
1

Probability & Computing

Probability Amplification

www.kit.eduKIT – The Research University in the Helmholtz Association

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering2

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p ∈ (0; 1).

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering2

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p ∈ (0; 1).

In decision problems p is the probability of giving the correct answer
One-sided error: either false-biased or true-biased

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

true
neg

✗ ✓

✗

✓

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering2

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p ∈ (0; 1).

In decision problems p is the probability of giving the correct answer
One-sided error: either false-biased or true-biased

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

true
neg

answers are always correct
answers may be incorrect

✗

✓

✗ ✓

✗

✓

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering2

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p ∈ (0; 1).

In decision problems p is the probability of giving the correct answer
One-sided error: either false-biased or true-biased

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

true
neg

answers are always correct
answers may be incorrect

✓
✗

✗ ✓

✗

✓

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering2

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p ∈ (0; 1).

In decision problems p is the probability of giving the correct answer
One-sided error: either false-biased or true-biased
Two-sided error: no bias

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

true
neg

answers may be incorrect
✗

✓

answers may be incorrect

✗ ✓

✗

✓

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering2

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p ∈ (0; 1).

In decision problems p is the probability of giving the correct answer
One-sided error: either false-biased or true-biased
Two-sided error: no bias

In optimization problems p is the probability of finding the optimum A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

true
neg

✗ ✓

✗

✓

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering2

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p ∈ (0; 1).

In decision problems p is the probability of giving the correct answer
One-sided error: either false-biased or true-biased
Two-sided error: no bias

In optimization problems p is the probability of finding the optimum

Definition: Probability amplification is the process of increasing the success probability
of a Monte Carlo algorithm by using multiple runs.

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

true
neg

✗ ✓

✗

✓

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering2

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p ∈ (0; 1).

In decision problems p is the probability of giving the correct answer
One-sided error: either false-biased or true-biased
Two-sided error: no bias

In optimization problems p is the probability of finding the optimum

Definition: Probability amplification is the process of increasing the success probability
of a Monte Carlo algorithm by using multiple runs.

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

true
neg

✗ ✓

✗

✓

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering2

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p ∈ (0; 1).

In decision problems p is the probability of giving the correct answer
One-sided error: either false-biased or true-biased
Two-sided error: no bias

In optimization problems p is the probability of finding the optimum

Definition: Probability amplification is the process of increasing the success probability
of a Monte Carlo algorithm by using multiple runs.

Pr[“correct”] ≥ 1− (1− p)t ≥ 1− e−pt

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

true
neg

answers are always correct
answers may be incorrect

✓
✗

✗ ✓

✗

✓

Probability Amplification for true-biased algorithms
Execute independently t times.

If Xat least once: Return X. (surely correct)
Otherwise: Return ✗. 1 + x ≤ ex for x ∈ R

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering2

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p ∈ (0; 1).

In decision problems p is the probability of giving the correct answer
One-sided error: either false-biased or true-biased
Two-sided error: no bias

In optimization problems p is the probability of finding the optimum

Definition: Probability amplification is the process of increasing the success probability
of a Monte Carlo algorithm by using multiple runs.

Pr[“correct”] ≥ 1− (1− p)t ≥ 1− e−pt

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

true
neg

✗ ✓

✗

✓

Probability Amplification for true-biased algorithms
Execute independently t times.

If Xat least once: Return X. (surely correct)
Otherwise: Return ✗. 1 + x ≤ ex for x ∈ R

Exercise: For two-sided error.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering2

Probability Amplification

Definition: A Monte Carlo Algorithm is a randomized algorithm with bounded running
time that, for each input, answers correctly with probability at least p ∈ (0; 1).

In decision problems p is the probability of giving the correct answer
One-sided error: either false-biased or true-biased
Two-sided error: no bias

In optimization problems p is the probability of finding the optimum

Definition: Probability amplification is the process of increasing the success probability
of a Monte Carlo algorithm by using multiple runs.

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

true
neg

✗ ✓

✗

✓

Pr[“optimal”] ≥ 1− (1− p)t ≥ 1− e−pt

Probability Amplification for optimization algorithms
Execute independently t times.

output best result

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering3

The Clustering Problem

Input
Set P of points in a feature space (e.g., Rd)
Similarity measure ff : P × P 7→ R+

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering3

The Clustering Problem

Input
Set P of points in a feature space (e.g., Rd)
Similarity measure ff : P × P 7→ R+

R2

Example
six points in R2

ff is the inversed Euclidean
distance

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering3

The Clustering Problem

Input
Set P of points in a feature space (e.g., Rd)
Similarity measure ff : P × P 7→ R+

Output: P1; : : : ; Pk such that
Points within a Pi have high similarity
Points in distinct Pi , Pj have low similarity

R2

Example
six points in R2

ff is the inversed Euclidean
distance
partition into two sets

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering3

The Clustering Problem

Input
Set P of points in a feature space (e.g., Rd)
Similarity measure ff : P × P 7→ R+

Output: P1; : : : ; Pk such that
Points within a Pi have high similarity
Points in distinct Pi , Pj have low similarity

R2

Example
six points in R2

ff is the inversed Euclidean
distance
partition into two sets

P1

P2

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering3

The Clustering Problem

Input
Set P of points in a feature space (e.g., Rd)
Similarity measure ff : P × P 7→ R+

Output: P1; : : : ; Pk such that
Points within a Pi have high similarity
Points in distinct Pi , Pj have low similarity

R2

Example
six points in R2

ff is the inversed Euclidean
distance
partition into two sets

Applications: Compression, medical diagnosis, etc.

