AT

Karlsruhe Institute of Technology

Probability & Computing

Probability Amplification

KIT — The Research University in the Helmholtz Association www.kit.edu

AT

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p € (0, 1).

2 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

Probability Amplification A“(IT

Karlsruhe Institute of Technology

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running)
time that, for each input, answers correctly with probability at least p € (0, 1).

® In decision problems p is the probability of giving the correct answer Co;ectAHS}ver\
= One-sided error: either false-biased or true-biased

true false
X neg neg

Algo Output

false true
v pos pos

-

2 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering

Probability Amplification A“(IT

Karlsruhe Institute of Technology

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running)
time that, for each input, answers correctly with probability at least p € (0, 1).

® In decision problems p is the probability of giving the correct answer Co;ectAHS}ver\
= One-sided error: either false-biased|or true-biased

true false
X neg neg

Algo Output

false true
v posS pos

-

2 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering

Probability Amplification A“(IT

Karlsruhe Institute of Technology

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running)
time that, for each input, answers correctly with probability at least p € (0, 1).

® In decision problems p is the probability of giving the correct answer Co;ectAHS}ver\
= One-sided error: either false-biased or |true-biased

true false
X neg neg

Algo Output

false true
v pos pos

-

2 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering

Probability Amplification A“(IT

Karlsruhe Institute of Technology

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running)
time that, for each input, answers correctly with probability at least p € (0, 1).

® In decision problems p is the probability of giving the correct answer Correct Answier

X v
= One-sided error: either false-biased or true-biased x| tue s
= Two-sided error:|no bias

neg neg

Algo Output

false true
v posS pos

-

2 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering

Probability Amplification A“(IT

stitute of Technology

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running)
time that, for each input, answers correctly with probability at least p € (0, 1).

® In decision problems p is the probability of giving the correct answer)

Correct Answer

X v
= One-sided error: either false-biased or true-biased x lue false
= Two-sided error: no bias

neg neg
® [n optimization problems p is the probability of finding the optimum

false true
v pos pos

Algo Output

2 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering

2

Probability Amplification A“(IT

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running)
time that, for each input, answers correctly with probability at least p € (0, 1).

® In decision problems p is the probability of giving the correct answer R
= One-sided error: either false-biased or true-biased x lue false
= Two-sided error: no bias

neg neg
® [n optimization problems p is the probability of finding the optimum

Algo Output

false true
v pos pos
_

Definition: Probability amplification is the process of increasing the success probability\
of a Monte Carlo algorithm by using multiple runs.

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

2

Probability Amplification A“(IT

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running)
time that, for each input, answers correctly with probability at least p € (0, 1).

® In decision problems p is the probability of giving the correct answer R
= One-sided error: either false-biased or true-biased x lue false
= Two-sided error: no bias

neg neg
® [n optimization problems p is the probability of finding the optimum

Algo Output

false true
v pos pos
_

Definition: Probability amplification is the process of increasing the success probability\
of a Monte Carlo algorithm by using multiple runs.

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

2

Probability Amplification

Karlsruhe Institute of Technology

[Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running)

time that, for each input, answers correctly with probability at least p € (0, 1).

® In decision problems p is the probability of giving the correct answer

a One-sided error: either false-biased or \true-biased
a Two-sided error: no bias

® In optimization problems p is the probability of finding the optimum

Algo Output

\

Correct Answer
X Ve
true false
X neg neg

false true
v pos pos

~

[Definition: Probability amplification is the process of increasing the success probability\

of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for true-biased algorithms
m Execute independently t times.

m |f v at least once: Return V..

= Otherwise: Return X. Pr[“correct”] > 1 — (1 —p)* >1— e " [1+x<eforxeRr)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering

2

Probability Amplification

Karlsruhe Institute of Technology

[Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running)

time that, for each input, answers correctly with probability at least p € (0, 1).

® In decision problems p is the probability of giving the correct answer

m One-sided error: either false-biased or true-biased
a Two-sided error: no bias

® [n optimization problems p is the probability of finding the optimum

Algo Output

\

Correct Answer
X Ve
true false
X neg neg

false true
v pos pos

~

[Definition: Probability amplification is the process of increasing the success probability\

of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for true-biased algorithms

|Exercise: For two-sided error.|

m Execute independently t times.
e |[f vat least once: Return V..

= Otherwise: Return X. Pr[“correct”] > 1 — (1 —p)* >1— e " [1+x<eforxeRr)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering

2

Probability Amplification

Karlsruhe Institute of Technology

[Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running)

time that, for each input, answers correctly with probability at least p € (0, 1).

® In decision problems p is the probability of giving the correct answer

m One-sided error: either false-biased or true-biased
a Two-sided error: no bias

® [n optimization problems p is the probability of finding the optimum

Algo Output

\

Correct Answer
X Ve
true false
X neg neg

false true
v pos pos

~

[Definition: Probability amplification is the process of increasing the success probability\

of a Monte Carlo algorithm by using multiple runs.

Probability Amplification for optimization algorithms
m Execute independently t times.
® output best result

Pr[“optimal’] >1— (1 —p)" >1—e P!

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering

The Clustering Problem A“(IT

Karlsruhe Institute of Technology

Input
m Set P of points in a feature space (e.g., RY)
® Similarity measure o: P x P — R

3 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

3

The Clustering Problem

Input
m Set P of points in a feature space (e.g., RY)
® Similarity measure o: P x P — R

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

AT

Karlsruhe Institute of Technology

o R?
o o
®) 0]
o)
>
Example

® six points in R?

m o is the inversed Euclidean
distance

Institute of Theoretical Informatics, Algorithm Engineering

The Clustering Problem

Input
m Set P of points in a feature space (e.g., RY)
® Similarity measure o: P x P — R

Output: P, ..., P such that
m Points within a P; have high similarity
= Points in distinct P;, P; have low similarity

3 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Karlsruhe Institute of Technology

o R?
o o)
®) 0]
o)
>
Example

® six points in R?

m o is the inversed Euclidean
distance

m partition into two sets

Institute of Theoretical Informatics, Algorithm Engineering

The Clustering Problem

Input
m Set P of points in a feature space (e.g., RY)
® Similarity measure o: P x P — R

Output: P, ..., P such that
m Points within a P; have high similarity
= Points in distinct P;, P; have low similarity

3 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Karlsruhe Institute of Technology

o R?
Pl o o
o 0] P2
o
>
Example

® six points in R?

m o is the inversed Euclidean
distance

m partition into two sets

Institute of Theoretical Informatics, Algorithm Engineering

3

The Clustering Problem

Input
m Set P of points in a feature space (e.g., RY)
® Similarity measure o: P x P — R

Output: P, ..., P such that
m Points within a P; have high similarity
= Points in distinct P;, P; have low similarity

Applications: Compression, medical diagnosis, etc.

