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We 11.03. Oral Exams ® cc to me (stefan.walzer@kit.edu)
Th 12.03. Oral Exams ® Please specify:
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Fr 13.03. Oral Exams ® matriculation number

We 25.3. Oral Exams ® subject of study (Studienfach)
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Fr 27.3. Oral Exams (Version der Prifungsordnung)

@ Cancellation also via our secretary
® | ocation: Stefan’s Office (50.34, Room 209).
® duration: 20 minutes

Other dates may be possible on request.
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® 14:00, 14:25, 14:50, 15:15

® scope: content of lectures and exercises
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1. Motivation

2. Erd6s-Renyi Random Graphs
® Degree Distribution
® Degree Statistics
® Tree-like local structure
@ Emergence of the Giant Component

3. Random Geometric Graphs
4. Scale-Free Networks (Teaser)
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Motivation 1: Average Case Analysis ﬂ(IT

Theory-Practice Gap

??7?
.. : vee small vertex covers can often
Minimum Vertex Cover is APX-hard <— ¢ omputed efficiently in practice

~ relevant graph classes (e.g. social networks) are not worst-case.

Bridging the Gap
® model real world instances

Define a distribution G on graphs.
® G should be realistic, i.e. model real world instances
® G should have simple mathematical structure

Consider randomised complexity of handling G ~ G.

& dentify useful properties of
these instances

& puild algorithms exploiting
these properties
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Motivation 2: Data Structure Design ﬂ(IT

Karlsruhe Institute of Technology

(TTTTLITIT

Random graphs occur naturally in

® cuckoo hash tables

® retrieval data structures A
® perfect hash functions /J }}»
[ T T T T T ]
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Motivation 3: Probabilistic Method AT

Karlsruhe Institute of Technology

Probabilistic Method for Graph Theory

Show that graphs with a property P exist by showing
that a random graph G satisfies Pr[G has P] > 0].

(we’re not doing this)

Motivation Erdds-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)
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Content A“(IT

Karlsruhe Institute of Technology

2. Erdos-Renyi Random Graphs
® Degree Distribution
@ Degree Statistics
® Tree-like local structure
® Emergence of the Giant Component
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The Erdds-Renyi Model and Related Distributions ﬂ(l'l'

Karlsruhe Institute of Technology

Original Erdés-Renyi Model G(n, m): “Uniformly random graph with n nodes and m edges”

Definition Example:n=5m=26

Letn € N, 0 < m < (3). We use G(n, m) to refer
to a graph sampled uniformly from the set of all
graphs with vertex set [n] and m edges.

n
probability  1/('2 0 0
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The Erdds-Renyi Model and Related Distributions ﬂ("‘

Karlsruhe Institute of Technology

Original Erdés-Renyi Model G(n, m): “Uniformly random graph with n nodes and m edges”

Gilbert Model G(n, p): “Every edge with probability p”

Example: n — 5

Letn € Nand p € (0,1). We use G(n,p) to
refer to a graph with vertex set [n] that contains
each of the (}) possible edges with probability p,
independently from other edges.

probability  p®(1 — p)*
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The Erdds-Renyi Model and Related Distributions ﬂ("‘

Karlsruhe Institute of Technology

Original Erdés-Renyi Model G(n, m): “Uniformly random graph with n nodes and m edges”

Gilbert Model G(n, p): “Every edge with probability p”

Uniform Endpoint Model GYE(n, m): “randomly attach the 2m endpoints of edges”

Example: n — 5, m — 6

Letn,m € Nand vy,..., oy ~ U([n]). We use
Motivation Erdds-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)

GYE(n, m) to refer to a multi-graph with vertex set
[n] and a multiset of edges that contains a copy of
{Vg,'_1, Vg,'} foreach i € [m]
000 0000000000000 0 000000 000000000
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The Erdds-Renyi Model and Related Distributions ﬂ("‘

Karlsruhe Institute of Technology

Original Erdés-Renyi Model G(n, m): “Uniformly random graph with n nodes and m edges”

Gilbert Model G(n, p): “Every edge with probability p”

Uniform Endpoint Model GY8(n, m): “randomly attach the 2m endpoints of edges”

® for p = m/(}) the three distributions are
similar in many ways

® the original Erdés-Renyi model is often
inconvenient to work with

& the uniform endpoint model is non-standard
(we’ll need it in later chapters)
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Plan for the Next Few Slides: Sparse Graphs ﬂ(IT

Karlsruhe Institute of Technology

Focus on Expected Degree A € O(1)

a for G(n, m) choose m = ’\—ﬁ” = average vertex degree %" =

a for G(n, p) choose p = -2 = expected vertex degree (n —1) - p = A

= for GY8(n,m) choose m = %’ = average vertex degree 2%" = A // loops contribute 2 to a vertex degree
Motivation Erdds-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)
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Plan for the Next Few Slides: Sparse Graphs ﬂ(IT

Karlsruhe Institute of Technology

Focus on Expected Degree A € O(1)

a for G(n, m) choose m= 27 = average vertex degree %" =

a for G(n, p) choose p = -2 = expected vertex degree (n —1) - p = A

= for GY8(n,m) choose m = %’ = average vertex degree 2%" = A // loops contribute 2 to a vertex degree

Goals

® Build intuition for properties of Erdés-Renyi graphs.
@ Get a feeling for how to work with them.
@ For simplicity: Focus on the Gilbert model only.