P1

P2

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering3

The Clustering Problem

Input
Set P of points in a feature space (e.g., Rd)
Similarity measure ff : P × P 7→ R+

Output: P1; : : : ; Pk such that
Points within a Pi have high similarity
Points in distinct Pi , Pj have low similarity

R2

Example
six points in R2

ff is the inversed Euclidean
distance
partition into two sets

Approach: Model as graph
Each point is a node
Edges between all node pairs, with the weight given by
the similarity of the two nodes

Applications: Compression, medical diagnosis, etc.

long = low weight

short = high weight

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering3

The Clustering Problem

Input
Set P of points in a feature space (e.g., Rd)
Similarity measure ff : P × P 7→ R+

Output: P1; : : : ; Pk such that
Points within a Pi have high similarity
Points in distinct Pi , Pj have low similarity

R2

Example
six points in R2

ff is the inversed Euclidean
distance
partition into two sets

Approach: Model as graph
Each point is a node
Edges between all node pairs, with the weight given by
the similarity of the two nodes
Find cut-set (edges to remove) of minimal weight such
that the graph decomposes into k components.

Applications: Compression, medical diagnosis, etc.

long = low weight

short = high weight

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering3

The Clustering Problem

Input
Set P of points in a feature space (e.g., Rd)
Similarity measure ff : P × P 7→ R+

Output: P1; : : : ; Pk such that
Points within a Pi have high similarity
Points in distinct Pi , Pj have low similarity

R2

Example
six points in R2

ff is the inversed Euclidean
distance
partition into two sets

Approach: Model as graph
Each point is a node
Edges between all node pairs, with the weight given by
the similarity of the two nodes
Find cut-set (edges to remove) of minimal weight such
that the graph decomposes into k components.

Applications: Compression, medical diagnosis, etc.

Today
k = 2 and ff : P × P 7→ {0; 1}

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering4

Computing Min Cuts

Cuts
G = (V; E) an unweighted, undirected, connected graph

Cut : partition of V into non-empty parts V1, V2.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering4

Computing Min Cuts

Cuts
G = (V; E) an unweighted, undirected, connected graph

Cut : partition of V into non-empty parts V1, V2.
V1

V2

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering4

Computing Min Cuts

Cuts
G = (V; E) an unweighted, undirected, connected graph

Cut : partition of V into non-empty parts V1, V2.

V1

V2

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering4

Computing Min Cuts

Cuts
G = (V; E) an unweighted, undirected, connected graph

Cut : partition of V into non-empty parts V1, V2.

V1

V2Cut-set : set of edges with endpoints in V1 and V2

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering4

Computing Min Cuts

Cuts
G = (V; E) an unweighted, undirected, connected graph

Cut : partition of V into non-empty parts V1, V2.

V1

V2Cut-set : set of edges with endpoints in V1 and V2
Weight of a cut : size of the cut-set (or sum of weights in a weighted graph)

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering4

Computing Min Cuts

Cuts
G = (V; E) an unweighted, undirected, connected graph

Cut : partition of V into non-empty parts V1, V2.

V1

V2Cut-set : set of edges with endpoints in V1 and V2
Weight of a cut : size of the cut-set (or sum of weights in a weighted graph)

Known deterministic strategies have worst case running time Ω(n3).

Today Goal: Compute a Min-Cut

We’ll see randomised algorithm with running time O(n2 · log3(n)).

i.e. a cut of minimum weight or cut-set of minimum size
the weight of the min-cut is known as the edge-connectivity of G

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering5

A Trivial Algorithm: Random Cut

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering5

A Trivial Algorithm: Random Cut

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
2n

V1

V2

111000

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering5

A Trivial Algorithm: Random Cut

100000
V1

V2

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
2n

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering5

A Trivial Algorithm: Random Cut

111111
V1Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
Partitions with empty parts that do not represent cuts

−22n

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering5

A Trivial Algorithm: Random Cut

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
Partitions with empty parts that do not represent cuts

−22n

000000
V2

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering5

A Trivial Algorithm: Random Cut

100000
V1

V2

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
Partitions with empty parts that do not represent cuts

−22n

Swapping parts does not yield a new partition

=2()

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering5

A Trivial Algorithm: Random Cut

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
Partitions with empty parts that do not represent cuts

−22n

Swapping parts does not yield a new partition

=2()

011111
V2

V1

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering5

A Trivial Algorithm: Random Cut

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
Partitions with empty parts that do not represent cuts

−22n

Swapping parts does not yield a new partition

=2()

011111
V2

V1

Algorithm: Random Cut
Return a uniformly random cut.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering5

A Trivial Algorithm: Random Cut

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
Partitions with empty parts that do not represent cuts

−22n

Swapping parts does not yield a new partition

=2()

011111
V2

V1

Algorithm: Random Cut
Return a uniformly random cut.
Minor challenge: How to uniformly sample cuts?

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering5

A Trivial Algorithm: Random Cut

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
Partitions with empty parts that do not represent cuts

−22n

Swapping parts does not yield a new partition

=2()

011111
V2

V1

Algorithm: Random Cut
Return a uniformly random cut.
Minor challenge: How to uniformly sample cuts?

Represent cut using bit-string

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering5

A Trivial Algorithm: Random Cut

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
Partitions with empty parts that do not represent cuts

−22n

Swapping parts does not yield a new partition

=2()

011111
V2

V1

Algorithm: Random Cut
Return a uniformly random cut.
Minor challenge: How to uniformly sample cuts?

