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Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p € (0, 1).
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® In decision problems p is the probability of giving the correct answer Co;ectAHS}ver\
= One-sided error: either false-biased or true-biased
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Definition: Probability amplification is the process of increasing the success probability\
of a Monte Carlo algorithm by using multiple runs.
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® In decision problems p is the probability of giving the correct answer

a One-sided error: either false-biased or \true-biased
a Two-sided error: no bias

® In optimization problems p is the probability of finding the optimum

Algo Output

\

Correct Answer
X Ve
true false
X neg neg

false true
v pos pos

~

[Definition: Probability amplification is the process of increasing the success probability\

of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for true-biased algorithms
m Execute independently t times.

m |f v at least once: Return V..

= Otherwise: Return X.  Pr[“correct”] > 1 — (1 —p)* >1— e " [1+x<eforxeRr)
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[Definition: Probability amplification is the process of increasing the success probability\

of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for optimization algorithms
m Execute independently t times.
® output best result

Pr[“optimal’] >1— (1 —p)" >1—e P!
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Input A R2
m Set P of points in a feature space (e.g., RY)
® Similarity measure o: P x P — R
Output: P, ..., P such that

m Points within a P; have high similarity

= Points in distinct P;, P; have low similarity
Applications: Compression, medical diagnosis, etc. a six points in R2

Approach: Model as graph m o is the inversed Euclidean
® Each point is a node distance

m Edges between all node pairs, with the weight given by w partition into two sets
the similarity of the two nodes

long = low weight

short = high weight
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Input A R2
m Set P of points in a feature space (e.g., RY)
® Similarity measure o: P x P — R
Output: P, ..., P such that
m Points within a P; have high similarity
>

= Points in distinct P;, P; have low similarity
Applications: Compression, medical diagnosis, etc. a six points in R?

Approach: Model as graph m o is the inversed Euclidean
® Each point is a node distance

m Edges between all node pairs, with the weight given by w partition into two sets
the similarity of the two nodes

m Find cut-set (edges to remove) of minimal weight such
that the graph decomposes into kK components.

Example

Today
k=2ando: Px P+—{0,1}
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Computing Min Cuts

Cuts V4
® G = (V, E) an unweighted, undirected, connected graph

m Cut: partition of V' into non-empty parts V4, \%.

m Cut-set: set of edges with endpoints in \; and \,
a Welght Ofa cut: Size Of the cut-set (or sum of weights in a weighted graph)

i.e. a cut of minimum weight or cut-set of minimum size
the weight of the min-cut is known as the edge-connectivity of G

Today Goal: Compute a Min-Cut

= Known deterministic strategies have worst case running time Q(n?).
= We'll see randomised algorithm with running time O(n? - log>(n)).
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= Have to uniformly sample bit-string while avoiding 11...1 and 00...07
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A Trivial Algorithm: Random Cut

LObservation: There are 2"~! — 1 cuts in a graph with n nodes.w

(2-2) /2
® Number of possible assignments of n nodes to 2 partsJ‘ |
m Partitions with empty parts that do not represent cuts
® Swapping parts does not yield a new partition

Algorithm: Random Cut

® Return a uniformly random cut.
® Minor challenge: How to uniformly sample cuts?
= Represent cut using bit-string
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011111
V2

= Have to uniformly sample bit-string while avoiding 11...1 and 00...07

= intution: sample from U({0, 1}") and use rejection sampling

= gctually for bounded running time: declare failure rather than sampling again

= samples each cut with probability 1/2"~1
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Running time: O(n)  much better than the Q(n®) in the deterministic setting , but...
Success probability: > 1/2"-1 “="if there is only one min-cut.
— exponentially small!

Amplification

m Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] > 1 — (1 —1/2"1)"
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Random Cut: Analysis

Running time: O(n)  much better than the Q(n®) in the deterministic setting , but...
Success probability: > 1/2"-1 “="if there is only one min-cut.
— exponentially small!

Amplification
m Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] > 1 — (1 — 1/2”_1)t >1—e /2" [1+x<eforxeR)

® For t = 2"~ min cut found with constant probability 1 — 1/e ~ 0.63
m For t = 2"~ . In(n) min cut found with high probability 1 — 1/n
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Random Cut: Analysis

Running time: O(n)  much better than the Q(n®) in the deterministic setting , but...
Success probability: > 1/2"-1 “="if there is only one min-cut.
— exponentially small!

