

Probability and Computing – Random Graphs

Stefan Walzer | WS 2025/2026

Organisation: Oral Exam

Dates and Time Slots

19.2. *date of the last lecture*

We 11.03. Oral Exams

Th 12.03. Oral Exams

Fr. 13.03. Oral Exams

We 25.3 Oral Exams

Th 26.3 Oral Exams

Fr 27.3 Oral Exams

Other dates may be possible on request.

Available time slots:

- 10:00, 10:25, 10:50, 11:15
- 14:00, 14:25, 14:50, 15:15

Motivation 000

Erdős-Renyi Random Graphs

Random Geometric Graphs

Scale-Free Networks (Teaser)

- Registration via our secretary:
 - Anja Blancani (blancani@kit.edu)
 - cc to me (stefan.walzer@kit.edu)
 - Please specify:
 - your full name
 - matriculation number
 - subject of study (Studiengang)
 - version of the exam regulation (Version der Prüfungsordnung)
- Cancellation also via our secretary
- Location: Stefan's Office (50.34, Room 209).
- duration: 20 minutes
- scope: content of lectures *and exercises*

1. Motivation

2. Erdős-Renyi Random Graphs

- Degree Distribution
- Degree Statistics
- Tree-like local structure
- Emergence of the Giant Component

3. Random Geometric Graphs

4. Scale-Free Networks (Teaser)

Motivation

Erdős-Renyi Random Graphs

Random Geometric Graphs

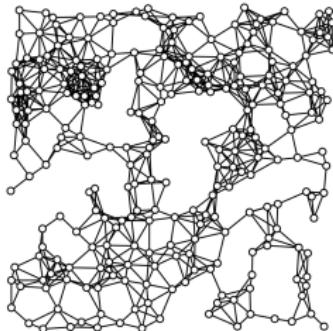
Scale-Free Networks (Teaser)

Motivation 1: Average Case Analysis

Theory-Practice Gap

Minimum Vertex Cover is APX-hard $\xleftarrow{??}$ small vertex covers can often be computed efficiently in practice

~ relevant graph classes (e.g. social networks) are not worst-case.



Bridging the Gap

- 1 Define a distribution \mathcal{G} on graphs.
 - \mathcal{G} should be realistic, i.e. model real world instances
 - \mathcal{G} should have simple mathematical structure
- 2 Consider randomised complexity of handling $G \sim \mathcal{G}$.

Goals

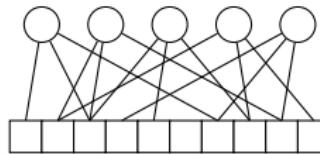
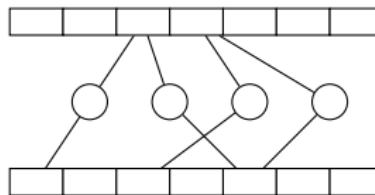
- model real world instances
- identify useful properties of these instances
- build algorithms exploiting these properties

Motivation 2: Data Structure Design

Stay tuned

Random graphs occur naturally in

- cuckoo hash tables
- retrieval data structures
- perfect hash functions



Probabilistic Method for Graph Theory

Show that graphs with a property P exist by showing that a random graph G satisfies $\Pr[G \text{ has } P] > 0]$.

(we're not doing this)

1. Motivation

2. Erdős-Renyi Random Graphs

- Degree Distribution
- Degree Statistics
- Tree-like local structure
- Emergence of the Giant Component

3. Random Geometric Graphs

4. Scale-Free Networks (Teaser)

Motivation

Erdős-Renyi Random Graphs

Random Geometric Graphs

Scale-Free Networks (Teaser)
oooooooooooo

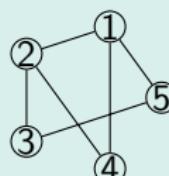
The Erdős-Renyi Model and Related Distributions

Original Erdős-Renyi Model $G(n, m)$: “Uniformly random graph with n nodes and m edges”

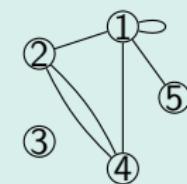
Definition

Let $n \in \mathbb{N}$, $0 \leq m \leq \binom{n}{2}$. We use $G(n, m)$ to refer to a graph sampled uniformly from the set of all graphs with vertex set $[n]$ and m edges.

Example: $n = 5, m = 6$



probability



0

The Erdős-Renyi Model and Related Distributions

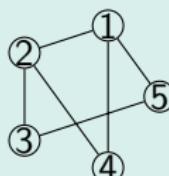
Original Erdős-Renyi Model $G(n, m)$: “Uniformly random graph with n nodes and m edges”

Gilbert Model $G(n, p)$: “Every edge with probability p ”

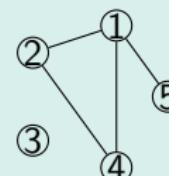
Definition

Let $n \in \mathbb{N}$ and $p \in (0, 1)$. We use $G(n, p)$ to refer to a graph with vertex set $[n]$ that contains each of the $\binom{n}{2}$ possible edges with probability p , independently from other edges.

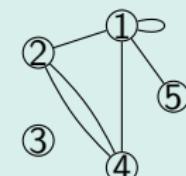
Example: $n = 5$



probability



$$p^6(1-p)^4 \quad p^4(1-p)^6$$



0

The Erdős-Renyi Model and Related Distributions

Original Erdős-Renyi Model $G(n, m)$: “Uniformly random graph with n nodes and m edges”

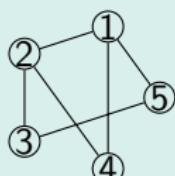
Gilbert Model $G(n, p)$: “Every edge with probability p ”

Uniform Endpoint Model $G^{\text{UE}}(n, m)$: “randomly attach the $2m$ endpoints of edges”

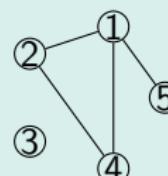
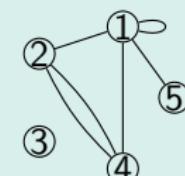
Definition

Let $n, m \in \mathbb{N}$ and $v_1, \dots, v_{2m} \sim \mathcal{U}([n])$. We use $G^{\text{UE}}(n, m)$ to refer to a multi-graph with vertex set $[n]$ and a multiset of edges that contains a copy of $\{v_{2i-1}, v_{2i}\}$ for each $i \in [m]$.

Example: $n = 5, m = 6$



probability $6! \cdot 2^6 \cdot 5^{-12}$



$$6! \cdot 2^4 \cdot 5^{-12}$$

The Erdős-Renyi Model and Related Distributions

Original Erdős-Renyi Model $G(n, m)$: “Uniformly random graph with n nodes and m edges”

Gilbert Model $G(n, p)$: “Every edge with probability p ”

Uniform Endpoint Model $G^{\text{UE}}(n, m)$: “randomly attach the $2m$ endpoints of edges”

Remarks

- for $p = m / \binom{n}{2}$ the three distributions are similar in many ways
- the original Erdős-Renyi model is often inconvenient to work with
- the uniform endpoint model is non-standard (we'll need it in later chapters)

Motivation

Erdős-Renyi Random Graphs

Random Geometric Graphs

Scale-Free Networks (Teaser)

Plan for the Next Few Slides: Sparse Graphs

Focus on Expected Degree $\lambda \in \mathcal{O}(1)$

- for $G(n, m)$ choose $m = \frac{\lambda n}{2} \Rightarrow$ average vertex degree $\frac{2m}{n} = \lambda$
- for $G(n, p)$ choose $p = \frac{\lambda}{n-1} \Rightarrow$ expected vertex degree $(n-1) \cdot p = \lambda$
- for $G^{\text{UE}}(n, m)$ choose $m = \frac{\lambda n}{2} \Rightarrow$ average vertex degree $\frac{2m}{n} = \lambda //$ loops contribute 2 to a vertex degree

Plan for the Next Few Slides: Sparse Graphs

Focus on Expected Degree $\lambda \in \mathcal{O}(1)$

- for $G(n, m)$ choose $m = \frac{\lambda n}{2}$ \Rightarrow average vertex degree $\frac{2m}{n} = \lambda$
- for $G(n, p)$ choose $p = \frac{\lambda}{n-1}$ \Rightarrow expected vertex degree $(n-1) \cdot p = \lambda$
- for $G^{\text{UE}}(n, m)$ choose $m = \frac{\lambda n}{2}$ \Rightarrow average vertex degree $\frac{2m}{n} = \lambda$ // loops contribute 2 to a vertex degree

Goals

- Build intuition for properties of Erdős-Renyi graphs.
- Get a feeling for how to work with them.
- For simplicity: Focus on the Gilbert model only.