Erdés-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)
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Selected Properties of Erdos-Renyi Graphs

Karlsruhe Institute of Technology

On the next few slides we consider:

Vertex Degrees

For large n, the degree of a given vertex is
approximately Poisson distributed.

Degree Statistics

The number of vertices of each degree is highly
concentrated around its expectation.

Motivation Erdés-Renyi Random Graphs
000 000@00000000000
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Local Structure

The neighbourhood around a vertex resembles a
Galton-Watson tree.

Largest Connected Component
Size of the largest component is highly

predictable.
Random Geometric Graphs Scale-Free Networks (Teaser)
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Content ﬂ(l'l'

Karlsruhe Institute of Technology

2. Erdos-Renyi Random Graphs
® Degree Distribution
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Degree Distribution of Erdds-Reyni Graphs A“(IT

Karlsruhe Institute of Technology

Exercise: Degrees are approximately Poisson distributed

For each n € N consider G(n, \/n) and the degree
Xn ~ Bin(n — 1, \/n) of vertex 1. Moreover, let X ~ Pois()). Then

X,,i>Xforn—>oo.

The same holds for G(n, | An/2]) and GY€(n, An/2).

Scale-Free Networks (Teaser)

Random Geometric Graphs
000000000

Erdés-Renyi Random Graphs
000000

Motivation
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Content

2. Erdos-Renyi Random Graphs

@ Degree Statistics
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The Number N, of Vertices of Degree N, ﬂ(IT

Karlsruhe Institute of Technology

SN

78N
P\
]

Q
W

® Letd € N, A > 0. We consider G(n, A/n). // Gilbert model
® Let Ny = |{v € [n] | deg(v) = d}|

Is Ny highly concentrated?

® Note: (deg(v)),e[q are correlated.
@ Otherwise Ny would have a binomial distribution and we could use Chernoff

bounds. e
[0123456789
Ny]1258911 3100
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Concentration of N, ﬂ(IT

Karlsruhe Institute of Technology

Lemma (Near Independence of Degrees)
Let u # v be two vertices of G(n, A/n). Then Pr[deg(u) = d, deg(v) = d] = Pr[deg(u) = d] Pr[deg(v) = d] £ ©(1/n).
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Concentration of N, ﬂ(IT

Karlsruhe Institute of Technology

Lemma (Near Independence of Degrees)
Let u # v be two vertices of G(n, A/n). Then Pr[deg(u) = d, deg(v) = d] = Pr[deg(u) = d] Pr[deg(v) = d] £ ©(1/n).

Let deg’(u) = deg(u) — [{u, v} € E] be the degree of u when ignoring {u, v} if present. Then
Pr[deg(u) # deg’(u)] = Pr[{u,v} € E] = A\/n= ©(1/n).
The same holds for deg’(v) = deg(v) — [{u, v} € E]. We conclude:

Pr[deg(v4) = d,deg(v2) = d] = Pr[deg’(v;) = d,deg’(v») = d] = ©(1/n)
= Pr[deg’(v4) = d] Pr[deg’(v2) = d] & ©(1/n) = Pr[deg(v1) = d] Pr[deg(v2) = d] &+ ©(1/n).
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Concentration of N, ﬂ(IT

Karlsruhe Institute of Technology

Lemma (Near Independence of Degrees)
Let u # v be two vertices of G(n, A/n). Then Pr[deg(u) = d, deg(v) = d] = Pr[deg(u) = d] Pr[deg(v) = d] £ ©(1/n).

Pr[|Ny — npa| > n?/3] = O(n~"/3) where py = Pr[deg(1) = d] ~ & 2

dl*
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Concentration of N, ﬂ(IT

Karlsruhe Institute of Technology

Lemma (Near Independence of Degrees)
Let u # v be two vertices of G(n, A/n). Then Pr[deg(u) = d, deg(v) = d] = Pr[deg(u) = d] Pr[deg(v) = d] £ ©(1/n).

Pr[|Ny — npa| > n?/3] = O(n~"/3) where py = Pr[deg(1) = d] ~ & 2

dl*

Proof
— 21 — —
E[N,] = ? E[N2] = 2 Var(Ny) = 2.
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Concentration of N, ﬂ(IT

Karlsruhe Institute of Technology

Lemma (Near Independence of Degrees)
Let u # v be two vertices of G(n, A/n). Then Pr[deg(u) = d, deg(v) = d] = Pr[deg(u) = d] Pr[deg(v) = d] £ ©(1/n).

Pr[|Ny — npa| > n?/3] = O(n~"/3) where py = Pr[deg(1) = d] ~ & 2

dl*

Proof
E[Ng] = ? E[NG] =7 Var(Ny) = ?.

E[Ng] = E[)_ [deg(v) = d]] = n- Pr[deg(1) = d] = n- py.
ve(n]
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Concentration of N, ﬂ(IT

Karlsruhe Institute of Technology

Lemma (Near Independence of Degrees)
Let u # v be two vertices of G(n, A/n). Then Pr[deg(u) = d, deg(v) = d] = Pr[deg(u) = d] Pr[deg(v) = d] £ ©(1/n).

