nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

Theorem: On a graph with n nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Theorem: On a graph with n nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

$$\Pr[\text{``min-cut found''}] \geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$$
 for $t = \frac{n^2}{2} \ln(n)$

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Theorem: On a graph with n nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

$$\Pr[\text{"min-cut found"}] \geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$$
 for $t = \frac{n^2}{2} \ln(n)$

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Corollary: On a graph with n nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability.

Theorem: On a graph with n nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

$$\Pr[\text{"min-cut found"}] \geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$$

$$\text{for } t = \frac{n^2}{2} \ln(n)$$

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Corollary: On a graph with n nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

Theorem: On a graph with n nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

$$\Pr[\text{"min-cut found"}] \geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$$

$$\text{for } t = \frac{n^2}{2} \ln(n)$$

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Corollary: On a graph with n nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

■ Let C_1, \ldots, C_ℓ be all the min-cuts in G and \mathcal{E}_{n-2}^i for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm

Theorem: On a graph with n nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

$$\Pr[\text{"min-cut found"}] \geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$$
 for $t = \frac{n^2}{2} \ln(n)$

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Corollary: On a graph with n nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

- Let C_1, \ldots, C_ℓ be all the min-cuts in G and \mathcal{E}_{n-2}^i for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm
- Just seen: $\Pr[\mathcal{E}_{n-2}^i] \ge \frac{2}{n^2}$

Theorem: On a graph with n nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

$$\Pr[\text{"min-cut found"}] \ge 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$$

$$\text{for } t = \frac{n^2}{2} \ln(n)$$

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Corollary: On a graph with n nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

- Let C_1, \ldots, C_ℓ be all the min-cuts in G and \mathcal{E}_{n-2}^i for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm
- Just seen: $\Pr[\mathcal{E}_{n-2}^i] \geq \frac{2}{n^2}$

Theorem: On a graph with n nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

$$\Pr[\text{"min-cut found"}] \geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$$

$$\text{for } t = \frac{n^2}{2} \ln(n)$$

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Corollary: On a graph with n nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

- Let C_1, \ldots, C_ℓ be all the min-cuts in G and \mathcal{E}_{n-2}^i for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm
- Just seen: $\Pr[\mathcal{E}_{n-2}^i] \geq \frac{2}{n^2}$

$$\Pr\left[\bigcup_{i\in[\ell]}\mathcal{E}_{n-2}^i
ight]=\sum_{i\in[\ell]}\Pr[\mathcal{E}_{n-2}^i]\geq rac{2\cdot\ell}{n^2}$$

Theorem: On a graph with n nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

$$\Pr[\text{"min-cut found"}] \geq 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$$

$$\text{for } t = \frac{n^2}{2} \ln(n)$$

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Corollary: On a graph with n nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

- Let C_1, \ldots, C_ℓ be all the min-cuts in G and \mathcal{E}_{n-2}^i for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm
- Just seen: $\Pr[\mathcal{E}_{n-2}^i] \ge \frac{2}{n^2}$

$$1 \ge \Pr\left[\bigcup_{i \in [\ell]} \mathcal{E}_{n-2}^i\right] = \sum_{i \in [\ell]} \Pr[\mathcal{E}_{n-2}^i] \ge \frac{2 \cdot \ell}{n^2}$$

Theorem: On a graph with n nodes, Karger's algorithm runs in $O(n^2)$ time and returns a minimum cut with probability at least $\frac{2}{n^2}$.

$$\Pr[\text{"min-cut found"}] \ge 1 - \exp(-\frac{2}{n^2} \cdot t) = 1 - \frac{1}{n}$$

$$\text{for } t = \frac{n^2}{2} \ln(n)$$

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Corollary: On a graph with n nodes, $O(n^2 \log(n))$ Karger repetitions run in $O(n^4 \log(n))$ total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

- Let C_1, \ldots, C_ℓ be all the min-cuts in G and \mathcal{E}_{n-2}^i for $i \in [\ell]$ be the event that C_i is returned by Karger's algorithm
- Just seen: $\Pr[\mathcal{E}_{n-2}^i] \geq \frac{2}{n^2}$

$$1 \geq \Pr\left[\bigcup_{i \in [\ell]} \mathcal{E}_{n-2}^i
ight] = \sum_{i \in [\ell]} \Pr[\mathcal{E}_{n-2}^i] \geq rac{2 \cdot \ell}{n^2}$$

Observation: $\ell \leq \frac{n^2}{2}$.