Represent cut using bit-string
Have to uniformly sample bit-string while avoiding 11...1 and 00...0?

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering5

A Trivial Algorithm: Random Cut

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
Partitions with empty parts that do not represent cuts

−22n

Swapping parts does not yield a new partition

=2()

011111
V2

V1

Algorithm: Random Cut
Return a uniformly random cut.
Minor challenge: How to uniformly sample cuts?

Represent cut using bit-string
Have to uniformly sample bit-string while avoiding 11...1 and 00...0?

intution: sample from U({0; 1}n) and use rejection sampling

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering5

A Trivial Algorithm: Random Cut

Observation: There are 2n−1 − 1 cuts in a graph with n nodes.

Number of possible assignments of n nodes to 2 parts
Partitions with empty parts that do not represent cuts

−22n

Swapping parts does not yield a new partition

=2()

011111
V2

V1

Algorithm: Random Cut
Return a uniformly random cut.
Minor challenge: How to uniformly sample cuts?

Represent cut using bit-string
Have to uniformly sample bit-string while avoiding 11...1 and 00...0?

intution: sample from U({0; 1}n) and use rejection sampling
actually for bounded running time: declare failure rather than sampling again
samples each cut with probability 1=2n−1

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering6

Random Cut: Analysis

Running time: O(n) much better than the Ω(n3) in the deterministic setting , but...

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering6

Random Cut: Analysis

Running time: O(n)
Success probability: ≥ 1=2n−1

much better than the Ω(n3) in the deterministic setting , but...
“=” if there is only one min-cut.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering6

Random Cut: Analysis

Running time: O(n)
Success probability: ≥ 1=2n−1

much better than the Ω(n3) in the deterministic setting , but...
“=” if there is only one min-cut.

→ exponentially small!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering6

Random Cut: Analysis

Amplification

Running time: O(n)
Success probability: ≥ 1=2n−1

Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] ≥ 1−

`
1− 1=2n−1

´t

much better than the Ω(n3) in the deterministic setting , but...
“=” if there is only one min-cut.

→ exponentially small!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering6

Random Cut: Analysis

Amplification

Running time: O(n)
Success probability: ≥ 1=2n−1

Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] ≥ 1−

`
1− 1=2n−1

´t
minimum

much better than the Ω(n3) in the deterministic setting , but...
“=” if there is only one min-cut.

→ exponentially small!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering6

Random Cut: Analysis

Amplification

Running time: O(n)
Success probability: ≥ 1=2n−1

Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] ≥ 1−

`
1− 1=2n−1

´t
minimumnot

much better than the Ω(n3) in the deterministic setting , but...
“=” if there is only one min-cut.

→ exponentially small!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering6

Random Cut: Analysis

Amplification

Running time: O(n)
Success probability: ≥ 1=2n−1

Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] ≥ 1−

`
1− 1=2n−1

´t
minimum t timesnot

much better than the Ω(n3) in the deterministic setting , but...
“=” if there is only one min-cut.

→ exponentially small!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering6

Random Cut: Analysis

Amplification

Running time: O(n)
Success probability: ≥ 1=2n−1

Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] ≥ 1−

`
1− 1=2n−1

´t ≥ 1− e−t=2n−1
1 + x ≤ ex for x ∈ R

much better than the Ω(n3) in the deterministic setting , but...
“=” if there is only one min-cut.

→ exponentially small!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering6

Random Cut: Analysis

Amplification

Running time: O(n)
Success probability: ≥ 1=2n−1

Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] ≥ 1−

`
1− 1=2n−1

´t ≥ 1− e−t=2n−1
1 + x ≤ ex for x ∈ R

For t = 2n−1 min cut found with constant probability 1− 1=e ≈ 0:63

much better than the Ω(n3) in the deterministic setting , but...
“=” if there is only one min-cut.

→ exponentially small!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering6

Random Cut: Analysis

Amplification

Running time: O(n)
Success probability: ≥ 1=2n−1

Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] ≥ 1−

`
1− 1=2n−1

´t ≥ 1− e−t=2n−1
1 + x ≤ ex for x ∈ R

For t = 2n−1 min cut found with constant probability 1− 1=e ≈ 0:63

For t = 2n−1 · ln(n) min cut found with high probability 1− 1=n

much better than the Ω(n3) in the deterministic setting , but...
“=” if there is only one min-cut.

→ exponentially small!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering6

Random Cut: Analysis

Amplification

Running time: O(n)
Success probability: ≥ 1=2n−1

Repeat the algorithm to obtain t independent random cuts, return the smallest
Pr[“min cut found”] ≥ 1−

`
1− 1=2n−1

´t ≥ 1− e−t=2n−1
1 + x ≤ ex for x ∈ R

For t = 2n−1 min cut found with constant probability 1− 1=e ≈ 0:63

For t = 2n−1 · ln(n) min cut found with high probability 1− 1=n

much better than the Ω(n3) in the deterministic setting , but...

this is terrible
so far...

“=” if there is only one min-cut.

→ exponentially small!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops

u

v

w x

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

w x

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

xw

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops

x
uvw

A (multi) graph with two nodes has a unique cut-set

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops

x
uvw

A (multi) graph with two nodes has a unique cut-set
Contraction Algorithm

Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

xw
A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

non-essential

essential

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

non-essential

essential

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

non-essential

essential

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

(the converse does not hold)

non-essential

essential

Observation: A cut-set in Gi is a cut-set in G0.

Let C be a cut-set in Gi .