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Karlsruhe Institute of Technology

o R?
Pl o o
o 0] P2
o
>
Example

® six points in R?

m o is the inversed Euclidean
distance

m partition into two sets

Institute of Theoretical Informatics, Algorithm Engineering

The Clustering Problem A“(IT

Input A R2
m Set P of points in a feature space (e.g., RY)
® Similarity measure o: P x P — R
Output: P, ..., P such that

m Points within a P; have high similarity

= Points in distinct P;, P; have low similarity
Applications: Compression, medical diagnosis, etc. a six points in R2

Approach: Model as graph m o is the inversed Euclidean
® Each point is a node distance

m Edges between all node pairs, with the weight given by w partition into two sets
the similarity of the two nodes

long = low weight

short = high weight

>

Example

3 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

The Clustering Problem A“(IT

Input ‘ N R?
m Set P of points in a feature space (e.g., RY)
® Similarity measure o: P x P — R
Output: P, ..., P such that

m Points within a P; have high similarity \
= Points in distinct P;, P; have low similarity
Applications: Compression, medical diagnosis, etc. a six points in R?

Approach: Model as graph m o is the inversed Euclidean
® Each point is a node distance

m Edges between all node pairs, with the weight given by w partition into two sets
the similarity of the two nodes

m Find cut-set (edges to remove) of minimal weight such
that the graph decomposes into kK components.

long = low weight

short = high weight

>

Example

3 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

3

The Clustering Problem A“(IT

Input A R2
m Set P of points in a feature space (e.g., RY)
® Similarity measure o: P x P — R
Output: P, ..., P such that
m Points within a P; have high similarity
>

= Points in distinct P;, P; have low similarity
Applications: Compression, medical diagnosis, etc. a six points in R?

Approach: Model as graph m o is the inversed Euclidean
® Each point is a node distance

m Edges between all node pairs, with the weight given by w partition into two sets
the similarity of the two nodes

m Find cut-set (edges to remove) of minimal weight such
that the graph decomposes into kK components.

Example

Today
k=2ando: Px P+—{0,1}

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

4

Computing Min Cuts

Cuts
® G = (V, E) an unweighted, undirected, connected graph

m Cut: partition of V' into non-empty parts V4, \%.

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

AT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

4

Computing Min Cuts

Cuts
® G = (V, E) an unweighted, undirected, connected graph

m Cut: partition of V' into non-empty parts V4, \%.

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

AT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

4

Computing Min Cuts

Cuts
® G = (V, E) an unweighted, undirected, connected graph

m Cut: partition of V' into non-empty parts V4, \%.

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

AT

Karlsruhe Institute of Technology

Institute of Theoretical Informatics, Algorithm Engineering

AT

Computing Min Cuts

Cuts V4
® G = (V, E) an unweighted, undirected, connected graph

m Cut: partition of V' into non-empty parts V4, \%.
m Cut-set: set of edges with endpoints in \; and \,

4 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Computing Min Cuts

Cuts V4
® G = (V, E) an unweighted, undirected, connected graph

m Cut: partition of V' into non-empty parts V4, \%.

m Cut-set: set of edges with endpoints in \; and \,
a Welght Ofa cut: Size Of the cut-set (or sum of weights in a weighted graph)

4 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

4

AT

Computing Min Cuts

Cuts V4
® G = (V, E) an unweighted, undirected, connected graph

m Cut: partition of V' into non-empty parts V4, \%.

m Cut-set: set of edges with endpoints in \; and \,
a Welght Ofa cut: Size Of the cut-set (or sum of weights in a weighted graph)

i.e. a cut of minimum weight or cut-set of minimum size
the weight of the min-cut is known as the edge-connectivity of G

Today Goal: Compute a Min-Cut

= Known deterministic strategies have worst case running time Q(n?).
= We'll see randomised algorithm with running time O(n? - log>(n)).

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

A Trivial Algorithm: Random Cut

LObservation: There are 2"~ — 1 cuts in a graph with n nodes.w

5 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

A Trivial Algorithm: Random Cut

LObservation: There are 2"~ — 1 cuts in a graph with n nodes.w
2n
® Number of possible assignments of n nodes to 2 partsJ‘

AT

Karlsruhe Institute of Technology

111000

5 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

A Trivial Algorithm: Random Cut

LObservation: There are 2"~1 — 1 cuts in a graph with n nodes.w Vi 100000

2”
® Number of possible assignments of n nodes to 2 partsJ‘

5 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

A Trivial Algorithm: Random Cut

LObservation: There are 2"~! — 1 cuts in a graph with n nodes.w
2" —2

® Number of possible assignments of n nodes to 2 partsL'

m Partitions with empty parts that do not represent cuts

AT

stitute of Technology

111111
Vi

5 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

A Trivial Algorithm: Random Cut A“(IT

LObservation: There are 2"~ — 1 cuts in a graph with n nodes.w A 000000

2" —2
® Number of possible assignments of n nodes to 2 partsJ‘ |
m Partitions with empty parts that do not represent cuts

5 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

A Trivial Algorithm: Random Cut A“(IT

LObservation: There are 2"~1 — 1 cuts in a graph with n nodes.w Vi 100000

(2-2) /2
® Number of possible assignments of n nodes to 2 partsJ‘ |
m Partitions with empty parts that do not represent cuts
® Swapping parts does not yield a new partition

5 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

A Trivial Algorithm: Random Cut A“(IT

LObservation: There are 2"~1 — 1 cuts in a graph with n nodes.w A 011111

(2-2) /2
® Number of possible assignments of n nodes to 2 partsJ‘ |
m Partitions with empty parts that do not represent cuts
® Swapping parts does not yield a new partition

5 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

A Trivial Algorithm: Random Cut A“(IT

LObservation: There are 2"~1 — 1 cuts in a graph with n nodes.w A 011111

(2-2) /2
® Number of possible assignments of n nodes to 2 partsJ‘ |
m Partitions with empty parts that do not represent cuts

® Swapping parts does not yield a new partition
Algorithm: Random Cut
® Return a uniformly random cut.