Selected Properties of Erdős-Renyi Graphs

On the next few slides we consider:

Vertex Degrees

For large n , the degree of a given vertex is approximately Poisson distributed.

Degree Statistics

The number of vertices of each degree is highly concentrated around its expectation.

Local Structure

The neighbourhood around a vertex resembles a Galton-Watson tree.

Largest Connected Component

Size of the largest component is highly predictable.

1. Motivation

2. Erdős-Renyi Random Graphs

- Degree Distribution
- Degree Statistics
- Tree-like local structure
- Emergence of the Giant Component

3. Random Geometric Graphs

4. Scale-Free Networks (Teaser)

Motivation

Erdős-Renyi Random Graphs

Random Geometric Graphs

Scale-Free Networks (Teaser)

Exercise: Degrees are approximately Poisson distributed

For each $n \in \mathbb{N}$ consider $G(n, \lambda/n)$ and the degree $X_n \sim \text{Bin}(n-1, \lambda/n)$ of vertex 1. Moreover, let $X \sim \text{Pois}(\lambda)$. Then

$$X_n \xrightarrow{d} X \text{ for } n \rightarrow \infty.$$

The same holds for $G(n, \lfloor \lambda n/2 \rfloor)$ and $G^{\text{UE}}(n, \lambda n/2)$.

Content

1. Motivation

2. Erdős-Renyi Random Graphs

- Degree Distribution
- Degree Statistics
- Tree-like local structure
- Emergence of the Giant Component

3. Random Geometric Graphs

4. Scale-Free Networks (Teaser)

Motivation
○○○

Erdős-Renyi Random Graphs
○○○○○○●○○○○○○○

Random Geometric Graphs
○○○○○○

Scale-Free Networks (Teaser)
○○○○○○○○○○

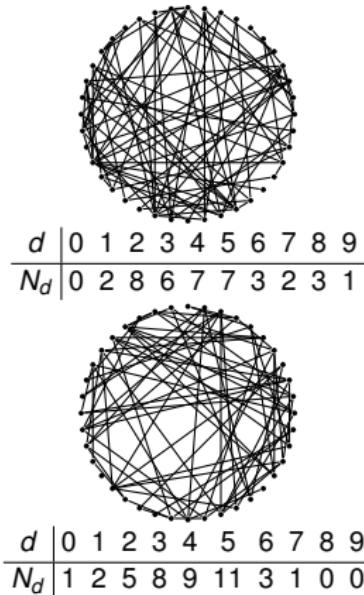
The Number N_d of Vertices of Degree N_d

Notation

- Let $d \in \mathbb{N}$, $\lambda > 0$. We consider $G(n, \lambda/n)$. // Gilbert model
- Let $N_d := |\{v \in [n] \mid \deg(v) = d\}|$

Is N_d highly concentrated?

- Note: $(\deg(v))_{v \in [n]}$ are correlated.
- Otherwise N_d would have a binomial distribution and we could use Chernoff bounds.



Motivation
○○○

Erdős-Renyi Random Graphs
○○○○○○○●○○○○○○

Random Geometric Graphs
○○○○○○

Scale-Free Networks (Teaser)
○○○○○○○○○○

Lemma (Near Independence of Degrees)

Let $u \neq v$ be two vertices of $G(n, \lambda/n)$. Then $\Pr[\deg(u) = d, \deg(v) = d] = \Pr[\deg(u) = d] \Pr[\deg(v) = d] \pm \Theta(1/n)$.

Lemma (Near Independence of Degrees)

Let $u \neq v$ be two vertices of $G(n, \lambda/n)$. Then $\Pr[\deg(u) = d, \deg(v) = d] = \Pr[\deg(u) = d] \Pr[\deg(v) = d] \pm \Theta(1/n)$.

Proof

Let $\deg'(u) = \deg(u) - [\{u, v\} \in E]$ be the degree of u when ignoring $\{u, v\}$ if present. Then

$$\Pr[\deg(u) \neq \deg'(u)] = \Pr[\{u, v\} \in E] = \lambda/n = \Theta(1/n).$$

The same holds for $\deg'(v) = \deg(v) - [\{u, v\} \in E]$. We conclude:

$$\begin{aligned} \Pr[\deg(v_1) = d, \deg(v_2) = d] &= \Pr[\deg'(v_1) = d, \deg'(v_2) = d] \pm \Theta(1/n) \\ &= \Pr[\deg'(v_1) = d] \Pr[\deg'(v_2) = d] \pm \Theta(1/n) = \Pr[\deg(v_1) = d] \Pr[\deg(v_2) = d] \pm \Theta(1/n). \end{aligned}$$

Lemma (Near Independence of Degrees)

Let $u \neq v$ be two vertices of $G(n, \lambda/n)$. Then $\Pr[\deg(u) = d, \deg(v) = d] = \Pr[\deg(u) = d] \Pr[\deg(v) = d] \pm \Theta(1/n)$.

Theorem

$\Pr[|N_d - np_d| \geq n^{2/3}] = \mathcal{O}(n^{-1/3})$ where $p_d = \Pr[\deg(1) = d] \approx e^{-\lambda} \frac{\lambda^d}{d!}$.

Lemma (Near Independence of Degrees)

Let $u \neq v$ be two vertices of $G(n, \lambda/n)$. Then $\Pr[\deg(u) = d, \deg(v) = d] = \Pr[\deg(u) = d] \Pr[\deg(v) = d] \pm \Theta(1/n)$.

Theorem

$\Pr[|N_d - np_d| \geq n^{2/3}] = \mathcal{O}(n^{-1/3})$ where $p_d = \Pr[\deg(1) = d] \approx e^{-\lambda} \frac{\lambda^d}{d!}$.

Proof

$$\mathbb{E}[N_d] = ?$$

$$\mathbb{E}[N_d^2] = ?$$

$$\text{Var}(N_d) = ?.$$

Lemma (Near Independence of Degrees)

Let $u \neq v$ be two vertices of $G(n, \lambda/n)$. Then $\Pr[\deg(u) = d, \deg(v) = d] = \Pr[\deg(u) = d] \Pr[\deg(v) = d] \pm \Theta(1/n)$.

Theorem

$\Pr[|N_d - np_d| \geq n^{2/3}] = \mathcal{O}(n^{-1/3})$ where $p_d = \Pr[\deg(1) = d] \approx e^{-\lambda} \frac{\lambda^d}{d!}$.

Proof

$$\mathbb{E}[N_d] = ?$$

$$\mathbb{E}[N_d^2] = ?$$

$$\text{Var}(N_d) = ?.$$

$$\mathbb{E}[N_d] = \mathbb{E}\left[\sum_{v \in [n]} [\deg(v) = d]\right] = n \cdot \Pr[\deg(1) = d] = n \cdot p_d.$$

Lemma (Near Independence of Degrees)

Let $u \neq v$ be two vertices of $G(n, \lambda/n)$. Then $\Pr[\deg(u) = d, \deg(v) = d] = \Pr[\deg(u) = d] \Pr[\deg(v) = d] \pm \Theta(1/n)$.

Theorem

$\Pr[|N_d - np_d| \geq n^{2/3}] = \mathcal{O}(n^{-1/3})$ where $p_d = \Pr[\deg(1) = d] \approx e^{-\lambda} \frac{\lambda^d}{d!}$.

Proof

$$\mathbb{E}[N_d] = np_d \quad \mathbb{E}[N_d^2] = ? \quad \text{Var}(N_d) = ?.$$

$$\begin{aligned} \mathbb{E}[N_d^2] &= \mathbb{E}\left[\left(\sum_{v \in [n]} [\deg(v) = d]\right)^2\right] = \mathbb{E}\left[\sum_{u \in [n]} \sum_{v \in [n]} [\deg(u) = d, \deg(v) = d]\right] \\ &= \sum_{u \in [n]} \sum_{v \in [n]} \Pr[\deg(u) = d, \deg(v) = d] = \sum_{u \in [n]} \Pr[\deg(u) = d] + \sum_{u \in [n]} \sum_{v \neq u} \Pr[\deg(u) = d, \deg(v) = d] \\ &= n \cdot p_d + n \cdot (n-1) \cdot (p_d^2 \pm \mathcal{O}(1/n)) = n^2 p_d^2 \pm \mathcal{O}(n). \end{aligned}$$

Lemma (Near Independence of Degrees)

Let $u \neq v$ be two vertices of $G(n, \lambda/n)$. Then $\Pr[\deg(u) = d, \deg(v) = d] = \Pr[\deg(u) = d] \Pr[\deg(v) = d] \pm \Theta(1/n)$.