Assume C is not a cut-set in G0.
Gi \ C is disconnected

G0 \ C is connected.
Gi \C arises from G0 \C by i edge contractions.
Econtractions cannot disconnect a graph

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

non-essential

essential

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Ei = “C in Gi ”
Pr[E1] = 1− k

m

non-essential

essential

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Ei = “C in Gi ”
Pr[E1] = 1− k

m

o.w. E

Observation: min-degree ≥ k

non-essential

essential

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Ei = “C in Gi ”
Pr[E1] = 1− k

m

o.w. E

Observation: min-degree ≥ k
(holds for all Gi due to 1st observation)

non-essential

essential

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

m =
1

2

X
v∈V

deg(v) ≥ 1

2

X
v∈V

k ≥ 1

2
nk

Ei = “C in Gi ”
Pr[E1] = 1− k

m

o.w. E

Observation: min-degree ≥ k
(holds for all Gi due to 1st observation)

non-essential

essential

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

m =
1

2

X
v∈V

deg(v) ≥ 1

2

X
v∈V

k ≥ 1

2
nk

Ei = “C in Gi ”
Pr[E1] = 1− k

m

≥ 1− k
nk=2

= 1− 2
n

Observation: min-degree ≥ k
(holds for all Gi due to 1st observation)

non-essential

essential

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E1] ≥ 1− 2
n

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

none of the k edges of C contracted

do not contract k edges in an n − 1-node graph

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E2 | E1] ≥ 1− 2
n−1

Pr[E1] ≥ 1− 2
n

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E2 | E1] ≥ 1− 2
n−1

Pr[Ei | E1 ∩ : : : ∩ Ei−1] ≥ 1− 2
n−i+1

Pr[E1] ≥ 1− 2
n

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E2 | E1] ≥ 1− 2
n−1

Pr[Ei | E1 ∩ : : : ∩ Ei−1] ≥ 1− 2
n−i+1

Pr[En−2] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[En−2 | E1 ∩ : : : ∩ En−3]

Pr[E1] ≥ 1− 2
n

chain rule of probability

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E2 | E1] ≥ 1− 2
n−1

Pr[Ei | E1 ∩ : : : ∩ Ei−1] ≥ 1− 2
n−i+1

Pr[En−2] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[En−2 | E1 ∩ : : : ∩ En−3]

Pr[E1] ≥ 1− 2
n

≥ 1 2
n

2
n−1

2
n−2

2
4

2
3

„ «
−

„ «
−

„ «
− · · ·

„ «
−

„ «
−1 1 1 1

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E2 | E1] ≥ 1− 2
n−1

Pr[Ei | E1 ∩ : : : ∩ Ei−1] ≥ 1− 2
n−i+1

Pr[En−2] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[En−2 | E1 ∩ : : : ∩ En−3]

Pr[E1] ≥ 1− 2
n

1 = n−i
n−i

≥ 1 2
n

2
n−1

2
n−2

2
4

2
3

„ «
−

„ «
−

„ «
− · · ·

„ «
−

„ «
−1 1 1 1≥ 1 2

n
2

n−1
2

n−2
2
4

2
3

„ «
−

„ «
−

„ «
− · · ·

„ «
−

„ «
−1 1 1 1

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E2 | E1] ≥ 1− 2
n−1

Pr[Ei | E1 ∩ : : : ∩ Ei−1] ≥ 1− 2
n−i+1

Pr[En−2] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[En−2 | E1 ∩ : : : ∩ En−3]

Pr[E1] ≥ 1− 2
n

≥ n
n

2
n

2
n−1

2
n−2

2
4

2
3

n−1
n−1

n−2
n−2

4
4

3
3

„ «
−

„ «
−

„ «
− · · ·

„ «
−

„ «
−

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E2 | E1] ≥ 1− 2
n−1

Pr[Ei | E1 ∩ : : : ∩ Ei−1] ≥ 1− 2
n−i+1

Pr[En−2] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[En−2 | E1 ∩ : : : ∩ En−3]

Pr[E1] ≥ 1− 2
n

≥ n 2 2 2 2 2n−1 n−2 4 3
„ «− „ «− „ «− · · ·

„ «− „ «−
n n−1 n−2 4 3

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E2 | E1] ≥ 1− 2
n−1

Pr[Ei | E1 ∩ : : : ∩ Ei−1] ≥ 1− 2
n−i+1

Pr[En−2] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[En−2 | E1 ∩ : : : ∩ En−3]

Pr[E1] ≥ 1− 2
n

≥ n 2 2n−3 n−4 1
„ «− „ «„ «

· · ·
„ «„ «

n n−1 n−2 4 3

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E2 | E1] ≥ 1− 2
n−1

Pr[Ei | E1 ∩ : : : ∩ Ei−1] ≥ 1− 2
n−i+1

Pr[En−2] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[En−2 | E1 ∩ : : : ∩ En−3]

Pr[E1] ≥ 1− 2
n

≥ n 2 2n−3 n−4 1
„ «− „ «„ «

· · ·
„ «„ «

n n−1 n−2 4 3

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E2 | E1] ≥ 1− 2
n−1

Pr[Ei | E1 ∩ : : : ∩ Ei−1] ≥ 1− 2
n−i+1

Pr[En−2] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[En−2 | E1 ∩ : : : ∩ En−3]

Pr[E1] ≥ 1− 2
n

≥ n 2 2n−3 n−4 1
„ «− „ «„ «

· · ·
„ «„ «

n n−1 n−2 4 3

Observation: A cut-set in Gi is a cut-set in G0.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering7