Pr[|Ny — npa| > n?/3] = O(n~"/3) where py = Pr[deg(1) = d] ~ & 2

dl*

E[N,] = npy E[N3] =2 Var(Ng) = ?.
E[NG] =E[(D_[deg(v) = d])’] =E[ D > [deg(u) = d, deg(v) = d]
veln] u€[n] ve(n]
= > Prldeg(u) = d,deg(v) = d] = > Prldeg(u) =d]+ »_ > Pr[deg(u) = d,deg(v) = d]
ueln] ve[n] u€(n] u€n] v#£u

=n-pg+n-(n—1)-(pg+0(1/n) = iPp5 + O(n).
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Concentration of N, ﬂ(IT

Karlsruhe Institute of Technology

Lemma (Near Independence of Degrees)
Let u # v be two vertices of G(n, A/n). Then Pr[deg(u) = d, deg(v) = d] = Pr[deg(u) = d] Pr[deg(v) = d] £ ©(1/n).

Pr[|Ny — npa| > n?/3] = O(n~"/3) where py = Pr[deg(1) = d] ~ & 2

dl*

Proof
E[N,] = npqy E[N2] = nPp3 £+ O(n) Var(Ng) = ?.

Var(Ny) = E[N2] — E[N,]? < Pp2 + O(n) — (npg)? = O(n).
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Concentration of N, ﬂ(IT

Karlsruhe Institute of Technology

Lemma (Near Independence of Degrees)
Let u # v be two vertices of G(n, A/n). Then Pr[deg(u) = d, deg(v) = d] = Pr[deg(u) = d] Pr[deg(v) = d] £ ©(1/n).

Pr[|Ny — npa| > n?/3] = O(n~"/3) where py = Pr[deg(1) = d] ~ & 2

dl*

E[N,] = npy E[N2] = nPp3 £+ O(n) Var(Ng) = O(n).
Cheb. Var(N,
Hence: Pr[|Ny — npy| > n?/?] = Pr[|Ng — E[Ng]| > n?/?] < nf/sd) =0(n 3.
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Content

2. Erdos-Renyi Random Graphs

& Tree-like local structure
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Erdos-Renyi Graphs have Few Cycles ﬂ(IT

Karlsruhe Institute of Technology

Theorem: There are few short cycles in Erdés-Renyi graphs

Let Ck be the number of cycles of length k in G(n, A\/n) where k, A = ©(1). Then E[C] < é\—: =0(1).

Motivation Erdds-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)
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Erdos-Renyi Graphs have Few Cycles ﬂ(IT

Karlsruhe Institute of Technology

Theorem: There are few short cycles in Erdés-Renyi graphs

Let Ck be the number of cycles of length k in G(n, A\/n) where k, A = ©(1). Then E[C] < é\—,i =0(1).

. . 1 1
The number of potential cyclesis n(n—1) -... - (n— k+ 1) ==
e N——
sequences (v1, - - - ; V) startpoint and direction
irrelevant
The probability that (vs, . . ., v, v4) is a cycle is (\/n). Hence:
K k
nc ANk A
E[C] < —(—> 2 O
2k \n 2k
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The Galton-Watson Branching Process ﬂ(IT

Karlsruhe Institute of Technology

Definition

Let D be a distribution on Ny and X; ; ~ D for i, j € N. Define Z, = 1 and Z; = ij;_j‘ X jfori>1.

® Start with a population of size Z; = 1. Galton-Watson Tree

@ Each individual has a random number of decendents. Zi Xij|1234...
® Key question: What is the probability of extinction, 1 113102...
i.e. for lim Z = 0? 3 21013 ...
=0 2 3(1220...
3 410300 ...
0 Do
Motivation Erdds-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)
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The Galton-Watson Branching Process ﬂ(IT

Karlsruhe Institute of Technology

Definition

Let D be a distribution on Ny and X; ; ~ D for i, j € N. Define Z, = 1 and Z; = ij;_j‘ X jfori>1.

® Start with a population of size Z; = 1. Galton-Watson Tree

@ Each individual has a random number of decendents. Zi Xij|1234...
® Key question: What is the probability of extinction, 1 113102...
i.e. for lim Z = 0? 3 21013 ...
=00 2 3(1220...
. - - 3 410300 ...
Exercise: Galton-Watson Process with D = Pois(\) 3 50002 ...
If A < 1 then the process goes extinct with probability 1. 0 N R
If A > 1 then the process survives with probability sy > 0.
Motivation Erdds-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)
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Local Structure of Erdos-Renyi Graphs ﬂ(IT

Karlsruhe Institute of Technology

Theorem: The Neighbourhood of v looks like a Galton Watson Tree
Let R = O(1). Let H be an (ordered) tree of depth R given by a sequence ¢y, . . ., ¢k specifiying the

: ) . : Example for H
number of children of nodes in all layers except the last, in level order.
Let GWT())|g be the first R layers of a Pois(\)-Galton-Watson tree. /&
priawra =M 2] pr o=l =12 el m By
r = H]| = r =gl = @
[ A -1 X~Pois()) T
Motivation Erdds-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)
000 000000000000 e00 000000 000000000
19/34 WS 2025/2026 Stefan Walzer: Random Graphs

ITI, Algorithm Engineering



Local Structure of Erdos-Renyi Graphs ﬂ(IT

Karlsruhe Institute of Technology

Theorem: The Neighbourhood of v looks like a Galton Watson Tree

Let R = O(1). Let H be an (ordered) tree of depth R given by a sequence ¢y, . . ., ¢« specifiying the Example for H
number of children of nodes in all layers except the last, in level order.