Theorem

$\Pr[|N_d - np_d| \geq n^{2/3}] = \mathcal{O}(n^{-1/3})$ where $p_d = \Pr[\deg(1) = d] \approx e^{-\lambda} \frac{\lambda^d}{d!}$.

Proof

$$\mathbb{E}[N_d] = np_d$$

$$\mathbb{E}[N_d^2] = n^2 p_d^2 \pm \mathcal{O}(n)$$

$$\text{Var}(N_d) = ?.$$

$$\text{Var}(N_d) = \mathbb{E}[N_d^2] - \mathbb{E}[N_d]^2 \leq n^2 p_d^2 + \mathcal{O}(n) - (np_d)^2 = \mathcal{O}(n).$$

Lemma (Near Independence of Degrees)

Let $u \neq v$ be two vertices of $G(n, \lambda/n)$. Then $\Pr[\deg(u) = d, \deg(v) = d] = \Pr[\deg(u) = d] \Pr[\deg(v) = d] \pm \Theta(1/n)$.

Theorem

$\Pr[|N_d - np_d| \geq n^{2/3}] = \mathcal{O}(n^{-1/3})$ where $p_d = \Pr[\deg(1) = d] \approx e^{-\lambda} \frac{\lambda^d}{d!}$.

Proof

$$\mathbb{E}[N_d] = np_d \quad \mathbb{E}[N_d^2] = n^2 p_d^2 \pm \mathcal{O}(n) \quad \text{Var}(N_d) = \mathcal{O}(n).$$

$$\text{Hence: } \Pr[|N_d - np_d| \geq n^{2/3}] = \Pr[|N_d - \mathbb{E}[N_d]| \geq n^{2/3}] \stackrel{\text{Cheb.}}{\leq} \frac{\text{Var}(N_d)}{n^{4/3}} = \mathcal{O}(n^{-1/3}).$$

Content

1. Motivation

2. Erdős-Renyi Random Graphs

- Degree Distribution
- Degree Statistics
- Tree-like local structure
- Emergence of the Giant Component

3. Random Geometric Graphs

4. Scale-Free Networks (Teaser)

Motivation
○○○

Erdős-Renyi Random Graphs
○○○○○○○○●○○○○

Random Geometric Graphs
○○○○○○

Scale-Free Networks (Teaser)
○○○○○○○○

Erdős-Renyi Graphs have Few Cycles

Theorem: There are few short cycles in Erdős-Renyi graphs

Let C_k be the number of cycles of length k in $G(n, \lambda/n)$ where $k, \lambda = \Theta(1)$. Then $\mathbb{E}[C_k] \leq \frac{\lambda^k}{2k} = \Theta(1)$.

Erdős-Renyi Graphs have Few Cycles

Theorem: There are few short cycles in Erdős-Renyi graphs

Let C_k be the number of cycles of length k in $G(n, \lambda/n)$ where $k, \lambda = \Theta(1)$. Then $\mathbb{E}[C_k] \leq \frac{\lambda^k}{2k} = \Theta(1)$.

Proof.

The number of potential cycles is $\underbrace{n(n-1) \cdot \dots \cdot (n-k+1)}_{\text{sequences } (v_1, \dots, v_k)} \cdot \underbrace{\frac{1}{k} \cdot \frac{1}{2}}_{\text{startpoint and direction irrelevant}}$

The probability that (v_1, \dots, v_k, v_1) is a cycle is $(\lambda/n)^k$. Hence:

$$\mathbb{E}[C_k] \leq \frac{n^k}{2k} \left(\frac{\lambda}{n}\right)^k = \frac{\lambda^k}{2k}.$$

□

The Galton-Watson Branching Process

Definition

Let \mathcal{D} be a distribution on \mathbb{N}_0 and $X_{i,j} \sim \mathcal{D}$ for $i, j \in \mathbb{N}$. Define $Z_0 = 1$ and $Z_i = \sum_{j=1}^{Z_{i-1}} X_{i,j}$ for $i \geq 1$.

Intuition

- Start with a population of size $Z_1 = 1$.
- Each individual has a random number of descendants.
- Key question: What is the probability of extinction,
i.e. for $\lim_{i \rightarrow \infty} Z_i = 0$?

Galton-Watson Tree

Z_i	$X_{i,j}$	1	2	3	4	...
1	1	3	1	0	2	...
3	2	1	0	1	3	...
2	3	1	2	2	0	...
3	4	0	3	0	0	...
3	5	0	0	0	2	...
0		⋮	⋮	⋮	⋮	⋮

Motivation
○○○

Erdős-Renyi Random Graphs
○○○○○○○○○○●○○○

Random Geometric Graphs
○○○○○○

Scale-Free Networks (Teaser)
○○○○○○○○○○

The Galton-Watson Branching Process

Definition

Let \mathcal{D} be a distribution on \mathbb{N}_0 and $X_{i,j} \sim \mathcal{D}$ for $i, j \in \mathbb{N}$. Define $Z_0 = 1$ and $Z_i = \sum_{j=1}^{Z_{i-1}} X_{i,j}$ for $i \geq 1$.

Intuition

- Start with a population of size $Z_1 = 1$.
- Each individual has a random number of descendants.
- Key question: What is the probability of extinction, i.e. for $\lim_{i \rightarrow \infty} Z_i = 0$?

Exercise: Galton-Watson Process with $\mathcal{D} = \text{Pois}(\lambda)$

If $\lambda \leq 1$ then the process goes extinct with probability 1.

If $\lambda > 1$ then the process survives with probability $s_\lambda > 0$.

Galton-Watson Tree

Z_i	$X_{i,j}$	1	2	3	4	...
1	1	3	1	0	2	...
3	2	1	0	1	3	...
2	3	1	2	2	0	...
3	4	0	3	0	0	...
3	5	0	0	0	2	...
0		⋮	⋮	⋮	⋮	⋮

Local Structure of Erdős-Renyi Graphs

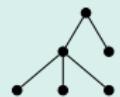
Theorem: The Neighbourhood of v looks like a Galton Watson Tree

Let $R = \mathcal{O}(1)$. Let H be an (ordered) tree of depth R given by a sequence c_1, \dots, c_k specifying the number of children of nodes in all layers except the last, in level order.

Let $\text{GWT}(\lambda)|_R$ be the first R layers of a $\text{Pois}(\lambda)$ -Galton-Watson tree.

$$\Pr[\text{GWT}(\lambda)|_R = H] \stackrel{(i)}{=} \prod_{i=1}^k \Pr_{X \sim \text{Pois}(\lambda)}[X = c_i] = \prod_{i=1}^k e^{-\lambda} \frac{\lambda^{c_i}}{c_i!}$$

Example for H



$$(c_1, c_2, c_3) = (2, 3, 0)$$

Local Structure of Erdős-Renyi Graphs

Theorem: The Neighbourhood of v looks like a Galton Watson Tree

Let $R = \mathcal{O}(1)$. Let H be an (ordered) tree of depth R given by a sequence c_1, \dots, c_k specifying the number of children of nodes in all layers except the last, in level order.

Let $\text{GWT}(\lambda)|_R$ be the first R layers of a $\text{Pois}(\lambda)$ -Galton-Watson tree.

Let $G(n, \lambda/n)|_{v,R}$ be the (ordered) subgraph of $G(n, \lambda/n)$ induced by vertices with distance $\leq R$ from v .

$$\Pr[\text{GWT}(\lambda)|_R = H] \stackrel{(i)}{=} \prod_{i=1}^k \Pr_{X \sim \text{Pois}(\lambda)}[X = c_i] = \prod_{i=1}^k e^{-\lambda} \frac{\lambda^{c_i}}{c_i!} \stackrel{(ii)}{\approx} \Pr[G(n, \lambda/n)|_{v,R} = H].$$

Example for H

$$(c_1, c_2, c_3) = (2, 3, 0)$$

Local Structure of Erdős-Renyi Graphs

Theorem: The Neighbourhood of v looks like a Galton Watson Tree

Let $R = \mathcal{O}(1)$. Let H be an (ordered) tree of depth R given by a sequence c_1, \dots, c_k specifying the number of children of nodes in all layers except the last, in level order.