$$\Pr[\mathcal{E}_i] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}]$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdots \left(1 - \frac{2}{n-i+2}\right) \left(1 - \frac{2}{n-i+1}\right)$$

$$\begin{aligned} & \Pr[\mathcal{E}_i] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \\ & \geq \Big(1 - \frac{2}{n}\Big) \Big(1 - \frac{2}{n-1}\Big) \Big(1 - \frac{2}{n-2}\Big) \cdot \cdot \cdot \Big(1 - \frac{2}{n-i+2}\Big) \Big(1 - \frac{2}{n-i+1}\Big) \\ & = \Big(\frac{n-2}{n}\Big) \Big(\frac{n-3}{n-1}\Big) \Big(\frac{n-4}{n-2}\Big) \cdot \cdot \cdot \Big(\frac{n-i+2-2}{n-i+2}\Big) \Big(\frac{n-i+1-2}{n-i+1}\Big) \end{aligned}$$

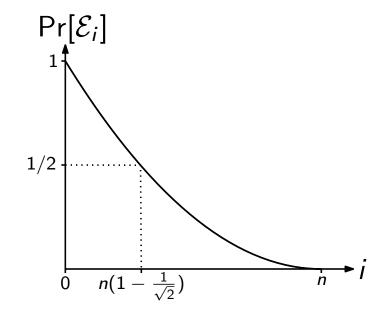
$$\begin{aligned} & \Pr[\mathcal{E}_i] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \\ & \geq \Big(1 - \frac{2}{n}\Big) \Big(1 - \frac{2}{n-1}\Big) \Big(1 - \frac{2}{n-2}\Big) \cdot \cdot \cdot \Big(1 - \frac{2}{n-i+2}\Big) \Big(1 - \frac{2}{n-i+1}\Big) \\ & = \Big(\frac{n-2}{n}\Big) \Big(\frac{n-3}{n-1}\Big) \Big(\frac{n-4}{n-2}\Big) \cdot \cdot \cdot \Big(\frac{n-i}{n-i+2}\Big) \Big(\frac{n-i-1}{n-i+1}\Big) \end{aligned}$$

$$\Pr[\mathcal{E}_{i}] = \Pr[\mathcal{E}_{1}] \cdot \Pr[\mathcal{E}_{2} \mid \mathcal{E}_{1}] \cdot \dots \cdot \Pr[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \dots \cap \mathcal{E}_{i-1}]$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdot \cdot \cdot \left(1 - \frac{2}{n-i+2}\right) \left(1 - \frac{2}{n-i+1}\right)$$

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \cdot \cdot \cdot \left(\frac{n-i}{n-i+2}\right) \left(\frac{n-i-1}{n-i+1}\right)$$

$$= \frac{(n-i)(n-i-1)}{n(n-1)} \geq \frac{(n-i-1)(n-i-1)}{n\cdot n} = \left(1 - \frac{i+1}{n}\right)^{2}.$$



Probability that a min-cut survives i contractions

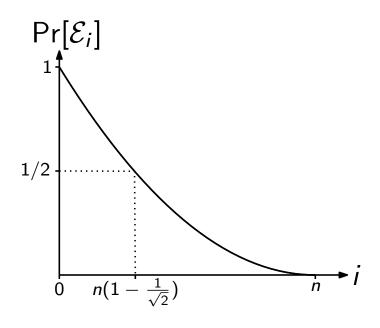
$$\Pr[\mathcal{E}_{i}] = \Pr[\mathcal{E}_{1}] \cdot \Pr[\mathcal{E}_{2} \mid \mathcal{E}_{1}] \cdot \dots \cdot \Pr[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \dots \cap \mathcal{E}_{i-1}]$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdot \cdot \cdot \left(1 - \frac{2}{n-i+2}\right) \left(1 - \frac{2}{n-i+1}\right)$$

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \cdot \cdot \cdot \left(\frac{n-i}{n-i+2}\right) \left(\frac{n-i-1}{n-i+1}\right)$$

$$= \frac{(n-i)(n-i-1)}{n(n-1)} \geq \frac{(n-i-1)(n-i-1)}{n\cdot n} = \left(1 - \frac{i+1}{n}\right)^{2}.$$

Probability becomes very small only towards the very end.