5 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

A Trivial Algorithm: Random Cut A“(IT

LObservation: There are 2"~1 — 1 cuts in a graph with n nodes.w A 011111

(2-2) /2
® Number of possible assignments of n nodes to 2 partsJ‘ |
m Partitions with empty parts that do not represent cuts

® Swapping parts does not yield a new partition
Algorithm: Random Cut

® Return a uniformly random cut.
® Minor challenge: How to uniformly sample cuts?

5 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

A Trivial Algorithm: Random Cut A“(IT

LObservation: There are 2"~1 — 1 cuts in a graph with n nodes.w A 011111

(2-2) /2
® Number of possible assignments of n nodes to 2 partsJ‘ |
m Partitions with empty parts that do not represent cuts
® Swapping parts does not yield a new partition

Algorithm: Random Cut

® Return a uniformly random cut.
® Minor challenge: How to uniformly sample cuts?
= Represent cut using bit-string

5 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

5

A Trivial Algorithm: Random Cut

LObservation: There are 2"~ — 1 cuts in a graph with n nodes.w

(2-2) /2
® Number of possible assignments of n nodes to 2 partsJ‘ |
m Partitions with empty parts that do not represent cuts
® Swapping parts does not yield a new partition

Algorithm: Random Cut

® Return a uniformly random cut.
® Minor challenge: How to uniformly sample cuts?
= Represent cut using bit-string

Karlsruhe Institute of Technology

011111
V2

= Have to uniformly sample bit-string while avoiding 11...1 and 00...07

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

5

A Trivial Algorithm: Random Cut A“(IT

LObservation: There are 2"~1 — 1 cuts in a graph with n nodes.w A 011111

(2-2) /2
® Number of possible assignments of n nodes to 2 partsJ‘ |
m Partitions with empty parts that do not represent cuts

® Swapping parts does not yield a new partition
Algorithm: Random Cut

® Return a uniformly random cut.
® Minor challenge: How to uniformly sample cuts?
= Represent cut using bit-string
= Have to uniformly sample bit-string while avoiding 11...1 and 00...07
= intution: sample from U({0, 1}") and use rejection sampling

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

5

A Trivial Algorithm: Random Cut

LObservation: There are 2"~! — 1 cuts in a graph with n nodes.w

(2-2) /2
® Number of possible assignments of n nodes to 2 partsJ‘ |
m Partitions with empty parts that do not represent cuts
® Swapping parts does not yield a new partition

Algorithm: Random Cut

® Return a uniformly random cut.
® Minor challenge: How to uniformly sample cuts?
= Represent cut using bit-string

Karlsruhe Institute of Technology

011111
V2

= Have to uniformly sample bit-string while avoiding 11...1 and 00...07

= intution: sample from U({0, 1}") and use rejection sampling

= gctually for bounded running time: declare failure rather than sampling again

= samples each cut with probability 1/2"~1

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Random Cut: Analysis

Running time: O(n) much better than the Q(n?) in the deterministic setting , but...

6 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Random Cut: Analysis

Running time: O(n) much better than the Q(n?) in the deterministic setting , but...
Success probability: > 1/2"~1 “="if there is only one min-cut.

6 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Random Cut: Analysis

Running time: O(n) much better than the Q(n?) in the deterministic setting , but...
Success probability: > 1/2"~1 “="if there is only one min-cut.
— exponentially small!

6 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

6

AT

Random Cut: Analysis

Running time: O(n) much better than the Q(n®) in the deterministic setting , but...
Success probability: > 1/2"-1 “="if there is only one min-cut.
— exponentially small!

Amplification

m Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] > 1 — (1 —1/2"1)"

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

6

AT

Random Cut: Analysis

Running time: O(n) much better than the Q(n®) in the deterministic setting , but...
Success probability: > 1/2"-1 “="if there is only one min-cut.
— exponentially small!

Amplification
m Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] > 1 — (1 —1/2"1)"

¥

minimum

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

6

AT

Random Cut: Analysis

Running time: O(n) much better than the Q(n®) in the deterministic setting , but...
Success probability: > 1/2"-1 “="if there is only one min-cut.
— exponentially small!

Amplification
m Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] > 1 — (1 —1/2"1)"

v i

not minimum

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

6

AT

Random Cut: Analysis

Running time: O(n) much better than the Q(n®) in the deterministic setting , but...
Success probability: > 1/2"-1 “="if there is only one min-cut.
— exponentially small!

Amplification
m Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] > 1 — (1 —1/2"1)"

R,

not minimum t times

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

6

AT

Random Cut: Analysis

Running time: O(n) much better than the Q(n®) in the deterministic setting , but...
Success probability: > 1/2"-1 “="if there is only one min-cut.
— exponentially small!

Amplification
m Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] > 1 — (1 — 1/2”_1)t >1—e /2" [1+x<eforxeR)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

6

AT

Random Cut: Analysis

Running time: O(n) much better than the Q(n®) in the deterministic setting , but...
Success probability: > 1/2"-1 “="if there is only one min-cut.
— exponentially small!

Amplification
m Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] > 1 — (1 — 1/2”_1)t >1—e /2" [1+x<eforxeR)

® For t = 2"~ min cut found with constant probability 1 — 1/e ~ 0.63

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

6

Karlsruhe Institute of Technology

Random Cut: Analysis

Running time: O(n) much better than the Q(n®) in the deterministic setting , but...
Success probability: > 1/2"-1 “="if there is only one min-cut.
— exponentially small!

Amplification
m Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] > 1 — (1 — 1/2”_1)t >1—e /2" [1+x<eforxeR)

® For t = 2"~ min cut found with constant probability 1 — 1/e ~ 0.63
m For t = 2"~ . In(n) min cut found with high probability 1 — 1/n

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

6

Karlsruhe Institute of Technology

Random Cut: Analysis

Running time: O(n) much better than the Q(n®) in the deterministic setting , but...
Success probability: > 1/2"-1 “="if there is only one min-cut.
— exponentially small!

Amplification
m Repeat the algorithm to obtain t independent random cuts, return the smallest

Pr[“min cut found”] > 1— (1—1/2""Y)" >1—e /2" [1+x<eforxeR)
® For t = 2"~ min cut found with constant probability 1 — 1/e ~ 0.63 this is terrible
m For t = 271 - In(n) min cut found with high probability 1 — 1/n so far...