Let $\text{GWT}(\lambda)|_R$ be the first R layers of a $\text{Pois}(\lambda)$ -Galton-Watson tree.

Let $G(n, \lambda/n)|_{v,R}$ be the (ordered) subgraph of $G(n, \lambda/n)$ induced by vertices with distance $\leq R$ from v .

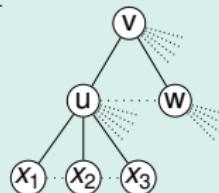
$$\Pr[\text{GWT}(\lambda)|_R = H] \stackrel{(i)}{=} \prod_{i=1}^k \Pr_{X \sim \text{Pois}(\lambda)}[X = c_i] = \prod_{i=1}^k e^{-\lambda} \frac{\lambda^{c_i}}{c_i!} \stackrel{(ii)}{\approx} \Pr[G(n, \lambda/n)|_{v,R} = H].$$

Example for H

$$(c_1, c_2, c_3) = (2, 3, 0)$$

Proof of (ii) by Example: The following has to “go right” for $G(n, \lambda/n)|_{v,R} = H$

random variable	desired outcome	probability
$\deg(v) \sim \text{Bin}(n-1, \lambda/n) \approx \text{Pois}(\lambda)$	2	$\approx e^{-\lambda} \frac{\lambda^2}{2!}$
$[\{u, w\} \in E]$	0	$1 - \frac{\lambda}{n} \approx 1$
$\deg(u) - 1 \sim \text{Bin}(n-3, \lambda/n) \approx \text{Pois}(\lambda)$	3	$\approx e^{-\lambda} \frac{\lambda^3}{3!}$
$\deg(w) - 1 \sim \text{Bin}(n-3, \lambda/n) \approx \text{Pois}(\lambda)$	0	$\approx e^{-\lambda} \frac{\lambda^0}{0!}$
$[\{x_1, x_2\} \in E \vee \{x_2, x_3\} \in E \vee \{x_1, x_3\} \in E]$	0	$(1 - \frac{\lambda}{n})^3 \approx 1$



Local Structure of Erdős-Renyi Graphs

Theorem: The Neighbourhood of v looks like a Galton Watson Tree

Let $R = \mathcal{O}(1)$. Let H be an (ordered) tree of depth R given by a sequence c_1, \dots, c_k specifying the number of children of nodes in all layers except the last, in level order.

Let $\text{GWT}(\lambda)|_R$ be the first R layers of a $\text{Pois}(\lambda)$ -Galton-Watson tree.

Let $G(n, \lambda/n)|_{v,R}$ be the (ordered) subgraph of $G(n, \lambda/n)$ induced by vertices with distance $\leq R$ from v .

$$\Pr[\text{GWT}(\lambda)|_R = H] \stackrel{(i)}{=} \prod_{i=1}^k \Pr_{X \sim \text{Pois}(\lambda)}[X = c_i] = \prod_{i=1}^k e^{-\lambda} \frac{\lambda^{c_i}}{c_i!} \stackrel{(ii)}{\approx} \Pr[G(n, \lambda/n)|_{v,R} = H].$$

Example for H

$$(c_1, c_2, c_3) = (2, 3, 0)$$

Corollaries

- $G(n, \lambda/n)|_{v,R} \xrightarrow{d} \text{GWT}(\lambda)|_R$ // convergence in distribution for $n \rightarrow \infty$
- The number N_H of “copies” of H in $G(n, \lambda/n)$ satisfies $\mathbb{E}[N_H] \approx n \cdot \prod_{i=1}^k e^{-\lambda} \frac{\lambda^{c_i}}{c_i!}$.
Concentration of N_H can be proved much like we proved concentration of N_d earlier.

Content

1. Motivation

2. Erdős-Renyi Random Graphs

- Degree Distribution
- Degree Statistics
- Tree-like local structure
- Emergence of the Giant Component

3. Random Geometric Graphs

4. Scale-Free Networks (Teaser)

Motivation
○○○

Erdős-Renyi Random Graphs
○○○○○○○○○○○○●○

Random Geometric Graphs
○○○○○○

Scale-Free Networks (Teaser)
○○○○○○○○

How does $G(n, \lambda/n)$ look like for different λ ?

Theorem: Sudden Emergence of the Giant Component (Erdős, Renyi 1960)

Consider $G(n, \lambda/n)$. The following holds with probability approaching 1 for $n \rightarrow \infty$.

- i If $\lambda < 1$ then $G(n, \lambda/n)$ only has components of size $\mathcal{O}(\log n)$.

Each component is a tree or pseudotree. // pseudotree: connected and # edges = # vertices
→ Intuition: GWT(λ) dies out with probability 1.

- ii If $\lambda > 1$ then $G(n, \lambda/n)$ has one “giant” component of size $\approx s(\lambda) \cdot n$.

→ Intuition: $s(\lambda) > 0$ is the probability that GWT(λ) is infinite
 \approx probability that fixed vertex is in giant component

- iii If $\lambda = 1$ then the largest component of $G(n, \lambda/n)$ has size $\Theta(n^{2/3})$.

→ Intuition: ?

wild pseudotree

<https://crowspath.org/love-trees/>

1. Motivation

2. Erdős-Renyi Random Graphs

- Degree Distribution
- Degree Statistics
- Tree-like local structure
- Emergence of the Giant Component

3. Random Geometric Graphs

4. Scale-Free Networks (Teaser)

Motivation

Erdős-Renyi Random Graphs

Random Geometric Graphs

Scale-Free Networks (Teaser)
oooooooooooo

Observation: Locality in Practice

Take social networks. A friend of my friend is more likely to be my friend than a random person.

Definition: Locality¹

$L = \Pr[\{u, w\} \in E \mid \{v, u\} \in E \wedge \{v, w\} \in E]$ where v, u, w are distinct (random) vertices.

Similar numbers are sometimes called *clustering coefficient*.

Locality: A Property of Networks in Practice

Observation: Locality in Practice

Take social networks. A friend of my friend is more likely to be my friend than a random person.

Definition: Locality¹

$L = \Pr[\{u, w\} \in E \mid \{v, u\} \in E \wedge \{v, w\} \in E]$ where v, u, w are distinct (random) vertices.

Similar numbers are sometimes called *clustering coefficient*.

Observation: No Locality in Erdős-Renyi Random Graphs

In $G(n, \lambda/n)$ we have $L = \frac{\lambda}{n} = \mathcal{O}(\frac{1}{n})$.

Observation: Locality in Practice

Take social networks. A friend of my friend is more likely to be my friend than a random person.

Definition: Locality¹

$L = \Pr[\{u, w\} \in E \mid \{v, u\} \in E \wedge \{v, w\} \in E]$ where v, u, w are distinct (random) vertices.

Similar numbers are sometimes called *clustering coefficient*.

Observation: No Locality in Erdős-Renyi Random Graphs

In $G(n, \lambda/n)$ we have $L = \frac{\lambda}{n} = \mathcal{O}(\frac{1}{n})$.

Next: Random *Geometric* Graphs with $L = \Omega(1)$.