More Amplification: Karger-Stein

Motivation

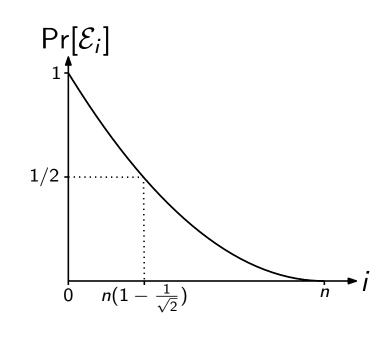
$$\Pr[\mathcal{E}_{i}] = \Pr[\mathcal{E}_{1}] \cdot \Pr[\mathcal{E}_{2} \mid \mathcal{E}_{1}] \cdot \dots \cdot \Pr[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \dots \cap \mathcal{E}_{i-1}]$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdot \cdot \cdot \left(1 - \frac{2}{n-i+2}\right) \left(1 - \frac{2}{n-i+1}\right)$$

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \cdot \cdot \cdot \left(\frac{n-i}{n-i+2}\right) \left(\frac{n-i-1}{n-i+1}\right)$$

$$= \frac{(n-i)(n-i-1)}{n(n-1)} \geq \frac{(n-i-1)(n-i-1)}{n\cdot n} = \left(1 - \frac{i+1}{n}\right)^{2}.$$

- Probability becomes very small only towards the very end.
- Idea: stop when a min-cut is still likely to exist and recurse



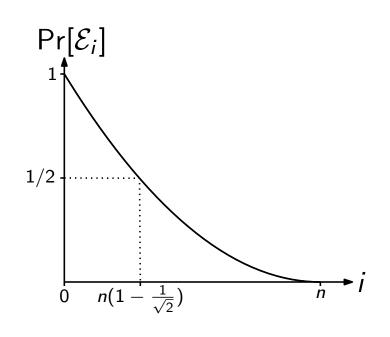
More Amplification: Karger-Stein

Motivation

$$\begin{aligned} & \Pr[\mathcal{E}_i] = \Pr[\mathcal{E}_1] \cdot \Pr[\mathcal{E}_2 \mid \mathcal{E}_1] \cdot \ldots \cdot \Pr[\mathcal{E}_i \mid \mathcal{E}_1 \cap \ldots \cap \mathcal{E}_{i-1}] \\ & \geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdot \cdot \cdot \left(1 - \frac{2}{n-i+2}\right) \left(1 - \frac{2}{n-i+1}\right) \\ & = \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \cdot \cdot \cdot \left(\frac{n-i}{n-i+2}\right) \left(\frac{n-i-1}{n-i+1}\right) \\ & = \frac{(n-i)(n-i-1)}{n(n-1)} \geq \frac{(n-i-1)(n-i-1)}{n\cdot n} = \left(1 - \frac{i+1}{n}\right)^2. \end{aligned}$$

- Probability becomes very small only towards the very end.
- Idea: stop when a min-cut is still likely to exist and recurse
- After $s = n n/\sqrt{2} 1$ steps we have

$$\Pr[\mathcal{E}_s] \ge \left(1 - \frac{n - n/\sqrt{2}}{n}\right) = \left(1 - (1 - 1/\sqrt{2})\right)^2 = (1/\sqrt{2})^2 = \frac{1}{2}$$



More Amplification: Karger-Stein

Motivation

$$\Pr[\mathcal{E}_{i}] = \Pr[\mathcal{E}_{1}] \cdot \Pr[\mathcal{E}_{2} \mid \mathcal{E}_{1}] \cdot \dots \cdot \Pr[\mathcal{E}_{i} \mid \mathcal{E}_{1} \cap \dots \cap \mathcal{E}_{i-1}]$$

$$\geq \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \left(1 - \frac{2}{n-2}\right) \cdot \cdot \cdot \left(1 - \frac{2}{n-i+2}\right) \left(1 - \frac{2}{n-i+1}\right)$$

$$= \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \left(\frac{n-4}{n-2}\right) \cdot \cdot \cdot \left(\frac{n-i}{n-i+2}\right) \left(\frac{n-i-1}{n-i+1}\right)$$

$$= \frac{(n-i)(n-i-1)}{n(n-1)} \geq \frac{(n-i-1)(n-i-1)}{n\cdot n} = \left(1 - \frac{i+1}{n}\right)^{2}.$$