Let GWT())|g be the first R layers of a Pois(\)-Galton-Watson tree.
Let G(n, A\/n)|y,g be the (ordered) subgraph of G(n, A/n) induced by vertices with distance < R from v.
)T i o i =(2,3,0)
10) A AT G (c1,2,03) = (2,3,
Pr[GWT(N)|g = H] = Pr [X=c]|= e "— = Pr[G(n,\/n = H|.
AWl = M 2 TT, P o =ol =T[ 25 & Pricn A/nln = H
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Local Structure of Erdos-Renyi Graphs ﬂ(IT

Karlsruhe Institute of Technology
Theorem: The Neighbourhood of v looks like a Galton Watson Tree

Let R = O(1). Let H be an (ordered) tree of depth R given by a sequence ¢y, . . ., ¢« specifiying the Example for H
number of children of nodes in all layers except the last, in level order.
Let GWT(\)|q be the first R layers of a Pois(\)-Galton-Watson tree. /&

Let G(n, A\/n)|y,g be the (ordered) subgraph of G(n, A/n) induced by vertices with distance < R from v.
K K

— Q — | = _)‘)\7& Q _ (C17CZ703) = (27370)

PrlGWT(\)|r = H] = HXNE,L(A)[X =cl=]]e ks Pr[G(n,\/n)|v,r = H].

i=1 i=1

Proof of (i) by Example: The following has to “go right” for G(n, A/n)|,.r = H

random variable desired outcome  probability
deg(v) ~ Bin(n — 1, \/n) =~ Pois(\) 2 ~ e‘)‘é—f
[{u,w} € ] 0 PRV
deg(u) — 1 ~ Bin(n— 3,\/n) ~ Pois()) 3 ~e A
deg(w) — 1 ~ Bin(n — 3, \/n) = Pois(\) 0 ~ e‘)‘g—?
[{x1, %} € EV{x,xa} € EV{x,x3} € E] 0 (1—2)P~1
Motivation Erdds-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)
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Local Structure of Erdés-Renyi Graphs ﬂ(l'l'
Theorem: The Neighbourhood of v looks like a Galton Watson Tree

Let R = O(1). Let H be an (ordered) tree of depth R given by a sequence ¢y, . . ., ¢k specifiying the Example for H
number of children of nodes in all layers except the last, in level order.

Let GWT(\)|q be the first R layers of a Pois(\)-Galton-Watson tree.
Let G(n, A\/n)|y,g be the (ordered) subgraph of G(n, A/n) induced by vertices with distance < R from v.
k k
0 L TT.a X @ B (c1, 2, ¢5) = (2,3,0)
PrGWT(\) s = H =] | Prm[x =cl=]]e = R Pr[G(n,A/n)|vp = H].

i1 X~Pois| v Ci!

Corollaries

® G(n,\/n)|vR i) GWT(A)|g // convergence in distribution for n — co
® The number N of “copies” of H in G(n, A/n) satisfies E[Ny] ~ n - HL e AT

¢l

Concentration of Ny can be proved much like we proved concentration of Ny earlier.
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2. Erdos-Renyi Random Graphs

® Emergence of the Giant Component
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How does G(n, \/n) look like for different \?

KIT

Karlsruhe Institute of Technology

Theorem: Sudden Emergence of the Giant Component (Erdés, Renyi 1960)
Consider G(n, A/n). The following holds with probability approaching 1 for n — oo.

| If A < 1then G(n, A/n) only has components of size O(log n).

Each component is a tree or pseudotree. // pseudotree: connected and # edges = # vertices

— Intuition: GWT(\) dies out with probability 1.

m If A > 1 then G(n, A\/n) has one “giant” component of size ~ s(\) - n.
< Intuition: s(\) > 0 is the probability that GWT()) is infinite
~ probability that fixed vertex is in giant component
M If A = 1 then the largest component of G(n, A/n) has size ©(n?/3).
— Intuition: ?
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3. Random Geometric Graphs
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Locality: A Property of Networks in Practice ﬂ(l'l'
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Observation: Locality in Practice

Take social networks. A friend of my friend is more likely to be my friend than a random person.

Definition: Locality’

L=Pr[{u,w} € E|{v,u} € EA{v,w} € E] where v, u, w are distinct (random) vertices.

Similar numbers are sometimes called clustering coefficient.
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Locality: A Property of Networks in Practice ﬂ(l'l'

Karlsruhe Institute of Technology

Observation: Locality in Practice

Take social networks. A friend of my friend is more likely to be my friend than a random person.

Definition: Locality’
L=Pr[{u,w} € E|{v,u} € EA{v,w} € E] where v, u, w are distinct (random) vertices.

Similar numbers are sometimes called clustering coefficient.

Observation: No Locality in Erdds-Renyi Random Graphs
In G(n, \/n) we have L = 2 = O(1).
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Locality: A Property of Networks in Practice ﬂ(l'l'
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Observation: Locality in Practice

Take social networks. A friend of my friend is more likely to be my friend than a random person.

Definition: Locality’

L=Pr[{u,w} € E|{v,u} € EA{v,w} € E] where v, u, w are distinct (random) vertices.