Definition: Random Geometric Graph (RGG)

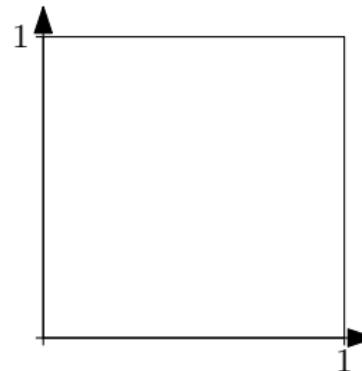
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

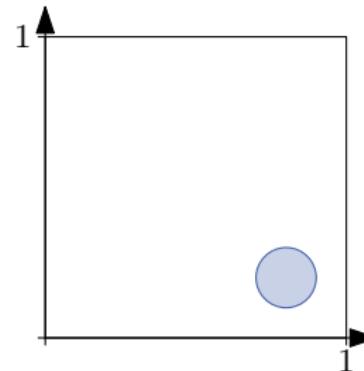


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

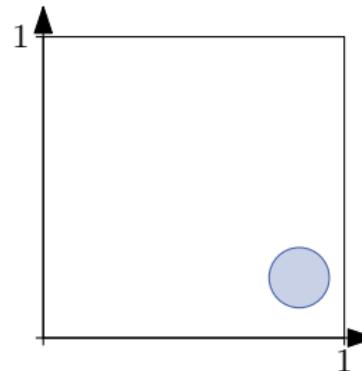


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

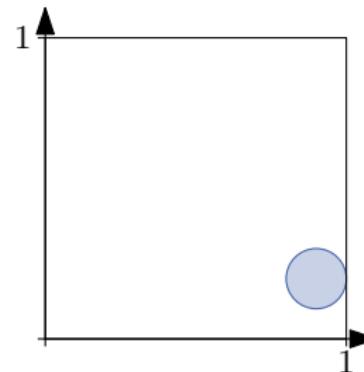


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

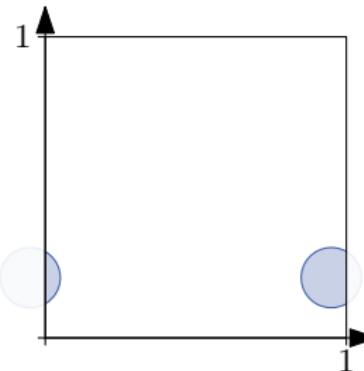


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

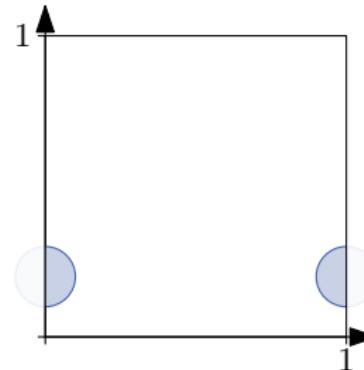


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

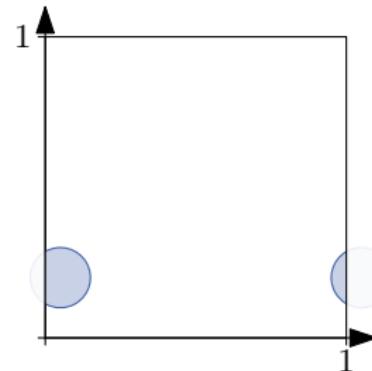


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

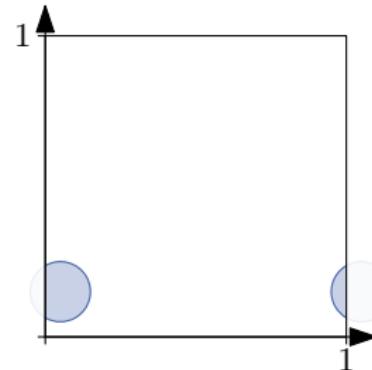


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

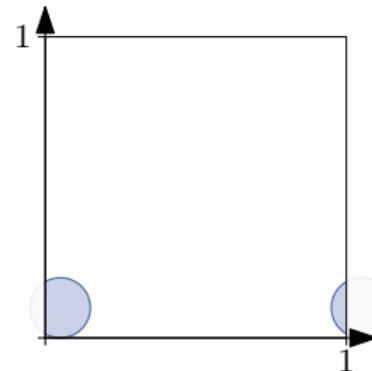


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

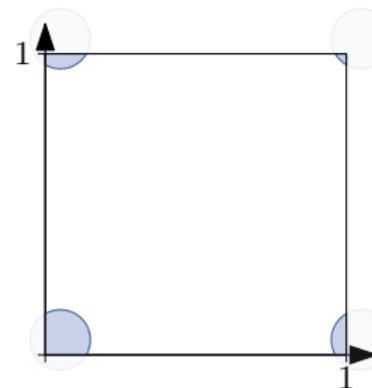


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

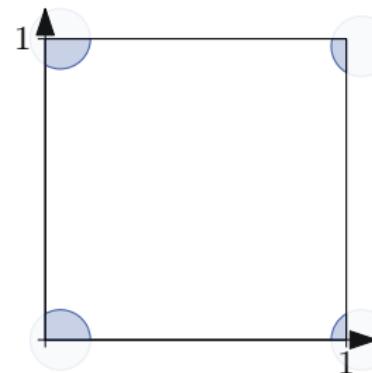


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

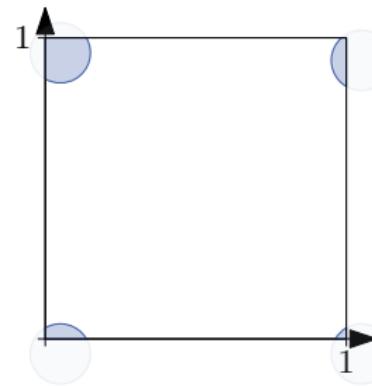


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

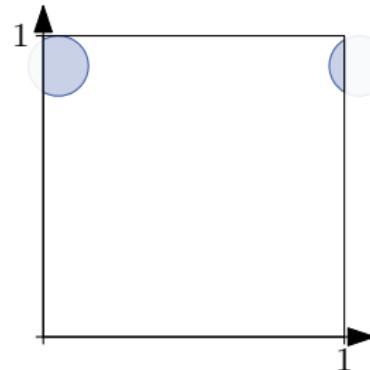


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

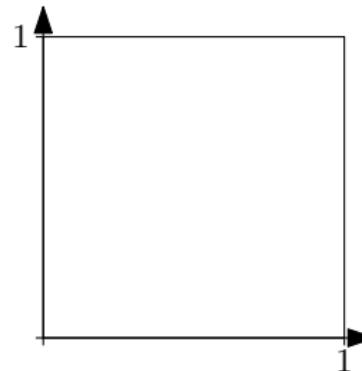


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple

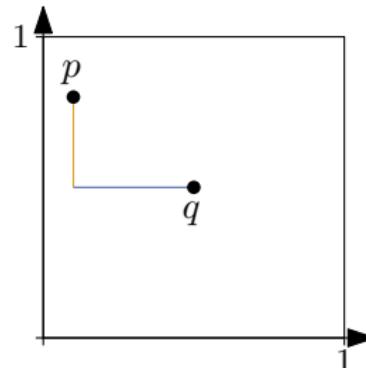


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple
- metric: L_∞ // L_2 is more common but less simple
 $\hookrightarrow \text{dist}((x_1, y_1), (x_2, y_2)) = \max(\text{dist}(x_1, x_2), \text{dist}(y_1, y_2)).$

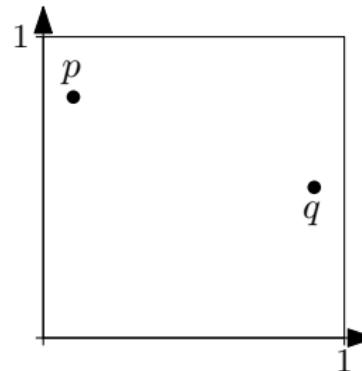


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple
- metric: L_∞ // L_2 is more common but less simple
 $\hookrightarrow \text{dist}((x_1, y_1), (x_2, y_2)) = \max(\text{dist}(x_1, x_2), \text{dist}(y_1, y_2)).$

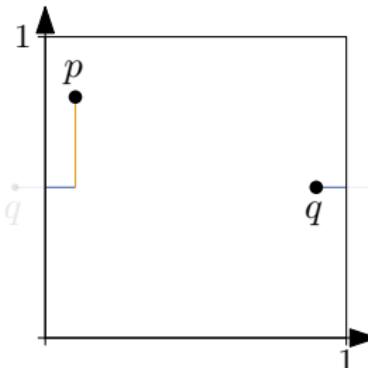


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple
- metric: L_∞ // L_2 is more common but less simple
 $\hookrightarrow \text{dist}((x_1, y_1), (x_2, y_2)) = \max(\text{dist}(x_1, x_2), \text{dist}(y_1, y_2)).$

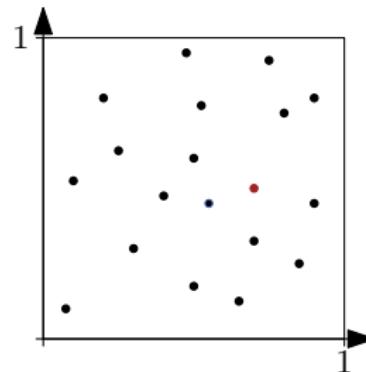


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple
- metric: L_∞ // L_2 is more common but less simple
 $\hookrightarrow \text{dist}((x_1, y_1), (x_2, y_2)) = \max(\text{dist}(x_1, x_2), \text{dist}(y_1, y_2)).$
- vertex distribution: for $v \in [n]$: $P_v \sim \mathcal{U}(\mathbb{T}^2)$