Karger’s Algorithm

Edge Contraction
Merge two adjacent nodes in a multigraph without self-loops uv

Karger(G0 = (V0; E0))

for i = 1 to n − 2 do
sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)
return unique cut-set in Gn−2

xw
A (multi) graph with two nodes has a unique cut-set

// O(1)
// O(n)

// O(n)

Running time in O(n2)

Contraction Algorithm
Motivation: distinguish non-essential
as well as essential edges
& hope there are few essential ones

part of a min-cut

not part of a min-cut

Can be implemented to run in O(m)

Success Probability

Consider min-cut in G0 with cut-set C and |C| = k

Observation: min-degree ≥ kEi = “C in Gi ”
(holds for all Gi due to 1st observation)

non-essential

essential

Pr[E2 | E1] ≥ 1− 2
n−1

Pr[Ei | E1 ∩ : : : ∩ Ei−1] ≥ 1− 2
n−i+1

Pr[En−2] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[En−2 | E1 ∩ : : : ∩ En−3]

Pr[E1] ≥ 1− 2
n

≥ n 2 2n−3 n−4 1
„ «− „ «„ «

· · ·
„ «„ «

n n−1 n−2 4 3

= 2
n (n−1)

Observation: A cut-set in Gi is a cut-set in G0.

≥ 2
n2

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering8

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n2) time and returns a
minimum cut with probability at least 2

n2 .

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering8

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n2) time and returns a
minimum cut with probability at least 2

n2 .

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering8

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n2) time and returns a
minimum cut with probability at least 2

n2 .

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1− exp(− 2
n2 · t) = 1− 1

n

for t = n2

2 ln(n)

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering8

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n2) time and returns a
minimum cut with probability at least 2

n2 .

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1− exp(− 2
n2 · t) = 1− 1

n

for t = n2

2 ln(n)

Corollary: On a graph with n nodes, O(n2 log(n)) Karger repetitions run in O(n4 log(n))
total time and return a min-cut with high probability.

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering8

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n2) time and returns a
minimum cut with probability at least 2

n2 .

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1− exp(− 2
n2 · t) = 1− 1

n

for t = n2

2 ln(n)

Corollary: On a graph with n nodes, O(n2 log(n)) Karger repetitions run in O(n4 log(n))
total time and return a min-cut with high probability. Much better than exp. time of Randomized Cut!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering8

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n2) time and returns a
minimum cut with probability at least 2

n2 .

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1− exp(− 2
n2 · t) = 1− 1

n

for t = n2

2 ln(n)

Corollary: On a graph with n nodes, O(n2 log(n)) Karger repetitions run in O(n4 log(n))
total time and return a min-cut with high probability.

Sidenote: Number of minimum cuts
Let C1; : : : ; C‘ be all the min-cuts in G and E in−2 for i ∈ [‘] be the event that Ci is returned
by Karger’s algorithm

Much better than exp. time of Randomized Cut!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering8

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n2) time and returns a
minimum cut with probability at least 2

n2 .

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1− exp(− 2
n2 · t) = 1− 1

n

for t = n2

2 ln(n)

Corollary: On a graph with n nodes, O(n2 log(n)) Karger repetitions run in O(n4 log(n))
total time and return a min-cut with high probability.

Sidenote: Number of minimum cuts
Let C1; : : : ; C‘ be all the min-cuts in G and E in−2 for i ∈ [‘] be the event that Ci is returned
by Karger’s algorithm
Just seen: Pr[E in−2] ≥ 2

n2

Much better than exp. time of Randomized Cut!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering8

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n2) time and returns a
minimum cut with probability at least 2

n2 .

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1− exp(− 2
n2 · t) = 1− 1

n

for t = n2

2 ln(n)

Corollary: On a graph with n nodes, O(n2 log(n)) Karger repetitions run in O(n4 log(n))
total time and return a min-cut with high probability.

Sidenote: Number of minimum cuts
Let C1; : : : ; C‘ be all the min-cuts in G and E in−2 for i ∈ [‘] be the event that Ci is returned
by Karger’s algorithm
Just seen: Pr[E in−2] ≥ 2

n2

disjoint, since the algorithm returns only one cut

Much better than exp. time of Randomized Cut!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering8

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n2) time and returns a
minimum cut with probability at least 2

n2 .

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1− exp(− 2
n2 · t) = 1− 1

n

for t = n2

2 ln(n)

Corollary: On a graph with n nodes, O(n2 log(n)) Karger repetitions run in O(n4 log(n))
total time and return a min-cut with high probability.

Sidenote: Number of minimum cuts
Let C1; : : : ; C‘ be all the min-cuts in G and E in−2 for i ∈ [‘] be the event that Ci is returned
by Karger’s algorithm
Just seen: Pr[E in−2] ≥ 2

n2

disjoint, since the algorithm returns only one cut

Pr
hS

i∈[‘] E
i
n−2

i
=
P

i∈[‘] Pr[E
i
n−2] ≥ 2·‘

n2

Much better than exp. time of Randomized Cut!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering8

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n2) time and returns a
minimum cut with probability at least 2

n2 .

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1− exp(− 2
n2 · t) = 1− 1

n

for t = n2

2 ln(n)

Corollary: On a graph with n nodes, O(n2 log(n)) Karger repetitions run in O(n4 log(n))
total time and return a min-cut with high probability.