Similar numbers are sometimes called clustering coefficient.

Observation: No Locality in Erdds-Renyi Random Graphs

In G(n, \/n) we have L = 2 = O(1).

Next: Random Geometric Graphs with L = Q(1).
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Random Geometric Graphs ﬂ(IT
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Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.
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Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability

depending on their distance.

Simple Example: G (n, r) 14

® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple
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Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability

depending on their distance.

Simple Example: G (n, r) 14

® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple
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Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.

Simple Example: G (n, r) 1A
® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple

@
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Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.

Simple Example: G (n, r) 1A
® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple
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Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.
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Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
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Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability

depending on their distance.

Simple Example: G (n, r) 14

® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple

Scale-Free Networks (Teaser)

Random Geometric Graphs
000000000

Erdés-Renyi Random Graphs
00@000

Motivation
000000000000000

000
24/34 WS 2025/2026 Stefan Walzer: Random Graphs ITI, Algorithm Engineering



Random Geometric Graphs ﬂ(IT

Karlsruhe Institute of Technology

Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability

depending on their distance.

Simple Example: G (n, r) 14

® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple
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Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.

Simple Example: G (n, r) 1A
® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple
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Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability

depending on their distance.

Simple Example: G (n, r) 14
® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple

Scale-Free Networks (Teaser)

Random Geometric Graphs
000000000

Erdés-Renyi Random Graphs
00@000

Motivation
000000000000000

000
24/34 WS 2025/2026 Stefan Walzer: Random Graphs ITI, Algorithm Engineering



Random Geometric Graphs ﬂ(IT

Karlsruhe Institute of Technology

Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability

depending on their distance.

Simple Example: G (n, r) 159
® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple
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Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability

depending on their distance.
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Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability

depending on their distance.
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Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability

depending on their distance.

Simple Example: G (n, r) 14

® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple
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Random Geometric Graphs ﬂ(IT

Karlsruhe Institute of Technology

Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.

. 2
Simple Example: G™ (n, r) 1A
. p
® number of vertices: n .
® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple —(;
@ metric: Lo // Ly is more common but less simple
— dist((x1, y1), (Xe, y2)) = max(dist(x1, x2), dist(y1, y2)).
i
1
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Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.

. 2
Simple Example: G™ (n, r) 1A
. p
® number of vertices: n .
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Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.

. 2
Simple Example: G™ (n, r) 14
. p
® number of vertices: n .
® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple — 5—
@ metric: Lo // Ly is more common but less simple
< dist((x1, 1), (X, y2)) = max(dist(x1, x2), dist(y1, y2))-
i
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Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.

Simple Example: G (n, r)
® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple . . .

@ metric: Lo, // Ly is more common but less simple . .
= dist((x1, y1), (e, y2)) = max(dist(x, x2), dist(y1, y2)). . .

® vertex distribution: for v € [n]: P, ~ U(T?) >
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Random Geometric Graphs

Definition: Random Geometric Graph (RGG)

Ui

Karlsruhe Institute of Technology

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability

depending on their distance.

Simple Example: G (n, r) 1A
® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple

@ metric: Lo, // Ly is more common but less simple
— dist((x1, y1), (X2, y2)) = max(dist(x1, x2), dist(y1, y2)).

® vertex distribution: for v € [n]: P, ~ U(T?)
® edge “probability” is 0 or 1: {u, v} € E < dist(Py, Py) < r

/I not random when P, and P, are given
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Definition: Random Geometric Graph (RGG)
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An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability

depending on their distance.

Simple Example: G (n, r) 1A
® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple

@ metric: Lo, // Ly is more common but less simple
< dist((x1, 1), (X, y2)) = max(dist(x1, x2), dist(y1, y2))-
® vertex distribution: for v € [n]: P, ~ U(T?)

® edge “probability” is 0 or 1: {u, v} € E < dist(Py, Py) < r

/I not random when P, and P, are given
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depending on their distance.

Simple Example: G (n, r) 1A
® number of vertices: n

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple
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An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability

depending on their distance.

Simple Example: G (n, r) 1A
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Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.

Simple Example: G (n, r) 1A _
® number of vertices: n . .

® space: 2-dimensional torus T2 = [0, 1)? .
/I standard unit square is more common but less simple

@ metric: Lo, // Ly is more common but less simple .

< dist((x1, 1), (X, y2)) = max(dist(x1, x2), dist(y1, y2))- .,
® vertex distribution: for v € [n]: P, ~ U(T?) >
® edge “probability” is 0 or 1: {u, v} € E < dist(Py, Py) < r

/I not random when P, and P, are given
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An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability

depending on their distance.
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Definition: Random Geometric Graph (RGG)
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Definition: Random Geometric Graph (RGG)
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An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
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Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.

® number of vertices: n

Simple Example: G (n, r) 14 &

® space: 2-dimensional torus T2 = [0, 1)?
/I standard unit square is more common but less simple

@ metric: Lo // Ly is more common but less simple
< dist((x1, 1), (X, y2)) = max(dist(x1, x2), dist(y1, y2))-

® vertex distribution: for v € [n]: P, ~ U(T?) >
® edge “probability” is 0 or 1: {u, v} € E < dist(Py, Py) < r

/I not random when P, and P, are given
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Degree Distribution of G (n, r)

® Consider arbitrary v € [n].
® By symmetry of T? each outcome of P, behaves the same.

® Pr[{u,v} € E] = Pr[P, is in the 2r x 2r square centered at P,] = 4r2.

® Hence deg(v) ~ Bin(n — 1,4r2) and E[deg(v)] = 4r?(n — 1).
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Locality in G™(n, r) ﬂ(IT

Let p,q ~ U([—0.5,0.5]?) and S, the unit square around p.
0.5 0.5
Then Prlg € Sp] = [’ [“o5(1 = [x)(1 = Iyl)dx dy = .

p
pe )
general case best case
worst case
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Locality in G™(n, r) ﬂ(IT
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e
Let p,q ~ U([—0.5,0.5]?) and S, the unit square around p. A (L
Then Prlg € Sp] = [255 [20s(1 = IX)(1 = Iy)ax dy = . B
pe op p . < e
g
general case best case

worst case

Corollary

By “rescaling” the observation we get L = Pr[{u,w} € E | {v,u} € EA{v,w} € E] = & =Q(1).

~
Py in square Py, Py in square around P,
around P,
Motivation Erdds-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)
000 000000000000000 0000e0 000000000

26/34 WS 2025/2026 Stefan Walzer: Random Graphs ITI, Algorithm Engineering



Poissonisation ﬂ(IT

Karlsruhe Institute of Technology

Poissonised Variant Gh...(n, r) of G™(n, r)

Pois

Replace the point set with a Poisson point process on T? with intensity n.
— i.e. region of size A contains Pois(An)-many points, independent for disjoint regions

Note: GI.,.(n,r) < GT(N, r) where N ~ Pois(n).

Pois
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Poissonised Variant Gh...(n, r) of G™(n, r)

Pois

Replace the point set with a Poisson point process on T? with intensity n.
— i.e. region of size A contains Pois(An)-many points, independent for disjoint regions

Note: GI.,.(n,r) < GT(N, r) where N ~ Pois(n).

Pois
Advantages Disadvantages
® No long-distance correlations. v* ® | ess natural in practice. X
® Pois(4r?)-distributed degrees. v/ ® Number of vertices N ~ Pois(n) not fixed. X
Motivation Erdds-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)
[e]e]e} 0000000000000 00 O0000e 000000000

27/34 WS 2025/2026 Stefan Walzer: Random Graphs ITI, Algorithm Engineering



Poissonisation ﬂ(IT

Karlsruhe Institute of Technology

Poissonised Variant Gh...(n, r) of G™(n, r)

Pois

Replace the point set with a Poisson point process on T? with intensity n.
— i.e. region of size A contains Pois(An)-many points, independent for disjoint regions

Note: GI.,.(n,r) < GT(N, r) where N ~ Pois(n).

Pois
Advantages Disadvantages
® No long-distance correlations. v* ® | ess natural in practice. X
® Pois(4r?)-distributed degrees. v/ ® Number of vertices N ~ Pois(n) not fixed. X

De-Poissonisation (an analogous result holds for de-Poissonising balls-into-bins)

Let P be a graph property. If P is very unlikely for GT (n, r) then P is unlikely for GTz(n, r):

Pois
Pr[G™ P] = Pr[GP, PIN=n < PlCanIEr] _ g1/2) prlGh: P
r[G" (n,r) € Pl = Pr[Gpois(n.r) € P| N = n] < =55z = ©(n"/%) Pr[Gpqis(n, 1) € P].
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4. Scale-Free Networks (Teaser)
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Scale-Free Networks ﬂ(IT

Karlsruhe Institute of Technology

Contrast: Erdds-Renyi
Semi-Formal Definition Practical Consequence exponentially decreasing tail.
A scale-free network is a graph with a

degree distribution that follows a power WIS EVE MEHEes @if ey e

degree (hubs).

law (in an asymptotic sense) 11111111 Pois(\)
for A = 10.
“Internet”
POWGr LaWS kor;e:t,:c/plot/degree,a.topology.full,png
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Scale-Free Networks ﬂ(IT
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Contrast: Erdds-Renyi
Semi-Formal Definition Practical Consequence exponentially decreasing tail.
A scale-free network is a graph with a
degree distribution that follows a power
law (in an asymptotic sense)

There are vertices of very high
degree (hubs).

for A = 10.

“Youtube”
POWGr LaWS konect.cc/plot/degree.a.youtube- links. full.png
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Scale-Free Networks ﬂ(IT
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Contrast: Erdds-Renyi
Semi-Formal Definition Practical Consequence exponentially decreasing tail.
A scale-free network is a graph with a

degree distribution that follows a power WIS EVE MEHEes @if ey e

degree (hubs).

law (in an asymptotic sense) B 1101 — Pois()\)
for A = 10.
“Youtube”

The N ame “Scale' Free” konect.cc/plot/degree.a.youtube- links. full.png
From Barabasi: “Linked: The New Science of Networks”, 2002. 10k ]
In a random network [...] the vast majority of nodes have the same number of links [...]. o 5
Therefore, a random network has a characteristic scale in its node connectivity [...]. In 8 ol B
contrast, the absence of a peak in a power-law degree distribution implies that [...] we £ E
see a continuous hierarchy of nodes, spanning from rare hubs to the numerous tiny 10‘; 7
nodes. There is no intrinsic scale in these networks. This is the reason my research 100: I
group started to describe networks with power-law degree distribution as scale-free. 10° 1o’ gjgree ! gj 10 107
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A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