- Probability becomes very small only towards the very end.
- Idea: stop when a min-cut is still likely to exist and recurse
- After $s = n n/\sqrt{2} 1$ steps we have $\Pr[\mathcal{E}_s] \ge \left(1 \frac{n n/\sqrt{2}}{2}\right) = \left(1 (1 1/\sqrt{2})\right)^2 = (1/\sqrt{2})^2 = \frac{1}{2}$

```
KargerStein(G_0 = (V_0, E_0))

if |V_0| = 2 then return unique cut-set

for i = 1 to s = |V_0| - \frac{|V_0|}{\sqrt{2}} - 1 do

sample e \sim \mathcal{U}(E_{i-1})

G_i \leftarrow G_{i-1}.\mathbf{contract}(e)

C_1 \leftarrow \mathbf{KargerStein}(G_s) // inde-
C_2 \leftarrow \mathbf{KargerStein}(G_s) // runs

return smaller of C_1, C_2
```



```
KargerStein(G_0 = (V_0, E_0))

if |V_0| = 2 then return unique cut-set

for i = 1 to s = |V_0| - \frac{|V_0|}{\sqrt{2}} - 1 do

sample e \sim \mathcal{U}(E_{i-1})

G_i \leftarrow G_{i-1}.\mathbf{contract}(e)

C_1 \leftarrow \mathbf{KargerStein}(G_s) // inde-
C_2 \leftarrow \mathbf{KargerStein}(G_s) // runs

return smaller of C_1, C_2
```


Recursion

• After $t = n - n/\sqrt{2} - 1$ steps the number of nodes is $n/\sqrt{2} + 1$

$$T(n) = 2T\left(\frac{n}{\sqrt{2}} + 1\right) + O(n^2)$$

```
KargerStein(G_0 = (V_0, E_0))

// O(1) if |V_0| = 2 then return unique cut-set

for i = 1 to s = |V_0| - \frac{|V_0|}{\sqrt{2}} - 1 do

// O(1) sample e \sim \mathcal{U}(E_{i-1})

// O(n) G_i \leftarrow G_{i-1}.\mathbf{contract}(e)

C_1 \leftarrow \mathbf{KargerStein}(G_s) // inde-
// pendent

// C_2 \leftarrow \mathbf{KargerStein}(G_s) // runs

return smaller of C_1, C_2
```


Recursion

• After $t = n - n/\sqrt{2} - 1$ steps the number of nodes is $n/\sqrt{2} + 1$

$$T(n) = 2T\left(\frac{n}{\sqrt{2}} + 1\right) + O(n^2)$$

Solution (essentially by Master Theorem)

$$T(n) = O(n^2 \log n)$$

```
KargerStein(G_0 = (V_0, E_0))

// O(1)

if |V_0| = 2 then return unique cut-set

for i = 1 to s = |V_0| - \frac{|V_0|}{\sqrt{2}} - 1 do

// O(1)

sample e \sim \mathcal{U}(E_{i-1})

// O(n)

G_i \leftarrow G_{i-1}.\mathbf{contract}(e)

C_1 \leftarrow \mathbf{KargerStein}(G_s) // inde-
// pendent
// C_2 \leftarrow \mathbf{KargerStein}(G_s) // runs

return smaller of C_1, C_2
```


Know: Each call to Karger-Stein breaks the min-cut with probability at most $\frac{1}{2}$.

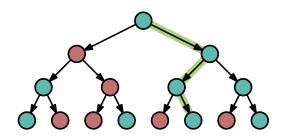
before calling itself recursively

Know: Each call to Karger-Stein breaks the min-cut with probability at most $\frac{1}{2}$.

before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is randomly coloured red or green (with probability $\frac{1}{2}$ each). What is the probability p_d that a green root-to-leaf path exists?

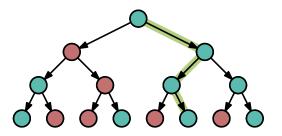


Know: Each call to Karger-Stein breaks the min-cut with probability at most $\frac{1}{2}$.

before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is randomly coloured red or green (with probability $\frac{1}{2}$ each). What is the probability p_d that a green root-to-leaf path exists?



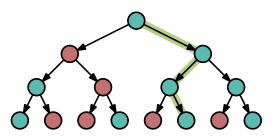
$$p_0=1/2$$
 // root green $p_d=\frac{1}{2}(1-(1-p_{d-1})^2)$ // root green, **not** no path in both left and right subtree

Know: Each call to Karger-Stein breaks the min-cut with probability at most $\frac{1}{2}$.

before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is randomly coloured red or green (with probability $\frac{1}{2}$ each). What is the probability p_d that a green root-to-leaf path exists?



$$p_0=1/2$$
 // root green $p_d=rac{1}{2}(1-(1-p_{d-1})^2)$ // root green, **not** no path in both left and right subtree

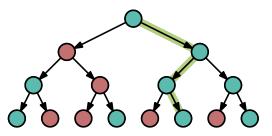
Claim: $p_d \geq \frac{1}{d+2}$. Proof by induction.