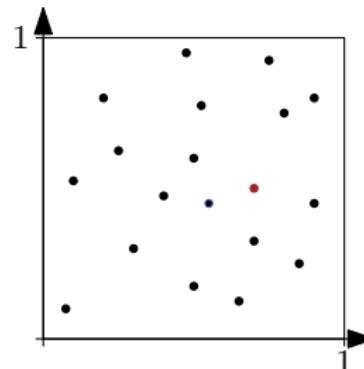


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple
- metric: L_∞ // L_2 is more common but less simple
 $\hookrightarrow \text{dist}((x_1, y_1), (x_2, y_2)) = \max(\text{dist}(x_1, x_2), \text{dist}(y_1, y_2)).$
- vertex distribution: for $v \in [n]$: $P_v \sim \mathcal{U}(\mathbb{T}^2)$
- edge “probability” is 0 or 1: $\{u, v\} \in E \Leftrightarrow \text{dist}(P_u, P_v) \leq r$
// not random when P_u and P_v are given

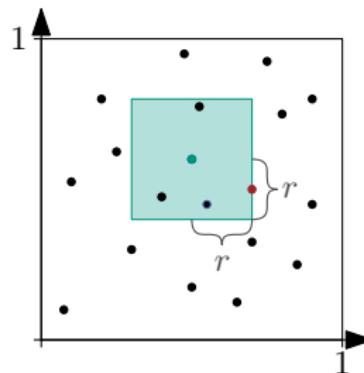


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple
- metric: L_∞ // L_2 is more common but less simple
 $\hookrightarrow \text{dist}((x_1, y_1), (x_2, y_2)) = \max(\text{dist}(x_1, x_2), \text{dist}(y_1, y_2)).$
- vertex distribution: for $v \in [n]$: $P_v \sim \mathcal{U}(\mathbb{T}^2)$
- edge “probability” is 0 or 1: $\{u, v\} \in E \Leftrightarrow \text{dist}(P_u, P_v) \leq r$
// not random when P_u and P_v are given

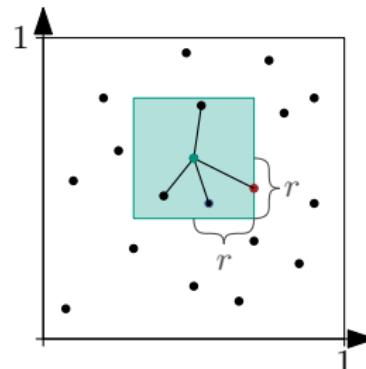


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple
- metric: L_∞ // L_2 is more common but less simple
 $\hookrightarrow \text{dist}((x_1, y_1), (x_2, y_2)) = \max(\text{dist}(x_1, x_2), \text{dist}(y_1, y_2)).$
- vertex distribution: for $v \in [n]$: $P_v \sim \mathcal{U}(\mathbb{T}^2)$
- edge “probability” is 0 or 1: $\{u, v\} \in E \Leftrightarrow \text{dist}(P_u, P_v) \leq r$
// not random when P_u and P_v are given

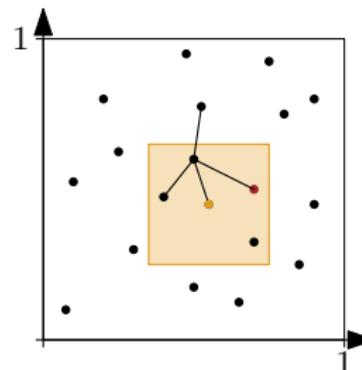


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple
- metric: L_∞ // L_2 is more common but less simple
 $\hookrightarrow \text{dist}((x_1, y_1), (x_2, y_2)) = \max(\text{dist}(x_1, x_2), \text{dist}(y_1, y_2)).$
- vertex distribution: for $v \in [n]$: $P_v \sim \mathcal{U}(\mathbb{T}^2)$
- edge “probability” is 0 or 1: $\{u, v\} \in E \Leftrightarrow \text{dist}(P_u, P_v) \leq r$
// not random when P_u and P_v are given

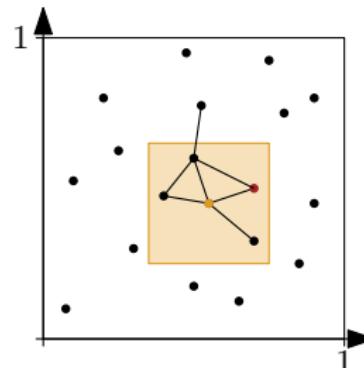


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple
- metric: L_∞ // L_2 is more common but less simple
 $\hookrightarrow \text{dist}((x_1, y_1), (x_2, y_2)) = \max(\text{dist}(x_1, x_2), \text{dist}(y_1, y_2)).$
- vertex distribution: for $v \in [n]$: $P_v \sim \mathcal{U}(\mathbb{T}^2)$
- edge “probability” is 0 or 1: $\{u, v\} \in E \Leftrightarrow \text{dist}(P_u, P_v) \leq r$
// not random when P_u and P_v are given

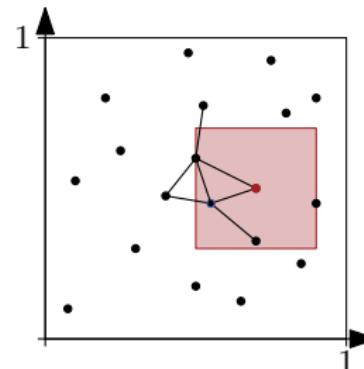


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple
- metric: L_∞ // L_2 is more common but less simple
 $\hookrightarrow \text{dist}((x_1, y_1), (x_2, y_2)) = \max(\text{dist}(x_1, x_2), \text{dist}(y_1, y_2)).$
- vertex distribution: for $v \in [n]$: $P_v \sim \mathcal{U}(\mathbb{T}^2)$
- edge “probability” is 0 or 1: $\{u, v\} \in E \Leftrightarrow \text{dist}(P_u, P_v) \leq r$
// not random when P_u and P_v are given

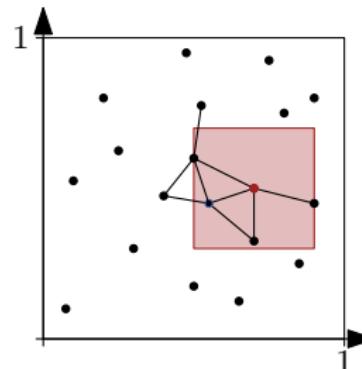


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple
- metric: L_∞ // L_2 is more common but less simple
 $\hookrightarrow \text{dist}((x_1, y_1), (x_2, y_2)) = \max(\text{dist}(x_1, x_2), \text{dist}(y_1, y_2)).$
- vertex distribution: for $v \in [n]$: $P_v \sim \mathcal{U}(\mathbb{T}^2)$
- edge “probability” is 0 or 1: $\{u, v\} \in E \Leftrightarrow \text{dist}(P_u, P_v) \leq r$
// not random when P_u and P_v are given

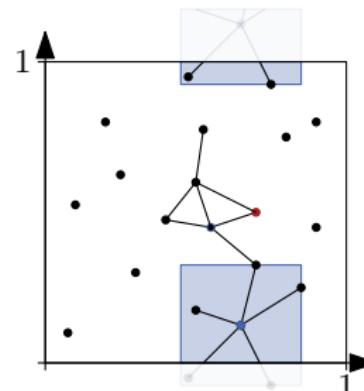


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple
- metric: L_∞ // L_2 is more common but less simple
 $\hookrightarrow \text{dist}((x_1, y_1), (x_2, y_2)) = \max(\text{dist}(x_1, x_2), \text{dist}(y_1, y_2)).$
- vertex distribution: for $v \in [n]$: $P_v \sim \mathcal{U}(\mathbb{T}^2)$
- edge “probability” is 0 or 1: $\{u, v\} \in E \Leftrightarrow \text{dist}(P_u, P_v) \leq r$
// not random when P_u and P_v are given

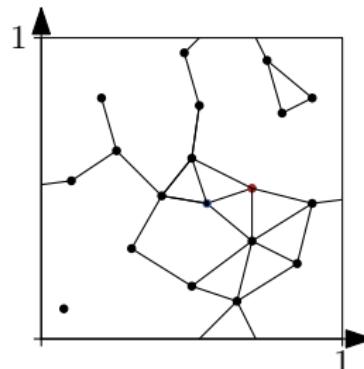


Definition: Random Geometric Graph (RGG)

An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability depending on their distance.