T

Karlsruhe Institute of Technology

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

® number of vertices: n
® desired average degree A > 0
@ metric space T // more generally: T? for d € N

T

0
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A Scale-Free Random Geometric Graph ﬂ(IT

Karlsruhe Institute of Technology

Reminder: Random Geometric Graph (RGG)
Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

® number of vertices: n

® desired average degree A > 0

@ metric space T // more generally: T? for d € N
® for each v: position x, ~ U(T)

|. O HENNG 0N EHMEIO ¢ 0 AEENG GNOSEINS I ¢ “.Irl[w

0 1
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A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)
Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.
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Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

Motivation
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number of vertices: n

desired average degree A > 0

metric space T // more generally: T9 for d € N
for each v: position x, ~ U(T)

for each v: weight w, ~ Par(7 —1,1)
the Pareto distribution is a power law distribution
with exponent 7
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A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)
Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.
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Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree A > 0

metric space T // more generally: T9 for d € N
for each v: position x, ~ U(T)

for each v: weight w, ~ Par(7 —1,1)
the Pareto distribution is a power law distribution
with exponent 7

{u,v} € E & dist(xy, x,) < 2wyw,
S 5w S

Wy
— dist(xy,X) °
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A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)
Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.
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Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree A > 0

metric space T // more generally: T9 for d € N
for each v: position x, ~ U(T)

for each v: weight w, ~ Par(7 —1,1)
the Pareto distribution is a power law distribution
with exponent 7

{u,v} € E & dist(xy, x,) < 2wyw,

N Wy
< Aw, — dist(xy,x) °
Motivation Erdés-Renyi Random Graphs
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A Scale-Free Random Geometric Graph ﬂ(IT
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Reminder: Random Geometric Graph (RGG)
Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree A > 0
metric space T // more generally: T9 for d € N .
for each v: position x, ~ U(T)

for each v: weight w, ~ Par(7 —1,1)
the Pareto distribution is a power law distribution A °
with exponent 7 0= P °
. N u . ... ° o A L] R . : .. ° o
{U, V} €EE< dISt(XU7XV) < o Wuwy P o e’ eq0 g il S-.v- F PSR T

_n_ Wy
= 3w = dist(xy,x,) © 0 989 4n oy 1
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A Scale-Free Random Geometric Graph ﬂ(IT
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Reminder: Random Geometric Graph (RGG)
Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree A > 0
metric space T // more generally: T9 for d € N .
for each v: position x, ~ U(T)

for each v: weight w, ~ Par(7 —1,1)
the Pareto distribution is a power law distribution A °
with exponent 7 0= P °
. N u . ... ° o A L] R . : .. ° o
{U, V} €EE< dISt(XU7XV) < o Wuwy P o e’ eq0 g il S-.v- F PSR T

_n_ Wy
= 3w = dist(xy,x,) © 0 989 4n oy 1
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A Scale-Free Random Geometric Graph ﬂ(IT
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Reminder: Random Geometric Graph (RGG)
Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree A > 0
metric space T // more generally: T9 for d € N .
for each v: position x, ~ U(T)

for each v: weight w, ~ Par(7 — 1,1)

the Pareto distribution is a power law distribution
with exponent 7 :\o‘

o o
. A o 0° ® o, ° © e o o
- {U, V} €EE< dISt(XU7XV) < o Wuwy P o W’ o0 g@ ° 8-.”- F PSR T
N Wy
At Aw, — dist(xy,x) ° 0 1
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A Scale-Free Random Geometric Graph ﬂ(IT
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Reminder: Random Geometric Graph (RGG)
Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree A > 0

metric space T // more generally: T9 for d € N
for each v: position x, ~ U(T)

for each v: weight w, ~ Par(7 —1,1)
the Pareto distribution is a power law distribution
with exponent 7

- % o ¢
° 8-.”-6.0.:.’.' .‘QT

n w,
= Xwy = dist(xy,xv) © 0 1

{u,v} € E & dist(xy, x,) < 2wyw, P TR I
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A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)
Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.
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Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree A > 0

metric space T // more generally: T9 for d € N
for each v: position x, ~ U(T)

for each v: weight w, ~ Par(7 —1,1)
the Pareto distribution is a power law distribution
with exponent 7

{u,v} € E & dist(xy, x,) < 2wyw,
S 5w S

Wy
— dist(xy,X) °
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A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)
Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.
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Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree A > 0

metric space T // more generally: T9 for d € N
for each v: position x, ~ U(T)

for each v: weight w, ~ Par(7 —1,1)
the Pareto distribution is a power law distribution
with exponent 7

{u,v} € E & dist(xy, x,) < 2wyw,
S 5w S

Wy
— dist(xy,X) °
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A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)
Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.
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Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree A > 0

metric space T // more generally: T9 for d € N
for each v: position x, ~ U(T)

for each v: weight w, ~ Par(7 —1,1)
the Pareto distribution is a power law distribution
with exponent 7

{u,v} € E & dist(xy, x,) < 2wyw,
S 5w S

Wy
— dist(xy,X) °
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A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)
Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.
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Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree A > 0

metric space T // more generally: T9 for d € N
for each v: position x, ~ U(T)

for each v: weight w, ~ Par(7 —1,1)
the Pareto distribution is a power law distribution
with exponent 7

{u,v} € E & dist(xy, x,) < 2wyw,
S 5w S

Wy
— dist(xy,X) °
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A Scale-Free Random Geometric Graph ﬂ(IT
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Reminder: Random Geometric Graph (RGG)
Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

® number of vertices: n

® desired average degree A > 0

® metric space T / more generally: T9 for d € N
a for each v: position x, ~ U(T)

a for each v: weight w, ~ Par(r —1,1)
the Pareto distribution is a power law distribution
with exponent 7

u {u,v} € E & dist(xy, x,) < 2wuw,

N Wy
< Aw, — dist(xy,xv)
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How GIRGs are Useful

GIRGs are Scale-Free

E[deg(v) | w,] = ©(w,) and deg(v) follows a power law if w, does.
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How GIRGs are Useful

GIRGs are Scale-Free

E[deg(v) | w,] = ©(w,) and deg(v) follows a power law if w, does.

GIRGs are a Good Model for Real World Networks (Blasius, Fischbeck, 2022)

® consider two graph parameters: locality and
heterogeneity (= log Var(deg(v))).

® in many contexts, a real network behaves like a
GIRG with the same parameters

On the External Validity of Average-Case Analyses of Graph
Algorithms, ESA 2022.

Erdés-Renyi Random Graphs
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Hyperbolic Geometric Graphs

lllustration by M.C. Escher, Circle Limit 11, 1959.

(All creatures are congruent
in hyperbolic space.)
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Poincaré Model of Hyperbolic Geometry Hyperbolic Random Graph (HGGs)
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Sample points with bias towards the centre.
Connect points if distance is beneath a threshold.

https://commons .wikimedia.org/wiki/File:Hyperbolic_graphs.png

!

S

Can yield power law distribution for node degrees.
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Hyperbolic Geometric Graphs

lllustration by M.C. Escher, Circle Limit 11, 1959.

(All creatures are congruent
in hyperbolic space.)

Result (Blasius, Friedrich, Katzmann, 2021)
Vertex Cover can be Approximated on HGGs.

Poincaré Model of Hyperbolic Geometry Hyperbolic Random Graph (HGGs)

Efficiently Approximating Vertex Cover on Scale-Free Networks with

Underlying Hyperbolic Geometry, ESA 2021.
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Sample points with bias towards the centre.
Connect points if distance is beneath a threshold.

https://commons .wikimedia.org/wiki/File:Hyperbolic_graphs.png

!

Can yield power law distribution for node degrees.
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Preferential Attachment and the Barabasi-Albert Model ﬂ(l'l'
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How a Graph is Grown Over Time

® There is a parameter m € N.

& start with any graph on > m nodes.
® add new nodes one by one

® new node is connected to m existing nodes
m existing nodes are selected with probability proportional to their degree
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Preferential Attachment and the Barabasi-Albert Model ﬂ(l'l'

Karlsruhe Institute of Technology

How a Graph is Grown Over Time

® There is a parameter m € N.
& start with any graph on > m nodes.

® add new nodes one by one

® new node is connected to m existing nodes
m existing nodes are selected with probability proportional to their degree

Why the Model is Interesting

® node degrees approach a power law distribution with exponent 3

@ model may explain why scale-free networks emerge in practice

Erdds-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)
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Summary ﬂ(l'l'

Karlsruhe Institute of Technology

Erdds-Renyi Random Graphs Random Graphs for Average Case Analsis

& simplest type of random graphs Mimic properties of real world networks:

a “Erdés-Renyi" refers to various related @ |ocality // a friend of my friend is often my friend
models ® arises naturally in random geometric graphs

® arise in certain data structures (stay tuned) m “scale-freeness” = existence of hubs

® ook locally like Poisson Galton-Watson ® assign weights to vertices (in GIRGs)
Trees ® use hyperbolic geometry

. . . ® use preferential attachment
® no locality or high-degree vertices
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Appendix: Possible Exam Questions | A\‘(IT

@ What is meant by the theory—practice gap in the context of graph algorithms?
@ What might a theoretician try to overcome the gap?
@ What is the classical model of Erdés and Rényi?

@ Which variants of the Erdés—Rényi model did we consider?

What can be said about the distribution of deg(v) when we set E[deg(v)] = A?

What can be said about Ny = |{v € [n] | deg(v) = d}|?
We studied the R-neighborhood G(n, \/n)|.,r of a vertex v.

® What holds for the distribution of G(n, A/n)|,r, and why?

® What is a Galton—Watson tree?

® What can be said about the extinction probability of a Poisson Galton—-Watson tree?
What is meant by the “sudden emergence of the giant component”? State the result formally.
We considered a quantity L, called locality. How is it defined?
What locality do Erd6s—Rényi graphs have?

® Name properties that distinguish real-world networks from Erd6s—Rényi graphs.
a Give an example of a geometric random graph. What is the locality in this model?
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Appendix: Possible Exam Questions Il

® |n what way might a poissonized model be more convenient?
® When is a network “scale-free”?

® Give an example of a real-world network to which this property is attributed.
® Describe at least two ways in which networks of this type can be generated.
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