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm

Edge Contraction u
m Merge two adjacent nodes in a multigraph without self-loops

7 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm

Edge Contraction
= Merge two adjacent nodes in a multigraph without self-loops ” uv

7 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm

Edge Contraction
= Merge two adjacent nodes in a multigraph without self-loops » uv

7 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm
Edge Contraction

m Merge two adjacent nodes in a multigraph without self-loops U‘:W<> N
® A (multi) graph with two nodes has a unique cut-set

7 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm

Edge Contraction

m Merge two adjacent nodes in a multigraph without self-loops U‘:W<> N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm

® Motivation: distinguish non-essential

as well as essential edges
& hope there are few essential ones

7 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm
Edge Contraction non-essential
® Merge two adjacent nodes in a multigraph without self-loops » ' uy o

® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm essential
® Motivation: distinguish non-essential

as well as essential edges

& hope there are few essential ones

7 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm essential
® Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones
Karger(Go = (W, Eo))
fori=1ton—2do
sample e ~ U(E;_1)
G; «— G,-_l.contract(e)
return unique cut-set in G,_»

w

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm essential
® Motivation: distinguish non-essential

as well as essential edges

& hope there are few essential ones

Karger(Go = (W, Eo))
fori=1ton—2do // O(n)
sample e ~U(E;—1) // O(1)
G; + G;_1.contract(e)// O(n)
return unique cut-set in G,_»
® Running time in O(n?)
® Can be implemented to run in O(m)

w

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

AT

Karger’s Algorithm

Edge Contraction non-essential

m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential

as well as essential edges
& hope there are few essential ones

w

LObservation: A cut-set in G; is a cut-set Iin GO.W
(the converse does not hold)

m Let C be a cut-set in G;.

Karger(Go = (Vo, Eo)) ® G; \ C is disconnected
fori=1ton—-2do //O(n) m Assume C is not a cut-set in G.
sample e ~U(E;_1) // O(1) m Gy \ C is connected.
G; + G;_i.contract(e)// O(n) mG; \ C arises from Gg \ C by / edge contractions.
return unique cut-set in G,_» ® contractions cannot disconnect a graph

® Running time in O(n?)
® Can be implemented to run in O(m)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential
® Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k

Karger(Go = (W, Eo))
fori=1ton—2do // O(n)
sample e ~U(E;—1) // O(1)
G; + G;_1.contract(e)// O(n)
return unique cut-set in G,_»
® Running time in O(n?)
® Can be implemented to run in O(m)

w

LObservation: A cut-set in G; is a cut-set In GO.W

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential
® Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k

Karger(Go = (W, Ep)) g ="CinG;”
fori=1ton—2do // O(n) Pri&] =1— %
sample e ~U(E;—1) // O(1)
G; + G;_i.contract(e)// O(n)
return unique cut-set in G,_»
® Running time in O(n?)
® Can be implemented to run in O(m)

w

LObservation: A cut-set in G; is a cut-set In GO.W

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential
® Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k

Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]
fori=1ton—2do //O(n) Pri&] =1 - %
sample e ~U(E;—1) // O(1)
G; + G;_1.contract(e)// O(n)
return unique cut-set in G,_»
® Running time in O(n?)
® Can be implemented to run in O(m)

w

LObservation: A cut-set in G; is a cut-set In GO.W s

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential
® Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k

Karger(Go = (W, Ep)) aé ="“CinG;” LObservation: min-degree > k
fori=1ton—2do // O(n) Pri&i] =1 - % (holds for all G; due to 1st observation)
sample e ~U(E;—1) // O(1)
G; + G;_i.contract(e)// O(n)
return unique cut-set in G,_»
® Running time in O(n?)
® Can be implemented to run in O(m)

w

LObservation: A cut-set in G; is a cut-set In GO.W s

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential

m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential

as well as essential edges
& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k

Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

w

LObservation: A cut-set in G; is a cut-set In GO.W s

fori=1ton—2do // O(n) Pri&i] =1 - % l (holds for all G; due to 1st observation)
Sample eNZ/{(E,-_l) // O(].) m — %Zdeg(V)Z %Zkz %nk
G; + G;_j.contract(e)// O(n) vev vev

return unique cut-set in G,_»
® Running time in O(n?)
® Can be implemented to run in O(m)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential

m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential

as well as essential edges
& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k

Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

w

LObservation: A cut-set in G; is a cut-set In GO.W

fori=1ton—2do // O(n) Pri&i] =1 - % l (holds for all G; due to 1st observation)
sample e ~U(E;_1) // O(1) >1— f5 o %Zdeg(v)z %Zkz %nk
G; + G;_1.contract(e)// O(n) =12 eV vev

return unique cut-set in G,_»
® Running time in O(n?)
® Can be implemented to run in O(m)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential
® Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k

Karger(Go = (W, Ep)) aé ="“CinG;” LObservation: min-degree > k]
fori=1ton—2do // O(n) Pri&1] > 1 — % (holds for all G; due to 1st observation)
sample e ~U(E;—1) // O(1)
G; + G;_i.contract(e)// O(n)
return unique cut-set in G,_»
® Running time in O(n?)
® Can be implemented to run in O(m)

w

LObservation: A cut-set in G; is a cut-set In GO.W

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential

m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential

as well as essential edges
& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k

w

LObservation: A cut-set in G; is a cut-set In GO.W

Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]
fori=1ton—2do // O(n) Pri&1] > 1 — % (holds for all G; due to 1st observation)
sample e ~U(E;—1) //O(1 Pri&: [&] > 11— 25
G; «— G,-_l.contract(e)// O n) Enone of the k edges of C contracted

return unique cut-set in G,_» do not contract k edges in an n — 1-node graph

® Running time in O(n?)
® Can be implemented to run in O(m)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential
® Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k

Karger(Go = (W, Ep)) aé ="“CinG;” LObservation: min-degree > k]
fori=1ton—2do // O(n) Pri&1] > 1 — % (holds for all G; due to 1st observation)
sample e ~U(E;_1) // O(1) Pri& | &] > 1— 2, —Pr[& | &n...NE]>1— 2
G; + G;_i.contract(e)// O(n)
return unique cut-set in G,_»
® Running time in O(n?)
® Can be implemented to run in O(m)

w

LObservation: A cut-set in G; is a cut-set In GO.W

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential

m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential

as well as essential edges
& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k

Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

w

LObservation: A cut-set in G; is a cut-set In GO.W

fori=1ton—2do // O(n) Pri&1] > 1 — % (holds for all G; due to 1st observation)
sample e ~U(E;—1) // O(1) Pri&2 | &] > 1 - 2 —Pr&|&n...N&EL]>1— 2
G; + G;_1.contract(e)// O(n) Prl€qa] = Prl&a] - Pri€2 [1] ... Pr€nz | E11 ... N Ens]

return unique cut-set in G,_»
® Running time in O(n?)
® Can be implemented to run in O(m)

chain rule of probability

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential T - ;
as well as essential edges LObservatlon. A cut-set in G; is a cut-set in GO}

& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k
Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

w

fori=1ton—2do // O(n) Pri&1] > 1 — % (holds for all G; due to 1st observation)
sample e ~U(E;_1) // O(1) Pri&2 | &] > 1 - 2 —Pr&|&n...N&EL]>1— 2
G; + G;_1.contract(e)// O(n) Pri€n_] = Prl&] - Prl& | 1] - ... PrEn—a | E1 ... N En_s]
return uni -setin G,,_
eturn unique cut-setin G,_» > (1 _%)(1 — n31>< 1 — n32>_ _ _(1_%)(1_%)

® Running time in O(n?)
® Can be implemented to run in O(m)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential

® Merge two adjacent nodes in a multigraph without self-loops » " uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k

Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

LObservation: A cut-set in G; is a cut-set In GO.W

fori=1ton—2do // O(n) Pr[€i1] > 1 — % (holds for all G; due to 1st observation)
sample e ~U(E;—1) // O(1) Pri& | &] > 1— 2, —Pr[& | &n...NE]>1— 2
G; + G;_1.contract(e)// O(n) Pr€n_2] = Pr[&1] - Pr[& | E1] - ... Pr[Enz | E1 N ... N En_s]
return unique cut-set in G,_» >(1-2)(1 —-2)(1 =25) (1-2)(1-2
® Running time in O(n?) (T ”X T " 1)(T " 2) (T XT)
= Can be implemented to run in O(m) 1= 1=

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential T - ;
as well as essential edges LObservatlon. A cut-set in G; is a cut-set in GO}

& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k
Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

w

fori=1ton—2do // O(n) Pri&1] > 1 — % (holds for all G; due to 1st observation)
sample e ~U(E;—1) // O(1) Pri&2 | &] > 1 - 2 —Pr&|&n...N&EL]>1— 2
G; + G;_1.contract(e)// O(n) Pri€n_] = Prl&] - Prl& | 1] - ... PrEn—a | E1 ... N En_s]
return unique cut-set in G,,_ n 2\(n=1_ 2 \(n=2 2 4 2\(3 2
d ° = (F_;)(n—l o n—1><n—2 n=2) ' '(Z_Z)(g _5)

® Running time in O(n?)
® Can be implemented to run in O(m)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential

® Merge two adjacent nodes in a multigraph without self-loops » " uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

Karger(Go = (W, Eo))
fori=1ton—2do // O(n)
sample e ~U(E;—1) // O(1)
G; + G;_i.contract(e)// O(n)
return unique cut-set in G,_»
® Running time in O(n?)
® Can be implemented to run in O(m)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

LObservation: A cut-set in G; is a cut-set In GO.W

® Consider min-cut in Gy with cut-set C and |C| = k
ng =“CinGy LObservation: min-degree > k]
Pri&1] >1-2 (holds for all G; due to 1st observation)
Pri& | &] >1—- 2 —Pr[&|&n...NEL] > 1 - =
Pri€n_] = Pr[&1] - Prl&2 | E1] - ... - Pr[En_a | E1 01 ... N En_s]

()) ()

Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential T - ;
as well as essential edges LObservatlon. A cut-set in G; is a cut-set in GO}

& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k
Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

w

fori=1ton—2do // O(n) Pri&1] > 1 — % (holds for all G; due to 1st observation)
sample e ~U(E;_1) // O(1) Pri&2 | &] > 1 - 2 —Pr&|&n...N&EL]>1— 2
G; + G;_1.contract(e)// O(n) Pri€n_] = Prl&] - Prl& | 1] - ... PrEn—a | E1 ... N En_s]

return unique cut-set in G,,_» > (n;Z)(Z:f)(Z:g) _ (421)(%)

® Running time in O(n?)
® Can be implemented to run in O(m)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential T - ;
as well as essential edges LObservatlon. A cut-set in G; is a cut-set in GO}

& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k
Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

w

fori=1ton—2do // O(n) Pri&1] > 1 — % (holds for all G; due to 1st observation)
sample e ~U(E;—1) // O(1) Pri&2 | &] > 1 - 2 —Pr&|&n...N&EL]>1— 2
G; + G;_1.contract(e)// O(n) Pri€n_] = Prl&] - Prl& | 1] - ... PrEn—a | E1 ... N En_s]

return uni -setin G,,_ n— n—

eturn unique cut-setin G,_» > (p,nzz)(n—:f)(ﬁ/z}) _ (421)(é)

® Running time in O(n?)
® Can be implemented to run in O(m)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karlsruhe Institute of Technology

Karger’s Algorithm

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential T - ;
as well as essential edges LObservatlon. A cut-set in G; is a cut-set in GO}

& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k
Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

w

fori=1ton—2do // O(n) Pri&1] > 1 — % (holds for all G; due to 1st observation)
sample e ~U(E;—1) // O(1) Pri&2 | &] > 1 - 2 —Pr&|&n...N&EL]>1— 2
G; + G;_1.contract(e)// O(n) Pri€n_] = Prl&] - Prl& | 1] - ... PrEn—a | E1 ... N En_s]
return unique cut-set in G,,_ n—2 n—3 4 2 1
5 2 2 ()2 —==—) =)

® Running time in O(n?)
® Can be implemented to run in O(m)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

7

Karger’s Algorithm A“(IT

Edge Contraction non-essential
m Merge two adjacent nodes in a multigraph without self-loops ' uv N
® A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm Success Probability essential

® Motivation: distinguish non-essential T - ;
as well as essential edges LObservatlon. A cut-set in G; is a cut-set in GO}

& hope there are few essential ones m Consider min-cut in Gy with cut-set C and |C| = k
Karger(Go = (W, Eop)) g ="“CinG;” LObservation: min-degree > k]

w

fori=1ton—2do // O(n) Pri&1] > 1 — % (holds for all G; due to 1st observation)
sample e ~U(E;—1) // O(1) Pri&2 | &] > 1 - 2 —Pr&|&n...N&EL]>1— 2
G; + G;_1.contract(e)// O(n) Pri€n_] = Prl&] - Prl& | 1] - ... PrEn—a | E1 ... N En_s]
return unique cut-set in G,_» S (=2 _n—=3 =\ [2 1
= Running time in O(n?) (.) 2”_1 S5) =)
® Can be implemented to run in O(m) BRI G

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a
minimum cut with probability at least .