Sidenote: Number of minimum cuts
Let C1; : : : ; C‘ be all the min-cuts in G and E in−2 for i ∈ [‘] be the event that Ci is returned
by Karger’s algorithm
Just seen: Pr[E in−2] ≥ 2

n2

disjoint, since the algorithm returns only one cut

Pr
hS

i∈[‘] E
i
n−2

i
=
P

i∈[‘] Pr[E
i
n−2] ≥ 2·‘

n2
1 ≥

Much better than exp. time of Randomized Cut!

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering8

Karger’s Algorithm Amplified

Theorem: On a graph with n nodes, Karger’s algorithm runs in O(n2) time and returns a
minimum cut with probability at least 2

n2 .

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1− exp(− 2
n2 · t) = 1− 1

n

for t = n2

2 ln(n)

Corollary: On a graph with n nodes, O(n2 log(n)) Karger repetitions run in O(n4 log(n))
total time and return a min-cut with high probability.

Sidenote: Number of minimum cuts
Let C1; : : : ; C‘ be all the min-cuts in G and E in−2 for i ∈ [‘] be the event that Ci is returned
by Karger’s algorithm
Just seen: Pr[E in−2] ≥ 2

n2

disjoint, since the algorithm returns only one cut

Pr
hS

i∈[‘] E
i
n−2

i
=
P

i∈[‘] Pr[E
i
n−2] ≥ 2·‘

n2
1 ≥

Much better than exp. time of Randomized Cut!

Observation: ‘ ≤ n2

2 .

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering9

More Amplification: Karger-Stein

Probability that a min-cut survives i contractions
Motivation

Pr[Ei] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[Ei | E1 ∩ : : : ∩ Ei−1]

≥ 1 2
n

2
n−1

2
n−2

2
n−i+2

„ «
−

„ «
−

„ «
− · · ·

„ «
−1 1 1 2

n−i+1

„ «
−1

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering9

More Amplification: Karger-Stein

Probability that a min-cut survives i contractions
Motivation

Pr[Ei] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[Ei | E1 ∩ : : : ∩ Ei−1]

≥ 1 2
n

2
n−1

2
n−2

2
n−i+2

„ «
−

„ «
−

„ «
− · · ·

„ «
−1 1 1

= n 2 n−i+2−2n−3 n−4
„ «− „ «„ «

· · ·
„ «

n n−1 n−2 n−i+2

2
n−i+1

„ «
−1

n−i+1−2
„ «

n−i+1

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering9

More Amplification: Karger-Stein

Probability that a min-cut survives i contractions
Motivation

Pr[Ei] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[Ei | E1 ∩ : : : ∩ Ei−1]

≥ 1 2
n

2
n−1

2
n−2

2
n−i+2

„ «
−

„ «
−

„ «
− · · ·

„ «
−1 1 1

= n 2 n−3 n−4
„ «− „ «„ «

· · ·
„ «

n n−1 n−2 n−i+2

2
n−i+1

„ «
−1„ «

n−i+1
n−i n−i−1

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering9

More Amplification: Karger-Stein

Probability that a min-cut survives i contractions
Motivation

Pr[Ei] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[Ei | E1 ∩ : : : ∩ Ei−1]

≥ 1 2
n

2
n−1

2
n−2

2
n−i+2

„ «
−

„ «
−

„ «
− · · ·

„ «
−1 1 1

= n 2 n−3 n−4
„ «− „ «„ «

· · ·
„ «

n n−1 n−2 n−i+2

2
n−i+1

„ «
−1„ «

n−i+1
n−i n−i−1

=
(n − i)(n − i − 1)

n(n − 1)
≥

(n − i − 1)(n − i − 1)

n · n
=

“
1−

i + 1

n

”2
:

n0
i

n(1− 1√
2
)

1=2

1

Pr[Ei]

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering9

More Amplification: Karger-Stein

Probability that a min-cut survives i contractions
Motivation

Pr[Ei] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[Ei | E1 ∩ : : : ∩ Ei−1]

≥ 1 2
n

2
n−1

2
n−2

2
n−i+2

„ «
−

„ «
−

„ «
− · · ·

„ «
−1 1 1

= n 2 n−3 n−4
„ «− „ «„ «

· · ·
„ «

n n−1 n−2 n−i+2

2
n−i+1

„ «
−1„ «

n−i+1
n−i n−i−1

=
(n − i)(n − i − 1)

n(n − 1)
≥

(n − i − 1)(n − i − 1)

n · n
=

“
1−

i + 1

n

”2
:

Probability becomes very small only towards the
very end.

n0
i

n(1− 1√
2
)

1=2

1

Pr[Ei]

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering9

More Amplification: Karger-Stein

Probability that a min-cut survives i contractions
Motivation

Pr[Ei] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[Ei | E1 ∩ : : : ∩ Ei−1]

≥ 1 2
n

2
n−1

2
n−2

2
n−i+2

„ «
−

„ «
−

„ «
− · · ·

„ «
−1 1 1

= n 2 n−3 n−4
„ «− „ «„ «

· · ·
„ «

n n−1 n−2 n−i+2

2
n−i+1

„ «
−1„ «

n−i+1
n−i n−i−1

=
(n − i)(n − i − 1)

n(n − 1)
≥

(n − i − 1)(n − i − 1)

n · n
=

“
1−

i + 1

n

”2
:

Probability becomes very small only towards the
very end.
Idea: stop when a min-cut is still likely to exist and recurse

n0
i

n(1− 1√
2
)

1=2

1

Pr[Ei]

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering9

More Amplification: Karger-Stein

Probability that a min-cut survives i contractions
Motivation

Pr[Ei] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[Ei | E1 ∩ : : : ∩ Ei−1]