Amplification
m Repeat the algorithm to obtain t independent random cuts, return the smallest

Pr[“min cut found”] > 1— (1—1/2""Y)" >1—e /2" [1+x<eforxeR)
® For t = 2"~ min cut found with constant probability 1 — 1/e ~ 0.63 this is terrible
m For t = 271 - In(n) min cut found with high probability 1 — 1/n so far...
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® A (multi) graph with two nodes has a unique cut-set
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Karger’s Algorithm

Edge Contraction

m Merge two adjacent nodes in a multigraph without self-loops U‘:W<> N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

® Motivation: distinguish non-essential

as well as essential edges
& hope there are few essential ones

7 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering



AT

Karger’s Algorithm
Edge Contraction non-essential
® Merge two adjacent nodes in a multigraph without self-loops » ' uy o

® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm essential
® Motivation: distinguish non-essential

as well as essential edges

& hope there are few essential ones
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Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm essential
® Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones
Karger(Go = (W, Eo))
fori=1ton—2do
sample e ~ U(E;_1)
G; «— G,-_l.contract(e)
return unique cut-set in G,_»

w
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Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
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Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a
minimum cut with probability at least .
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Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
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tOtaI t|me and return a mln-CUt Wlth hlgh prObablllty Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

mletCy,..., C, be all the min-cuts in G and £/ _, for i € [€] be the event that C; is returned

by Karger’s algorithm

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering
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Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

: 1 Success probability > p\
T _ 9 > . _l _ — - -
Pr[ min-cut founa ] > 1 exp( n t) 1 n Number of repetitions t
for + — n; In(n) \Amplified prob. > 1 — e F*

Corollary: On a graph with n nodes, O(n? log(n)) Karger repetitions run in O(n* Iog(n))\
tOtaI t|me and return a mln-CUt Wlth hlgh prObablllty Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

mletCy,...,C,be all the min-cuts in G and &! , for i € [{] be the event that C; is returned
by Karger’s algorithm ——

= Just seen: Pr[€]_,] > 2

disjoint, since the algorithm returns only one cut

8 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

: 1 Success probability > p\
T _ 9 > . _l _ — - -
Pr[ min-cut founa ] > 1 exp( n t) 1 n Number of repetitions t
for + — n; In(n) \Amplified prob. > 1 — e F*

tOtaI t|me and return a mln-CUt W|th h|gh prObabI|Ity Much better than exp. time of Randomized Cut!

[Corollary: On a graph with n nodes, O(n?log(n)) Karger repetitions run in O(n* Iog(n))\

Sidenote: Number of minimum cuts

mletCy,...,C,be all the min-cuts in G and &! , for i € [{] be the event that C; is returned
by Karger’s algorithm ——

= Just seen: Pr[€]_,] > 2

Pr [Uie[e] ;'1—2] — Zie[z] Pr[gll;—2] > i_f

disjoint, since the algorithm returns only one cut
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Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

: 1 Success probability > p\
T _ 9 > . _l _ — - -
Pr[ min-cut founa ] > 1 exp( n t) 1 n Number of repetitions t
for + — n; In(n) \Amplified prob. > 1 — e F*

tOtaI t|me and return a mln-CUt W|th h|gh prObabI|Ity Much better than exp. time of Randomized Cut!

[Corollary: On a graph with n nodes, O(n?log(n)) Karger repetitions run in O(n* Iog(n))\

Sidenote: Number of minimum cuts

mletCy,...,C,be all the min-cuts in G and &! , for i € [{] be the event that C; is returned
by Karger’s algorithm ——
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Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

: 1 Success probability > p\
T _ 9 > . _l _ — - -
Pr[ min-cut founa ] > 1 exp( n t) 1 n Number of repetitions t
for + — n; In(n) \Amplified prob. > 1 — e F*