8 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

Success probability > p\
Number of repetitions t
Amplified prob. > 1 — e P*

8 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

: 1 Success probability > p\
7 _ ” > . _l _ — - -
Prl'min-cut found”] = 1 — exp(n? t)=1 n Number of repetitions t
t for + — n; In(n) \Amplified prob. > 1 — e F*

8 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

: 1 Success probability > p\

17 _ 9 > . _l _ — - -
Pr[min-cut founa] > 1 exp(n t) 1 n Number of repetitions t
for + — n; In(n) \Amplified prob. > 1 — e F*

Corollary: On a graph with n nodes, O(n?log(n)) Karger repetitions run in O(n* Iog(n))\
total time and return a min-cut with high probability.

8 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

: 1 Success probability > p\

17 _ 9 > . _l _ — - -
Pr[min-cut founa] > 1 exp(n t) 1 n Number of repetitions t
for + — n; In(n) \Amplified prob. > 1 — e F*

Corollary: On a graph with n nodes, O(n? log(n)) Karger repetitions run in O(n* Iog(n))\
tOtaI t|me and return a mln-CUt Wlth hlgh prObablllty Much better than exp. time of Randomized Cut!

8 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

8

Karger’s Algorithm Amplified

Karlsruhe Institute of Technology

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)

[minimum cut with probability at least 3.

. 1
Pr[“min-cut found”] > 1 —exp(—% - t) =1 — =
n

for t = ”72 In(n)

Success probability > p\
Number of repetitions t
Amplified prob. > 1 — e P*

Corollary: On a graph with n nodes, O(n? log(n)) Karger repetitions run in O(n* Iog(n))\
tOtaI t|me and return a mln-CUt Wlth hlgh prObablllty Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

mletCy,..., C, be all the min-cuts in G and £/ _, for i € [€] be the event that C; is returned

by Karger’s algorithm

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

Karger’s Algorithm Amplified

: 1 Success probability > p\
T _ 9 > . _l _ — - -
Pr[min-cut founa] > 1 exp(n t) 1 n Number of repetitions t
for + — n; In(n) \Amplified prob. > 1 — e F*

tOtaI t|me and return a mln-CUt W|th h|gh prObabI|Ity Much better than exp. time of Randomized Cut!

[Corollary: On a graph with n nodes, O(n?log(n)) Karger repetitions run in O(n* Iog(n))\

Sidenote: Number of minimum cuts

mletCy,..., C, be all the min-cuts in G and £/ _, for i € [€] be the event that C; is returned
by Karger’s algorithm

= Just seen: Pr[€]_,] > 2

8 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

: 1 Success probability > p\
T _ 9 > . _l _ — - -
Pr[min-cut founa] > 1 exp(n t) 1 n Number of repetitions t
for + — n; In(n) \Amplified prob. > 1 — e F*

Corollary: On a graph with n nodes, O(n? log(n)) Karger repetitions run in O(n* Iog(n))\
tOtaI t|me and return a mln-CUt Wlth hlgh prObablllty Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

mletCy,...,C,be all the min-cuts in G and &! , for i € [{] be the event that C; is returned
by Karger’s algorithm ——

= Just seen: Pr[€]_,] > 2

disjoint, since the algorithm returns only one cut

8 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

: 1 Success probability > p\
T _ 9 > . _l _ — - -
Pr[min-cut founa] > 1 exp(n t) 1 n Number of repetitions t
for + — n; In(n) \Amplified prob. > 1 — e F*

tOtaI t|me and return a mln-CUt W|th h|gh prObabI|Ity Much better than exp. time of Randomized Cut!

[Corollary: On a graph with n nodes, O(n?log(n)) Karger repetitions run in O(n* Iog(n))\

Sidenote: Number of minimum cuts

mletCy,...,C,be all the min-cuts in G and &! , for i € [{] be the event that C; is returned
by Karger’s algorithm ——

= Just seen: Pr[€]_,] > 2

Pr [Uie[e] ;'1—2] — Zie[z] Pr[gll;—2] > i_f

disjoint, since the algorithm returns only one cut

8 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

: 1 Success probability > p\
T _ 9 > . _l _ — - -
Pr[min-cut founa] > 1 exp(n t) 1 n Number of repetitions t
for + — n; In(n) \Amplified prob. > 1 — e F*

tOtaI t|me and return a mln-CUt W|th h|gh prObabI|Ity Much better than exp. time of Randomized Cut!

[Corollary: On a graph with n nodes, O(n?log(n)) Karger repetitions run in O(n* Iog(n))\

Sidenote: Number of minimum cuts

mletCy,...,C,be all the min-cuts in G and &! , for i € [{] be the event that C; is returned
by Karger’s algorithm ——

= Just seen: Pr[€]_,] > 2

1> Pr [Uie[l] ;'1—2} — Z,’e[z] Pr[gll’.l—2] > i_2£

disjoint, since the algorithm returns only one cut

8 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n?) time and returns a)
minimum cut with probability at least .

: 1 Success probability > p\
T _ 9 > . _l _ — - -
Pr[min-cut founa] > 1 exp(n t) 1 n Number of repetitions t
for + — n; In(n) \Amplified prob. > 1 — e F*

Corollary: On a graph with n nodes, O(n? log(n)) Karger repetitions run in O(n* Iog(n))\
tOtaI t|me and return a mln-CUt Wlth hlgh prObablllty Much better than exp. time of Randomized Cut!