≥ 1 2
n

2
n−1

2
n−2

2
n−i+2

„ «
−

„ «
−

„ «
− · · ·

„ «
−1 1 1

= n 2 n−3 n−4
„ «− „ «„ «

· · ·
„ «

n n−1 n−2 n−i+2

2
n−i+1

„ «
−1„ «

n−i+1
n−i n−i−1

=
(n − i)(n − i − 1)

n(n − 1)
≥

(n − i − 1)(n − i − 1)

n · n
=

“
1−

i + 1

n

”2
:

Probability becomes very small only towards the
very end.
Idea: stop when a min-cut is still likely to exist and recurse
After s = n − n=

√
2− 1 steps we have“

1− n − n=
√
2

n

”
=
“
1− (1− 1=

√
2)
”2

= (1=
√
2)2 =

1

2
Pr[Es] ≥

n0
i

n(1− 1√
2
)

1=2

1

Pr[Ei]

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering9

More Amplification: Karger-Stein

Probability that a min-cut survives i contractions
Motivation

Pr[Ei] = Pr[E1] · Pr[E2 | E1] · : : : · Pr[Ei | E1 ∩ : : : ∩ Ei−1]

≥ 1 2
n

2
n−1

2
n−2

2
n−i+2

„ «
−

„ «
−

„ «
− · · ·

„ «
−1 1 1

= n 2 n−3 n−4
„ «− „ «„ «

· · ·
„ «

n n−1 n−2 n−i+2

2
n−i+1

„ «
−1„ «

n−i+1
n−i n−i−1

=
(n − i)(n − i − 1)

n(n − 1)
≥

(n − i − 1)(n − i − 1)

n · n
=

“
1−

i + 1

n

”2
:

Probability becomes very small only towards the
very end.
Idea: stop when a min-cut is still likely to exist and recurse

KargerStein(G0 = (V0; E0))

Gi ← Gi−1:contract(e)

return smaller of C1, C2

for i = 1 to s = |V0| − |V0|√
2
− 1 do

After s = n − n=
√
2− 1 steps we have“

1− n − n=
√
2

n

”
=
“
1− (1− 1=

√
2)
”2

= (1=
√
2)2 =

1

2
Pr[Es] ≥

C1 ← KargerStein(Gs)

C2 ← KargerStein(Gs)
// pendent
// runs

// inde-

sample e ∼ U(Ei−1)

if |V0| = 2 then return unique cut-set

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering10

Karger-Stein: Running Time

// O(1)

// O(n)
// O(1)
// O(n)

KargerStein(G0 = (V0; E0))

if |V0| = 2 then return unique cut-set

sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)

return smaller of C1, C2

for i = 1 to s = |V0| − |V0|√
2
− 1 do

C1 ← KargerStein(Gs)

C2 ← KargerStein(Gs)
// pendent
// runs

// inde-

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering10

Karger-Stein: Running Time

// O(1)

// O(n)
// O(1)

Recursion

T (n) = 2T

„
n√
2
+ 1

«
+O(n2)

After t = n−n=
√
2−1 steps the number

of nodes is n=
√
2 + 1

// O(n)

KargerStein(G0 = (V0; E0))

if |V0| = 2 then return unique cut-set

sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)

return smaller of C1, C2

for i = 1 to s = |V0| − |V0|√
2
− 1 do

C1 ← KargerStein(Gs)

C2 ← KargerStein(Gs)
// pendent
// runs

// inde-

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering10

Karger-Stein: Running Time

// O(1)

// O(n)
// O(1)

Recursion

T (n) = 2T

„
n√
2
+ 1

«
+O(n2)

After t = n−n=
√
2−1 steps the number

of nodes is n=
√
2 + 1

// O(n)

KargerStein(G0 = (V0; E0))

if |V0| = 2 then return unique cut-set

sample e ∼ U(Ei−1)

Gi ← Gi−1:contract(e)

return smaller of C1, C2

for i = 1 to s = |V0| − |V0|√
2
− 1 do

C1 ← KargerStein(Gs)

C2 ← KargerStein(Gs)
// pendent
// runs

// inde-Solution (essentially by Master Theorem)

T (n) = O(n2 log n)

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering11

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1
2 .

before calling itself recursively

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering11

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1
2 .

Auxiliary Problem
Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability 1

2 each).
What is the probability pd that a green root-to-leaf path exists?

before calling itself recursively

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering11

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1
2 .

Auxiliary Problem
Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability 1

2 each).
What is the probability pd that a green root-to-leaf path exists?

p0 = 1=2 // root green pd = 1
2 (1− (1− pd−1)

2) // root green, not no path in both left and right subtree

before calling itself recursively

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering11

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1
2 .

Auxiliary Problem
Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability 1

2 each).
What is the probability pd that a green root-to-leaf path exists?

p0 = 1=2 // root green pd = 1
2 (1− (1− pd−1)

2) // root green, not no path in both left and right subtree

Claim: pd ≥ 1
d+2 . Proof by induction.

before calling itself recursively

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering11

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1
2 .

Auxiliary Problem
Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability 1

2 each).
What is the probability pd that a green root-to-leaf path exists?

p0 = 1=2 // root green pd = 1
2 (1− (1− pd−1)

2) // root green, not no path in both left and right subtree

Claim: pd ≥ 1
d+2 . Proof by induction.

p0 =
1
2
= 1

0+2
X

pd = 1
2

`
1− (1− pd−1)

2´ ≥ 1
2

`
1− (1− 1

d+1
)2
´
= 1

2

`
2

d+1
− 1

(d+1)2
)

= 1
2
· 2d+2−1

(d+1)2
= 1

2
· 2d+1
d2+2d+1

≥ 1
2
· 2d
d2+2d

= 1
d+2

before calling itself recursively

// for 1 ≤ a ≤ b we have a
b
≥ a−1

b−1

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering11

Karger-Stein: Success Probability

Know: Each call to Karger-Stein breaks the min-cut with probability at most 1
2 .

Auxiliary Problem
Given complete binary tree of height d where each node is ran-
domly coloured red or green (with probability 1

2 each).
What is the probability pd that a green root-to-leaf path exists?

p0 = 1=2 // root green pd = 1
2 (1− (1− pd−1)

2) // root green, not no path in both left and right subtree

Claim: pd ≥ 1
d+2 . Proof by induction.

p0 =
1
2
= 1

0+2
X

pd = 1
2

`
1− (1− pd−1)

2´ ≥ 1
2

`
1− (1− 1

d+1
)2
´
= 1

2

`
2

d+1
− 1

(d+1)2
)

= 1
2
· 2d+2−1

(d+1)2
= 1

2
· 2d+1
d2+2d+1

≥ 1
2
· 2d
d2+2d

= 1
d+2

Corollary: Karger-Stein succeeds with probability at least plog√2(n)
= 1

O(log n) .

before calling itself recursively

// for 1 ≤ a ≤ b we have a
b
≥ a−1

b−1

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering12

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in O(n2 log(n)) time and returns a
minimum cut with probability at least 1=O(log(n)).

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering12

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in O(n2 log(n)) time and returns a
minimum cut with probability at least 1=O(log(n)).

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Amplification

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering12

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in O(n2 log(n)) time and returns a
minimum cut with probability at least 1=O(log(n)).

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1−exp
„
− t

O(log(n))

«
= 1−O

„
1

n

«
for t = log2(n)

Amplification

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering12

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in O(n2 log(n)) time and returns a
minimum cut with probability at least 1=O(log(n)).

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1−exp
„
− t

O(log(n))

«
= 1−O

„
1

n

«
for t = log2(n)

Corollary: On a graph with n nodes, O(log2(n)) repetitions of Karger-Stein run in
O(n2 log3(n)) total time and return a minimum cut with high probability.

Amplification

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering12

Karger-Stein Amplified

Theorem: On a graph with n nodes, Karger-Stein runs in O(n2 log(n)) time and returns a
minimum cut with probability at least 1=O(log(n)).

Success probability ≥ p

Number of repetitions t

Amplified prob. ≥ 1− e−pt

Pr[“min-cut found”] ≥ 1−exp
„
− t

O(log(n))

«
= 1−O

„
1

n

«
for t = log2(n)

Corollary: On a graph with n nodes, O(log2(n)) repetitions of Karger-Stein run in
O(n2 log3(n)) total time and return a minimum cut with high probability.

Compared to O(n4 log(n)) for Karger

Compared to Ω(n3) for deterministic approaches

Amplification

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering13

Conclusion

V1 V2

Minimum Cut
Fundamental graph problem
Many deterministic flow-based algorithms ...
. . . with worst-case running times in Ω(n3)

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering13

Conclusion

V1 V2

Minimum Cut
Fundamental graph problem
Many deterministic flow-based algorithms ...
. . . with worst-case running times in Ω(n3)

Randomized Algorithms
Karger’s edge-contraction algorithm

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering13

Conclusion

V1 V2

Minimum Cut
Fundamental graph problem
Many deterministic flow-based algorithms ...
. . . with worst-case running times in Ω(n3)

Randomized Algorithms
Karger’s edge-contraction algorithm

Probability Amplification
Monte Carlo algorithms with and without biases

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

Repetitions amplify success probability
Karger-Stein: Amplify before failure probability gets large

✗ ✓

✗

✓

true
neg

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering13

Conclusion

V1 V2

Minimum Cut
Fundamental graph problem
Many deterministic flow-based algorithms ...
. . . with worst-case running times in Ω(n3)

Randomized Algorithms
Karger’s edge-contraction algorithm

Probability Amplification
Monte Carlo algorithms with and without biases

A
lg

o
O

ut
pu

t

Correct Answer

false
pos

true
pos

false
neg

Repetitions amplify success probability
Karger-Stein: Amplify before failure probability gets large

Outlook
“Minimum cuts in near-linear time”, Karger, J.Acm. ’00

Success w.h.p. in time O(m log3(n))

“Faster algorithms for edge connectivity via random 2-out contractions”, Ghaffari & Nowicki & Thorup, SODA’20

Success w.h.p. in time O(m log(n)) and O(m + n log3(n))

✗ ✓

✗

✓

true
neg

Stefan Walzer (Slides adapted from Max Katzmann) – Probability & Computing Institute of Theoretical Informatics, Algorithm Engineering14

Possible Exam Questions

What is a Monte Carlo algorithm?

What is meant by probability amplification?
How does probability amplification work...

What is the Minimum Cut problem?

Which variants exist?

... in the case of one-sided error?

... in the case of two-sided error?

... for optimization problems?
How does the error probability relate to the number of repetitions?

What do the best known deterministic algorithms achieve?
What are success probability and running time of the trivial random cut algorithm?
How does Karger’s algorithm work?

How is the algorithm by Karger and Stein obtained from Karger’s algorithm?

How do we achieve a success probability of 1− 1
n

?

What does Pr[Et] mean, and how did we estimate this probability?

What follows for the running time and success probability?

How did we estimate the success probability and running time?