Know: Each call to Karger-Stein breaks the min-cut with probability at most $\frac{1}{2}$.

before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is randomly coloured red or green (with probability $\frac{1}{2}$ each). What is the probability p_d that a green root-to-leaf path exists?



$$p_0=1/2$$
 // root green $p_d=\frac{1}{2}(1-(1-p_{d-1})^2)$ // root green, **not** no path in both left and right subtree

Claim: $p_d \geq \frac{1}{d+2}$. Proof by induction.

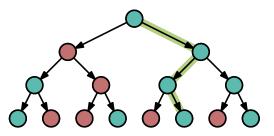
$$\begin{aligned} p_0 &= \tfrac{1}{2} = \tfrac{1}{0+2} \quad \checkmark \\ p_d &= \tfrac{1}{2} \left(1 - \left(1 - p_{d-1} \right)^2 \right) \ge \tfrac{1}{2} \left(1 - \left(1 - \tfrac{1}{d+1} \right)^2 \right) = \tfrac{1}{2} \left(\tfrac{2}{d+1} - \tfrac{1}{(d+1)^2} \right) \\ &= \tfrac{1}{2} \cdot \tfrac{2d+2-1}{(d+1)^2} = \tfrac{1}{2} \cdot \tfrac{2d+1}{d^2+2d+1} \ge \tfrac{1}{2} \cdot \tfrac{2d}{d^2+2d} = \tfrac{1}{d+2} \quad \text{// for } 1 \le a \le b \text{ we have } \tfrac{a}{b} \ge \tfrac{a-1}{b-1} \end{aligned}$$

Know: Each call to Karger-Stein breaks the min-cut with probability at most $\frac{1}{2}$.

before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is randomly coloured red or green (with probability $\frac{1}{2}$ each). What is the probability p_d that a green root-to-leaf path exists?



$$p_0=1/2$$
 // root green $p_d=\frac{1}{2}(1-(1-p_{d-1})^2)$ // root green, **not** no path in both left and right subtree

Claim: $p_d \geq \frac{1}{d+2}$. Proof by induction.

$$\begin{aligned} p_0 &= \tfrac{1}{2} = \tfrac{1}{0+2} \quad \checkmark \\ p_d &= \tfrac{1}{2} \left(1 - \left(1 - p_{d-1} \right)^2 \right) \ge \tfrac{1}{2} \left(1 - \left(1 - \tfrac{1}{d+1} \right)^2 \right) = \tfrac{1}{2} \left(\tfrac{2}{d+1} - \tfrac{1}{(d+1)^2} \right) \\ &= \tfrac{1}{2} \cdot \tfrac{2d+2-1}{(d+1)^2} = \tfrac{1}{2} \cdot \tfrac{2d+1}{d^2+2d+1} \ge \tfrac{1}{2} \cdot \tfrac{2d}{d^2+2d} = \tfrac{1}{d+2} \quad \text{// for } 1 \le a \le b \text{ we have } \tfrac{a}{b} \ge \tfrac{a-1}{b-1} \end{aligned}$$

Corollary: Karger-Stein succeeds with probability at least $p_{\log_{\sqrt{2}}(n)} = \frac{1}{O(\log n)}$.

Theorem: On a graph with n nodes, Karger-Stein runs in $O(n^2 \log(n))$ time and returns a minimum cut with probability at least $1/O(\log(n))$.

Theorem: On a graph with n nodes, Karger-Stein runs in $O(n^2 \log(n))$ time and returns a minimum cut with probability at least $1/O(\log(n))$.

Amplification

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Theorem: On a graph with n nodes, Karger-Stein runs in $O(n^2 \log(n))$ time and returns a minimum cut with probability at least $1/O(\log(n))$.

Amplification

$$\Pr[\text{"min-cut found"}] \ge 1 - \exp\left(-\frac{t}{O(\log(n))}\right) = 1 - O\left(\frac{1}{n}\right)$$
for $t = \log^2(n)$

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Theorem: On a graph with n nodes, Karger-Stein runs in $O(n^2 \log(n))$ time and returns a minimum cut with probability at least $1/O(\log(n))$.

Amplification

Pr["min-cut found"]
$$\geq 1 - \exp\left(-\frac{t}{O(\log(n))}\right) = 1 - O\left(\frac{1}{n}\right)$$
 for $t = \log^2(n)$

Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Corollary: On a graph with n nodes, $O(\log^2(n))$ repetitions of Karger-Stein run in $O(n^2 \log^3(n))$ total time and return a minimum cut with high probability.

Theorem: On a graph with n nodes, Karger-Stein runs in $O(n^2 \log(n))$ time and returns a minimum cut with probability at least $1/O(\log(n))$.

Amplification

$$\Pr[\text{"min-cut found"}] \ge 1 - \exp\left(-\frac{t}{O(\log(n))}\right) = 1 - O\left(\frac{1}{n}\right)$$
for $t = \log^2(n)$

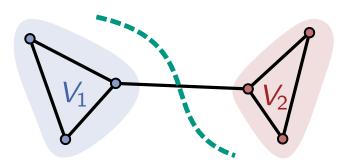
Success probability $\geq p$ Number of repetitions tAmplified prob. $\geq 1 - e^{-pt}$

Corollary: On a graph with n nodes, $O(\log^2(n))$ repetitions of Karger-Stein run in $O(n^2 \log^3(n))$ total time and return a minimum cut with high probability.

- Compared to $O(n^4 \log(n))$ for Karger
- Compared to $\Omega(n^3)$ for deterministic approaches

Minimum Cut

- Fundamental graph problem
- Many deterministic flow-based algorithms ...
- ... with worst-case running times in $\Omega(n^3)$

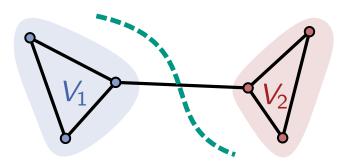


Minimum Cut

- Fundamental graph problem
- Many deterministic flow-based algorithms ...
- ... with worst-case running times in $\Omega(n^3)$

Randomized Algorithms

Karger's edge-contraction algorithm



Minimum Cut

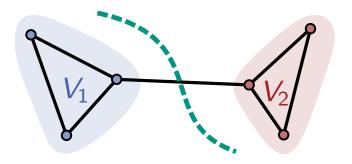
- Fundamental graph problem
- Many deterministic flow-based algorithms ...
- ... with worst-case running times in $\Omega(n^3)$

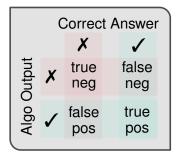
Randomized Algorithms

Karger's edge-contraction algorithm

Probability Amplification

- Monte Carlo algorithms with and without biases
- Repetitions amplify success probability
- Karger-Stein: Amplify before failure probability gets large





Minimum Cut

- Fundamental graph problem
- Many deterministic flow-based algorithms ...
- ... with worst-case running times in $\Omega(n^3)$

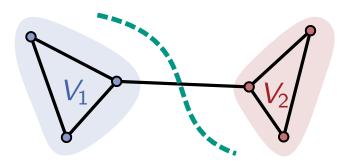
Randomized Algorithms

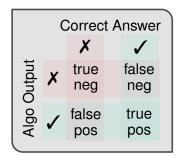
Karger's edge-contraction algorithm

Probability Amplification

- Monte Carlo algorithms with and without biases
- Karger-Stein: Amplify before failure probability gets large

Repetitions amplify success probability





Outlook

"Minimum cuts in near-linear time", Karger, J.Acm. '00

"Faster algorithms for edge connectivity via random 2-out contractions", Ghaffari & Nowicki & Thorup, SODA'20

Success w.h.p. in time $O(m \log^3(n))$

Success w.h.p. in time $O(m \log(n))$ and $O(m + n \log^3(n))$

Possible Exam Questions

- What is a Monte Carlo algorithm?
 - Which variants exist?
- What is meant by probability amplification?
- How does probability amplification work...
 - ... in the case of one-sided error?
 - ... in the case of two-sided error?
 - ... for optimization problems?
 - How does the error probability relate to the number of repetitions?
- What is the Minimum Cut problem?
 - What do the best known deterministic algorithms achieve?
 - What are success probability and running time of the trivial random cut algorithm?
 - How does Karger's algorithm work?
 - What does $Pr[\mathcal{E}_t]$ mean, and how did we estimate this probability?
 - What follows for the running time and success probability?
 - How is the algorithm by Karger and Stein obtained from Karger's algorithm?
 - How did we estimate the success probability and running time?
 - How do we achieve a success probability of $1 \frac{1}{n}$?