Sidenote: Number of minimum cuts

mletCy,...,C,be all the min-cuts in G and &! , for i € [{] be the event that C; is returned
by Karger’s algorithm ——

= Just seen: Pr[€]_,] > 2

1> Pr [Uie[l] ;'1—2} — Z,’e[z] Pr[gll’.l—2] > i_2£

disjoint, since the algorithm returns only one cut

Observation: £ < ”72 }

8 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Pr[€i] = Pr[&1] - Pr[& | &) - ... - Prl& | &1 N Eid]

= (1-0)0- 22 1 72 - (1) 0

9 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Pr[€i] = Pr[&1] - Pr[& | &) - ... - Prl& | &1 N Eid]

> (1) (175175) (-7
- (22 (=) (=) (55 ()

9 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Prl€] = Pr[&1] - Pr[&a | &) -... - Pr[& | E1n ... N Eiza]
= (1 _%Xl_ n31>(1_ n32) ' '(1_n—%—|—2>(_n—%—l—l>
- (2222) ())

9 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

9

More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Pr[E,-] = Pr[€1] . Pr[82 | 81] L PI’[S,‘ ’ EiN...N 8,-_1]
= (1 _%Xl_ n31>(1_ n32) ' '(1_n—%—|—2>(_n—%—l—l>
- (D) k)

_(n=i)n—i—=1) _(n—i=1)(n—i—-1) i+ 1\2
B n(n—1) = n-n _< n)

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

Karlsruhe Institute of Technology

Pr[5,-]

1/2

Institute of Theoretical Informatics, Algorithm Engineering

9

More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Pr[€i] = Pr[&1] - Pr[& | &) - ... - Prl& | &1 N Eid]

(-9 21) i)
()R))

:(n—i)(n—i—l) (n—i—1)(n—i—1) (1_14-1)2.

n(n—1) - n-n n

m Probability becomes very small only towards the
very end.

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

AT

e of Technology

Pr[5,-]

1/2

Institute of Theoretical Informatics, Algorithm Engineering

9

More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Pr[€i] = Pr[&1] - Pr[& | &) - ... - Prl& | &1 N Eid]
)

2 (1)1 172 i ,+2)(-

n
- (TG ())
_ (n—rl;zf,n_—li)—l) > (n—l—:,)(’l:—/—l) (1_ 1-|,;1)2.

m Probability becomes very small only towards the
very end.

m |dea: stop when a min-cut is still likely to exist and recurse

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

AT

e of Technology

Pr[5,-]

Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

More Amplification: Karger-Stein

Motivation
® Probability that a min-cut survives i contractions

Pr[E,-] = Pr[€1] . Pr[82 | 81] L PI’[S,‘ ’ EiN...N 8,-_1]
= (1 _%Xl_ n31)(1_ n32) ' '(1_n—%—|—2)(_n—%—l—l>
- (D) k)

(n—i)(n—i—=1) _ (n—i—1)(n—1i—-1) i+ 1\2
- n(n—1) = n-n :< n)

m Probability becomes very small only towards the
very end.

m |dea: stop when a min-cut is still likely to exist and recurse
m After s = n — n/+/2 — 1 steps we have

Prigd 2 (1= 2=0V2Y (11— 1v2)) = (vR) =

Pr[5,-]

9 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

9

Karlsruhe Institute of Technology

Motivation i _
® Probability that a min-cut survives i contractions K:argerSteln(Go = (10, EO).)
if [Vo| = 2 then return unique cut-set

Pri€i] = Pr[&] - Pr[& [&] ... - Pr[&i [&N N Ei] |V|
fori=1tos=|W| -2 —1do

More Amplification: Karger-Stein

2 2 2
> (1 n><]- n—l)(—2) (n— I—|—2>(—|—1> Sample e ~v M(EI 1)
n—72 n—4 n—i n—i—1
:(n)(ﬁ)@,{)(n—i+2)(ﬁ%‘ﬂ’) G; <+ G;_i.contract(e)
_(n=i(n—i=1) _ (n—i=1)(n—i-1) ~(1- I+1)2_ C,; «+ KargerStein(G,) //inde-
n(n—1) - n-n n // pendent

= Probability becomes very small only towards the €2 ¢ KargerStein(Gs) //runs

very end. return smaller of C;, G

m |dea: stop when a min-cut is still likely to exist and recurse
m After s = n — n/+/2 — 1 steps we have

Pr[&] > (1 _ Iz Z/ﬁ) - (1 —(1- 1/\6))2 = (1/v2)* ==

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger-Stein: Running Time e

KargerStein(Gy = (W, Eo))

(1) if |W| = 2 then return unique cut-set

(n) fori=1t0s=|v| -4 —1do
// O(1) sample e ~ U(E;_ 1)

(n) G; « G;_y.contract(e)
C, « KargerStein(G,) // inde-

// pendent

C, «+ KargerStein(Gs) // runs

return smaller of C¢, (5

10 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger-Stein: Running Time e

Recursion KargerStein(Gy = (W, Eo))
" Aftert = n—n/v2-1stepsthe number 5y Vp| = 2 then return unique cut-set
of nodes is n/v/2 + 1 fori=1tos= |V — |Vo| _1do

(1)
(n)
T(n) = 2T (i + 1) +O(n?) [FO(1) sample e ~ U(E;— 1)
V2 (n) G; « G;_y.contract(e)
C; + KargerStein(G;) //inde-
// pendent
C2 — KargerSteln(G) // runs

return smaller of C¢, (5

10 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger-Stein: Running Time A
Recursion KargerStein(Go = (Vp, Ep))
0 A;‘teré = .”—'/”’\/%2@;11 steps the number // O(1) if |Vp| = 2 then return unique cut-set

of nodes is n

/1O(n) fori=1t0os=|W| — |V°| —1do
T(n) = 2T (L 4 1) +O(n?) [1O(1) sample e ~ U(E;_ 1)
V2 /I O(n) G; « G;_;.contract(e)
Solution (essentially by Master Theorem) C1 « KargerStein(G;) /inde.
, C, «+ KargerStein(G;) // I?uns
T(n) = O(n” log n) return smaller of Cy, C,

10 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most

L before calling itself recursively

11 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

Karlsruhe Institute of Technology

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1

L before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability each).

What is the probability py that a green root-to-leaf path exists?

11 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

11

AT

Karger-Stein: Success Probability \ e

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1

L before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability each).

What is the probability py that a green root-to-leaf path exists?

po =1/2//rootgreen pg = (1 — (1 — pg_1)?) // root green, not no path in both left and right subtree

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

11

Karlsruhe Institute of Technology

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1

L before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability each).

What is the probability py that a green root-to-leaf path exists?

po = 1/2 //rootgreen pg = l(1 — (1 — pg—_1)?) // root green, not no path in both left and right subtree

Claim: p, > d+2 Proof by induction.