Corollary: On a graph with n nodes, O(n? log(n)) Karger repetitions run in O(n* Iog(n))\
tOtaI t|me and return a mln-CUt Wlth hlgh prObablllty Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

mletCy,...,C,be all the min-cuts in G and &! , for i € [{] be the event that C; is returned
by Karger’s algorithm ——

= Just seen: Pr[€]_,] > 2

1> Pr [Uie[l] ;'1—2} — Z,’e[z] Pr[gll’.l—2] > i_2£

disjoint, since the algorithm returns only one cut

Observation: £ < ”72 }

8 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Pr[€i] = Pr[&1] - Pr[& | &) - ... - Prl& | &1 N Eid]

= (1-0)0- 22 1 72 - (1) 0

9 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Pr[€i] = Pr[&1] - Pr[& | &) - ... - Prl& | &1 N Eid]

> (1) (175175 ) (-7
- (22 (=) (=) (55 ()
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More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Prl€] = Pr[&1] - Pr[&a | &) -... - Pr[& | E1n ... N Eiza]
= (1 _%Xl_ n31>(1_ n32 ) ' '(1_n—%—|—2>( _n—%—l—l>
- (2222 ) () )

9 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Pr[E,-] = Pr[€1] . Pr[82 | 81] L PI’[S,‘ ’ EiN...N 8,-_1]
= (1 _%Xl_ n31>(1_ n32 ) ' '(1_n—%—|—2>( _n—%—l—l>
- (D) k)

_(n=i)n—i—=1) _(n—i=1)(n—i—-1) i+ 1\2
B n(n—1) = n-n _< n )

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Karlsruhe Institute of Technology
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More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Pr[€i] = Pr[&1] - Pr[& | &) - ... - Prl& | &1 N Eid]

(-9 21 ) i)
()R ) )

:(n—i)(n—i—l) (n—i—1)(n—i—1) (1_14-1)2.

n(n—1) - n-n n

m Probability becomes very small only towards the
very end.

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing
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More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Pr[€i] = Pr[&1] - Pr[& | &) - ... - Prl& | &1 N Eid]
)

2 (1)1 172 i ,+2)( -

n
- (TG () )
_ (n—rl;zf,n_—li)—l) > (n—l—:,)(’l:—/—l) (1_ 1-|,;1)2.

m Probability becomes very small only towards the
very end.

m |dea: stop when a min-cut is still likely to exist and recurse

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing
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Pr[5,-]
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More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Pr[E,-] = Pr[€1] . Pr[82 | 81] L PI’[S,‘ ’ EiN...N 8,-_1]
= (1 _%Xl_ n31)(1_ n32 ) ' '(1_n—%—|—2)( _n—%—l—l>
- (D) k)

(n—i)(n—i—=1) _ (n—i—1)(n—1i—-1) i+ 1\2
- n(n—1) = n-n :< n )

m Probability becomes very small only towards the
very end.

m |dea: stop when a min-cut is still likely to exist and recurse
m After s = n — n/+/2 — 1 steps we have

Prigd 2 (1= 2=0V2Y (11— 1v2)) = (vR) =

Pr[5,-]

9 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karlsruhe Institute of Technology

Motivation i _
® Probability that a min-cut survives i contractions K:argerSteln(Go = (10, EO).)
if [Vo| = 2 then return unique cut-set

Pri€i] = Pr[&] - Pr[& [ &] ... - Pr[&i [ &N N Ei] |V|
fori=1tos=|W| -2 —1do

More Amplification: Karger-Stein

2 2 2
> (1 n><]- n—l)( —2) ( n— I—|—2>( —|—1> Sample e ~v M(EI 1)
n—72 n—4 n—i n—i—1
:( n )(ﬁ)@,{)( n—i+2 )( ﬁ%‘ﬂ’) G; <+ G;_i.contract(e)
_(n=i(n—i=1) _ (n—i=1)(n—i-1) ~(1- I+1)2_ C,; «+ KargerStein(G,) //inde-
n(n—1) - n-n n // pendent

= Probability becomes very small only towards the €2 ¢ KargerStein(Gs) //runs

very end. return smaller of C;, G

m |dea: stop when a min-cut is still likely to exist and recurse
m After s = n — n/+/2 — 1 steps we have

Pr[&] > (1 _ Iz Z/ﬁ) - (1 —(1- 1/\6))2 = (1/v2)* ==

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein: Running Time e

KargerStein(Gy = (W, Eo))

(1) if |W| = 2 then return unique cut-set

(n) fori=1t0s=|v| -4 —1do
// O(1) sample e ~ U(E;_ 1)

(n)  G; « G;_y.contract(e)
C, « KargerStein(G,) // inde-

// pendent

C, «+ KargerStein(Gs) // runs

return smaller of C¢, (5

10 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein: Running Time e

Recursion KargerStein(Gy = (W, Eo))
" Aftert = n—n/v2-1stepsthe number 5y Vp| = 2 then return unique cut-set
of nodes is n/v/2 + 1 fori=1tos= |V — |Vo| _1do

(1)
(n)
T(n) = 2T (i + 1) +O(n?) [FO(1)  sample e ~ U(E;— 1)
V2 (n)  G; « G;_y.contract(e)
C; + KargerStein(G;) //inde-
// pendent
C2 — KargerSteln(G ) // runs

return smaller of C¢, (5

10 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein: Running Time A
Recursion KargerStein(Go = (Vp, Ep))
0 A;‘teré = .”—'/”’\/%2@;11 steps the number // O(1) if |Vp| = 2 then return unique cut-set

of nodes is n

/1O(n)  fori=1t0os=|W| — |V°| —1do
T(n) = 2T (L 4 1) +O(n?) [1O(1)  sample e ~ U(E;_ 1)
V2 /I O(n)  G; « G;_;.contract(e)
Solution (essentially by Master Theorem) C1 « KargerStein(G;) /inde.
, C, «+ KargerStein(G;) // I?uns
T(n) = O(n” log n) return smaller of Cy, C,

10 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most

L before calling itself recursively

11 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1

L before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability  each).

What is the probability py that a green root-to-leaf path exists?

11 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein: Success Probability \ e

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1

L before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability  each).

What is the probability py that a green root-to-leaf path exists?

po =1/2//rootgreen  pg = (1 — (1 — pg_1)?) // root green, not no path in both left and right subtree

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1

L before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability  each).

What is the probability py that a green root-to-leaf path exists?

po = 1/2 //rootgreen  pg = l(1 — (1 — pg—_1)?) // root green, not no path in both left and right subtree

Claim: p, > d+2 Proof by induction.

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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AT

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1

L before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability  each).

What is the probability py that a green root-to-leaf path exists?

po = 1/2 //rootgreen  pg = l(1 — (1 — pg—_1)?) // root green, not no path in both left and right subtree

Claim: p, > d+2 Proof by mductlon

11
Pp=5=g53 Y l
_ 1 2 2y _ 1 2 1
pa = 5(1 = (1~ pa—1)°) > (1_(1_d+1 )—§(d+1_(d+1)2)
1 2d+2—1 __ 1 2d+1 1 2d 1 2~ a1
— 2 (dt1)2 — 2 Fi2di1l 2 2 diad — dpa //forl<a<bwehave § > i=

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1

L before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability  each).

What is the probability py that a green root-to-leaf path exists?

po = 1/2 //rootgreen  pg = l(1 — (1 — pg—_1)?) // root green, not no path in both left and right subtree

Claim: p, > d+2 Proof by mductlon

11
Pp=5=g53 Y l
_ 1 2 2\ __1( 2 1
pa = 5(1 = (1~ pa—1)°) > (1_(1_d+1 )—§(d+1_(d+1)2)
1 2d42-1 _ 1 2d+1 1 2d 1 2 < a1
2 (di1? T 2 di2dil 2 2 daod — dp //forl<a<bwehave § > i=

Corollary: Karger-Stein succeeds with probability at least piog_,(n) = m.

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in O(n? log(n)) time and returns a
minimum cut with probability at least 1/0(log(n)).

12 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in O(n? log(n)) time and returns a
minimum cut with probability at least 1/0(log(n)).

Amplification w
Success probability > p

Number of repetitions t
Amplified prob. > 1 — e P*

12 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein Amplified \ e

Theorem: On a graph with n nodes, Karger-Stein runs in O(n? log(n)) time and returns a
minimum cut with probability at least 1/0(log(n)).

Amplification )
Success probability > p
1] H 7 t 1
Pr[“min-cut found”] > 1—exp ~ O(log(n) =1-0 | - Number of repetitions ¢
t Amplified prob. > 1 — e P*
for t = Iog (n) N

12 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Theorem: On a graph with n nodes, Karger-Stein runs in O(n? log(n)) time and returns a
minimum cut with probability at least 1/0(log(n)).

Amplification " )
_ # 1 Success probability > p
Pr[“min-cut found”] > 1—exp (— ) =1-0 (—) Number of repetitions ¢
Ollog(n)) t " 5 Amplified prob. > 1 — e™?*
for t = log®(n) N -
Corollary: On a graph with n nodes, O(log®(n)) repetitions of Karger-Stein run in
O(n? log>(n)) total time and return a minimum cut with high probability.

12 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Karger-Stein Amplified A“(IT

Theorem: On a graph with n nodes, Karger-Stein runs in O(n? log(n)) time and returns a
minimum cut with probability at least 1/0(log(n)).

Amplification " )
_ # 1 Success probability > p
Pr[“min-cut found”] > 1—exp (— ) =1-0 (—) Number of repetitions ¢
Ollog(n)) t " 5 Amplified prob. > 1 — e™?*
for t = log®(n) N -
Corollary: On a graph with n nodes, O(log®(n)) repetitions of Karger-Stein run in
O(n? log>(n)) total time and return a minimum cut with high probability.

» Compared to O(n* log(n)) for Karger
» Compared to Q(n?) for deterministic approaches

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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]
C o n CI u S I o n Karlsruhe Institute of Technology

Minimum Cut B

® Fundamental graph problem \i

= Many deterministic flow-based algorithms ... N

® ... with worst-case running times in Q(n?) ..

13 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Conclusion
Minimum Cut B

® Fundamental graph problem \i

® Many deterministic flow-based algorithms ... \‘

® ... with worst-case running times in Q(n>) .,

Randomized Algorithms
m Karger’s edge-contraction algorithm

13 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Conclusion

Minimum Cut
® Fundamental graph problem

® Many deterministic flow-based algorithms ...
® ... with worst-case running times in Q(n°)

Randomized Algorithms
m Karger’s edge-contraction algorithm

Probability Amplification

@ Monte Carlo algorithms with and without biases

® Repetitions amplify success probability

m Karger-Stein: Amplify before failure probability gets large

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing
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Conclusion A“(IT

Karlsruhe Institute of Technology

Minimum Cut B

® Fundamental graph problem \i

® Many deterministic flow-based algorithms ... \‘
‘Q

® ... with worst-case running times in Q(n?)

Randomized Algorithms
m Karger’s edge-contraction algorithm

~N

Probability Amplification Gorect pnaver
= Monte Carlo algorithms with and without biases x e false

® Repetitions amplify success probability
m Karger-Stein: Amplify before failure probability gets large
Outlook

L“Minimum cuts in near-linear time”, Karger, J.Acm. ’001 L“Faster algorithms for edge connectivity via random 2-out contractions”, Ghaffari & Nowicki & Thorup, SODA’ZO]

false true
v pos pos

Algo Output

Vs

Success w.h.p. in time O(m Iog3(n)) Success w.h.p. in time O(mlog(n)) and O(m + n Iog3(n))

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering
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Possible Exam Questions

® What is a Monte Carlo algorithm?
® Which variants exist?
® What is meant by probability amplification?
® How does probability amplification work...
® ... in the case of one-sided error?
® ... in the case of two-sided error?

® ... for optimization problems?
® How does the error probability relate to the number of repetitions?

® What is the Minimum Cut problem?
® What do the best known deterministic algorithms achieve?
m What are success probability and running time of the trivial random cut algorithm?

® How does Karger’s algorithm work?
® What does Pr[€:] mean, and how did we estimate this probability?

® What follows for the running time and success probability?

® How is the algorithm by Karger and Stein obtained from Karger’s algorithm?
® How did we estimate the success probability and running time?

® How do we achieve a success probability of 1 — %?

14 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering