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

11

AT

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1

L before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability each).

What is the probability py that a green root-to-leaf path exists?

po = 1/2 //rootgreen pg = l(1 — (1 — pg—_1)?) // root green, not no path in both left and right subtree

Claim: p, > d+2 Proof by mductlon

11
Pp=5=g53 Y l
_ 1 2 2y _ 1 2 1
pa = 5(1 = (1~ pa—1)°) > (1_(1_d+1)—§(d+1_(d+1)2)
1 2d+2—1 __ 1 2d+1 1 2d 1 2~ a1
— 2 (dt1)2 — 2 Fi2di1l 2 2 diad — dpa //forl<a<bwehave § > i=

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

11

AT

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1

L before calling itself recursively

Auxiliary Problem

Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability each).

What is the probability py that a green root-to-leaf path exists?

po = 1/2 //rootgreen pg = l(1 — (1 — pg—_1)?) // root green, not no path in both left and right subtree

Claim: p, > d+2 Proof by mductlon

11
Pp=5=g53 Y l
_ 1 2 2\ __1(2 1
pa = 5(1 = (1~ pa—1)°) > (1_(1_d+1)—§(d+1_(d+1)2)
1 2d42-1 _ 1 2d+1 1 2d 1 2 < a1
2 (di1? T 2 di2dil 2 2 daod — dp //forl<a<bwehave § > i=

Corollary: Karger-Stein succeeds with probability at least piog_,(n) = m.

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in O(n? log(n)) time and returns a
minimum cut with probability at least 1/0(log(n)).

12 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in O(n? log(n)) time and returns a
minimum cut with probability at least 1/0(log(n)).

Amplification w
Success probability > p

Number of repetitions t
Amplified prob. > 1 — e P*

12 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Karger-Stein Amplified \ e

Theorem: On a graph with n nodes, Karger-Stein runs in O(n? log(n)) time and returns a
minimum cut with probability at least 1/0(log(n)).

Amplification)
Success probability > p
1] H 7 t 1
Pr[“min-cut found”] > 1—exp ~ O(log(n) =1-0 | - Number of repetitions ¢
t Amplified prob. > 1 — e P*
for t = Iog (n) N

12 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

Karger-Stein Amplified A“(IT

Theorem: On a graph with n nodes, Karger-Stein runs in O(n? log(n)) time and returns a
minimum cut with probability at least 1/0(log(n)).

Amplification ")
_ # 1 Success probability > p
Pr[“min-cut found”] > 1—exp (—) =1-0 (—) Number of repetitions ¢
Ollog(n)) t " 5 Amplified prob. > 1 — e™?*
for t = log®(n) N -
Corollary: On a graph with n nodes, O(log®(n)) repetitions of Karger-Stein run in
O(n? log>(n)) total time and return a minimum cut with high probability.

12 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

12

Karger-Stein Amplified A“(IT

Theorem: On a graph with n nodes, Karger-Stein runs in O(n? log(n)) time and returns a
minimum cut with probability at least 1/0(log(n)).

Amplification ")
_ # 1 Success probability > p
Pr[“min-cut found”] > 1—exp (—) =1-0 (—) Number of repetitions ¢
Ollog(n)) t " 5 Amplified prob. > 1 — e™?*
for t = log®(n) N -
Corollary: On a graph with n nodes, O(log®(n)) repetitions of Karger-Stein run in
O(n? log>(n)) total time and return a minimum cut with high probability.

» Compared to O(n* log(n)) for Karger
» Compared to Q(n?) for deterministic approaches

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

]
C o n CI u S I o n Karlsruhe Institute of Technology

Minimum Cut B

® Fundamental graph problem \i

= Many deterministic flow-based algorithms ... N

® ... with worst-case running times in Q(n?) ..

13 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Conclusion
Minimum Cut B

® Fundamental graph problem \i

® Many deterministic flow-based algorithms ... \‘

® ... with worst-case running times in Q(n>) .,

Randomized Algorithms
m Karger’s edge-contraction algorithm

13 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

13

Conclusion

Minimum Cut
® Fundamental graph problem

® Many deterministic flow-based algorithms ...
® ... with worst-case running times in Q(n°)

Randomized Algorithms
m Karger’s edge-contraction algorithm

Probability Amplification

@ Monte Carlo algorithms with and without biases

® Repetitions amplify success probability

m Karger-Stein: Amplify before failure probability gets large

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing

AT

Karlsruhe Institute of Technology

.~~~
) S
.
|\
X
\
kN
~§

~N

Correct Answer
X v
true false
X neg neg

false true
v pos pos

Algo Output

Vs

Institute of Theoretical Informatics, Algorithm Engineering

13

Conclusion A“(IT

Karlsruhe Institute of Technology

Minimum Cut B

® Fundamental graph problem \i

® Many deterministic flow-based algorithms ... \‘
‘Q

® ... with worst-case running times in Q(n?)

Randomized Algorithms
m Karger’s edge-contraction algorithm

~N

Probability Amplification Gorect pnaver
= Monte Carlo algorithms with and without biases x e false

® Repetitions amplify success probability
m Karger-Stein: Amplify before failure probability gets large
Outlook

L“Minimum cuts in near-linear time”, Karger, J.Acm. ’001 L“Faster algorithms for edge connectivity via random 2-out contractions”, Ghaffari & Nowicki & Thorup, SODA’ZO]

false true
v pos pos

Algo Output

Vs

Success w.h.p. in time O(m Iog3(n)) Success w.h.p. in time O(mlog(n)) and O(m + n Iog3(n))

Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

AT

Possible Exam Questions

® What is a Monte Carlo algorithm?
® Which variants exist?
® What is meant by probability amplification?
® How does probability amplification work...
® ... in the case of one-sided error?
® ... in the case of two-sided error?

® ... for optimization problems?
® How does the error probability relate to the number of repetitions?

® What is the Minimum Cut problem?
® What do the best known deterministic algorithms achieve?
m What are success probability and running time of the trivial random cut algorithm?

® How does Karger’s algorithm work?
® What does Pr[€:] mean, and how did we estimate this probability?

® What follows for the running time and success probability?

® How is the algorithm by Karger and Stein obtained from Karger’s algorithm?
® How did we estimate the success probability and running time?

® How do we achieve a success probability of 1 — %?

14 Stefan Walzer (Slides adapted from Max Katzmann) — Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering