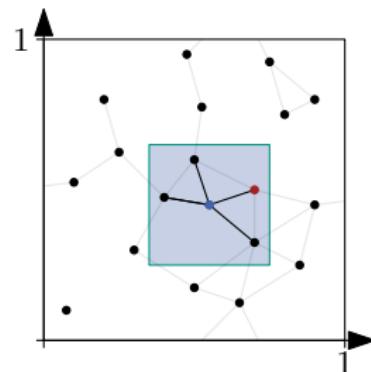
Simple Example: $G^{\mathbb{T}^2}(n, r)$

- number of vertices: n
- space: 2-dimensional torus $\mathbb{T}^2 = [0, 1]^2$
// standard unit square is more common but less simple
- metric: L_∞ // L_2 is more common but less simple
 $\hookrightarrow \text{dist}((x_1, y_1), (x_2, y_2)) = \max(\text{dist}(x_1, x_2), \text{dist}(y_1, y_2)).$
- vertex distribution: for $v \in [n]$: $P_v \sim \mathcal{U}(\mathbb{T}^2)$
- edge “probability” is 0 or 1: $\{u, v\} \in E \Leftrightarrow \text{dist}(P_u, P_v) \leq r$
// not random when P_u and P_v are given



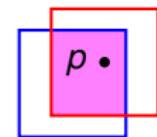
Degree Distribution of $G^{\mathbb{T}^2}(n, r)$

- Consider arbitrary $v \in [n]$.
- By symmetry of \mathbb{T}^2 each outcome of P_v behaves the same.
- $\Pr[\{u, v\} \in E] = \Pr[P_u \text{ is in the } 2r \times 2r \text{ square centered at } P_v] = 4r^2$.
- Hence $\deg(v) \sim \text{Bin}(n-1, 4r^2)$ and $\mathbb{E}[\deg(v)] = 4r^2(n-1)$.

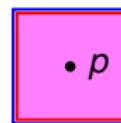


Observation

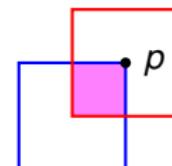
Let $p, q \sim \mathcal{U}([-0.5, 0.5]^2)$ and S_p the unit square around p .
Then $\Pr[q \in S_p] = \int_{-0.5}^{0.5} \int_{-0.5}^{0.5} (1 - |x|)(1 - |y|) dx dy = \frac{9}{16}$.



general case



best case

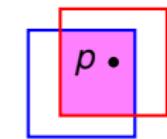


worst case

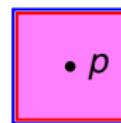
Locality in $G^{\mathbb{T}^2}(n, r)$

Observation

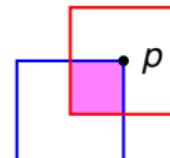
Let $p, q \sim \mathcal{U}([-0.5, 0.5]^2)$ and S_p the unit square around p .
Then $\Pr[q \in S_p] = \int_{-0.5}^{0.5} \int_{-0.5}^{0.5} (1 - |x|)(1 - |y|) dx dy = \frac{9}{16}$.



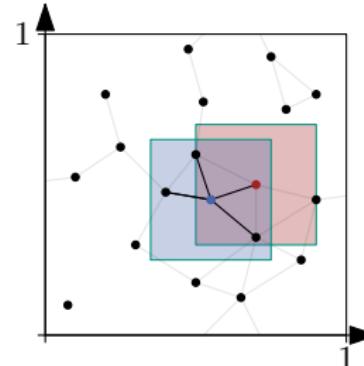
general case



best case



worst case



Corollary

By “rescaling” the observation we get $L = \Pr[\underbrace{\{u, w\} \in E}_{P_w \text{ in square around } P_u} \mid \underbrace{\{v, u\} \in E \wedge \{v, w\} \in E}_{P_u, P_w \text{ in square around } P_v}] = \frac{9}{16} = \Omega(1)$.

Motivation
○○○

Erdős-Renyi Random Graphs
○○○○○○○○○○○○○○○○

Random Geometric Graphs
○○○○●○

Scale-Free Networks (Teaser)
○○○○○○○○

Poissonised Variant $G_{\text{Pois}}^{\mathbb{T}^2}(n, r)$ of $G^{\mathbb{T}^2}(n, r)$

Replace the point set with a Poisson point process on \mathbb{T}^2 with intensity n .

↪ i.e. region of size λ contains $\text{Pois}(\lambda n)$ -many points, independent for disjoint regions

Note: $G_{\text{Pois}}^{\mathbb{T}^2}(n, r) \stackrel{d}{=} G^{\mathbb{T}^2}(N, r)$ where $N \sim \text{Pois}(n)$.

Poissonised Variant $G_{\text{Pois}}^{\mathbb{T}^2}(n, r)$ of $G^{\mathbb{T}^2}(n, r)$

Replace the point set with a Poisson point process on \mathbb{T}^2 with intensity n .

↪ i.e. region of size λ contains $\text{Pois}(\lambda n)$ -many points, independent for disjoint regions

Note: $G_{\text{Pois}}^{\mathbb{T}^2}(n, r) \stackrel{d}{=} G^{\mathbb{T}^2}(N, r)$ where $N \sim \text{Pois}(n)$.

Advantages

- No long-distance correlations. ✓
- $\text{Pois}(4r^2)$ -distributed degrees. ✓

Disadvantages

- Less natural in practice. ✗
- Number of vertices $N \sim \text{Pois}(n)$ not fixed. ✗

Poissonised Variant $G_{\text{Pois}}^{\mathbb{T}^2}(n, r)$ of $G^{\mathbb{T}^2}(n, r)$

Replace the point set with a Poisson point process on \mathbb{T}^2 with intensity n .

↪ i.e. region of size λ contains $\text{Pois}(\lambda n)$ -many points, independent for disjoint regions

Note: $G_{\text{Pois}}^{\mathbb{T}^2}(n, r) \stackrel{d}{=} G^{\mathbb{T}^2}(N, r)$ where $N \sim \text{Pois}(n)$.

Advantages

- No long-distance correlations. ✓
- $\text{Pois}(4r^2)$ -distributed degrees. ✓

Disadvantages

- Less natural in practice. ✗
- Number of vertices $N \sim \text{Pois}(n)$ not fixed. ✗

De-Poissonisation (an analogous result holds for de-Poissonising balls-into-bins)

Let P be a graph property. If P is very unlikely for $G_{\text{Pois}}^{\mathbb{T}^2}(n, r)$ then P is unlikely for $G^{\mathbb{T}^2}(n, r)$:

$$\Pr[G^{\mathbb{T}^2}(n, r) \in P] = \Pr[G_{\text{Pois}}^{\mathbb{T}^2}(n, r) \in P \mid N = n] \leq \frac{\Pr[G_{\text{Pois}}^{\mathbb{T}^2}(n, r) \in P]}{\Pr[N = n]} = \Theta(n^{1/2}) \Pr[G_{\text{Pois}}^{\mathbb{T}^2}(n, r) \in P].$$

1. Motivation

2. Erdős-Renyi Random Graphs

- Degree Distribution
- Degree Statistics
- Tree-like local structure
- Emergence of the Giant Component

3. Random Geometric Graphs

4. Scale-Free Networks (Teaser)

Motivation

Erdős-Renyi Random Graphs

Random Geometric Graphs

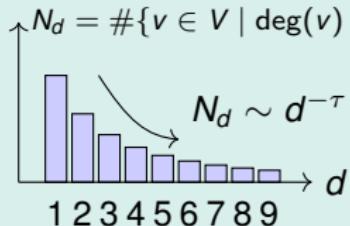
Scale-Free Networks (Teaser)

Scale-Free Networks

Semi-Formal Definition

A scale-free network is a graph with a degree distribution that follows a power law (in an asymptotic sense)

Power Laws



$\tau < 1$: not a distribution

$1 < \tau < 2$: distribution, but $\mathbb{E}[\deg(v)] = \infty$

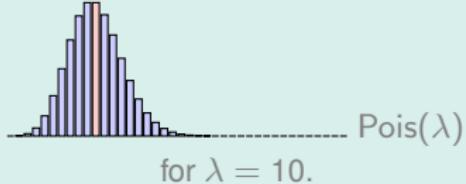
$2 < \tau < 3$: $\mathbb{E}[\deg(v)] < \infty$, but $\text{Var}(\deg(v)) = \infty$

$3 < \tau < 4$: variance $< \infty$, but higher moments are ∞

$\tau \in (2, 3]$ is especially popular

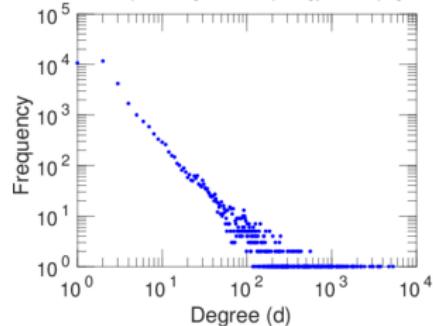
Contrast: Erdős-Renyi

exponentially decreasing tail.



“Internet”

konect.cc/plot/degree.a.topology.full.png



Motivation 000

Erdős-Renyi Random Graphs

Random Geometric Graphs
000000

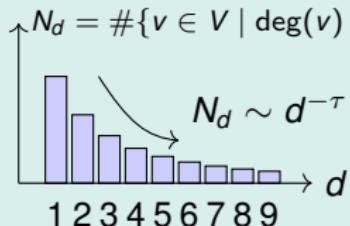
Scale-Free Networks (Teaser)

Scale-Free Networks

Semi-Formal Definition

A scale-free network is a graph with a degree distribution that follows a power law (in an asymptotic sense)

Power Laws



$\tau < 1$: not a distribution

$1 < \tau \leq 2$: distribution, but $\mathbb{E}[\deg(v)] = \infty$

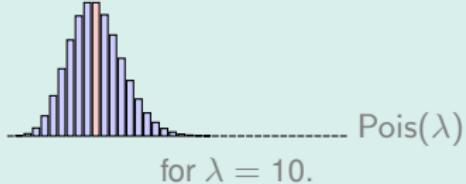
$2 < \tau < 3$: $\mathbb{E}[\deg(v)] < \infty$, but $\text{Var}(\deg(v)) = \infty$

$3 < \tau < 4$: variance $< \infty$, but higher moments are ∞

$\tau \in (2, 3]$ is especially popular

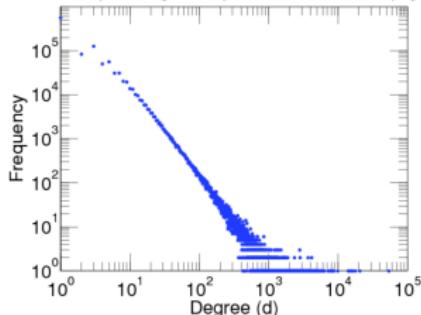
Contrast: Erdős-Renyi

exponentially decreasing tail.



“Youtube”

konect.cc/plot/degree.a.youtube-links.full.png



Motivation

Erdős-Renyi Random Graphs

Random Geometric Graphs

Scale-Free Networks (Teaser)

Scale-Free Networks

Semi-Formal Definition

A scale-free network is a graph with a degree distribution that follows a power law (in an asymptotic sense)

Practical Consequence

There are vertices of very high degree (*hubs*).

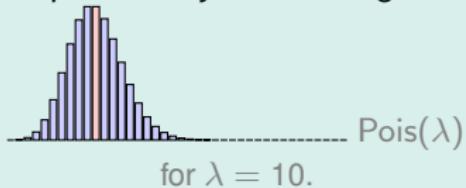
The Name “Scale-Free”

From Barabási: "Linked: The New Science of Networks", 2002.

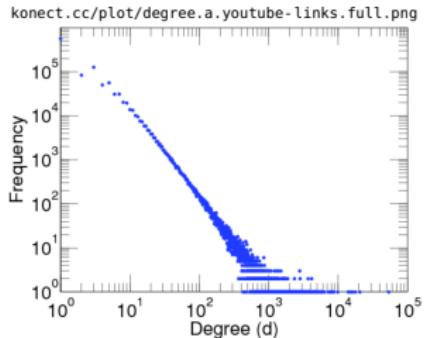
In a random network [...] the vast majority of nodes have the same number of links [...]. Therefore, a random network has a characteristic scale in its node connectivity [...]. In contrast, the absence of a peak in a power-law degree distribution implies that [...] we see a continuous hierarchy of nodes, spanning from rare hubs to the numerous tiny nodes. There is no intrinsic scale in these networks. This is the reason my research group started to describe networks with power-law degree distribution as scale-free.

Contrast: Erdős-Renyi

exponentially decreasing tail.



“Youtube”



Scale-Free Networks (Teaser)

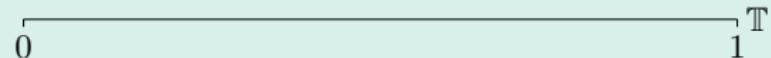
A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$



A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$
- for each v : position $x_v \sim \mathcal{U}(\mathbb{T})$

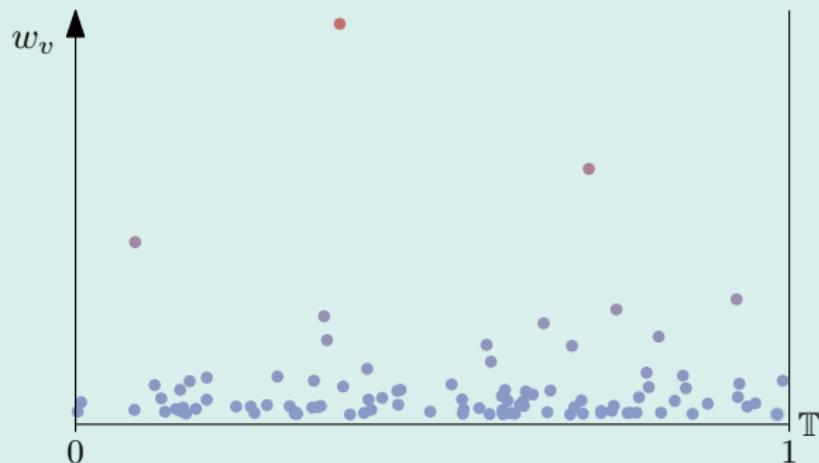
A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$
- for each v : position $x_v \sim \mathcal{U}(\mathbb{T})$
- for each v : weight $w_v \sim \text{Par}(\tau - 1, 1)$
the Pareto distribution is a power law distribution with exponent τ



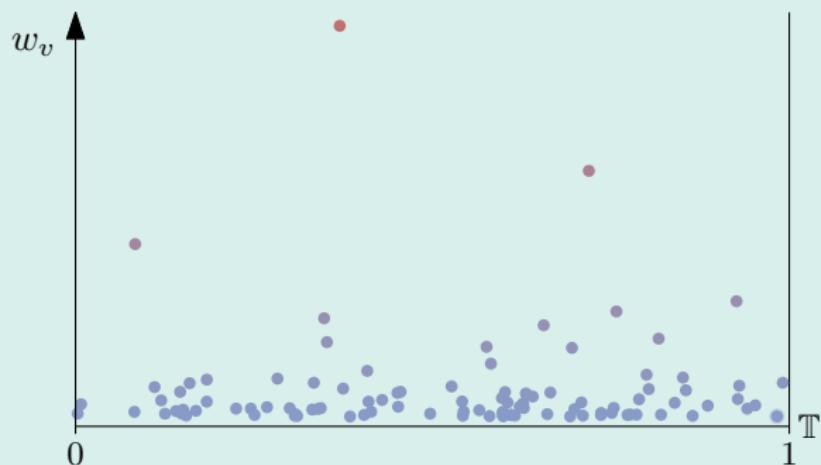
A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$
- for each v : position $x_v \sim \mathcal{U}(\mathbb{T})$
- for each v : weight $w_v \sim \text{Par}(\tau - 1, 1)$
the Pareto distribution is a power law distribution with exponent τ
- $\{u, v\} \in E \Leftrightarrow \text{dist}(x_u, x_v) \leq \frac{\lambda}{n} w_u w_v$
 $\Leftrightarrow \frac{n}{\lambda w_v} \leq \frac{w_u}{\text{dist}(x_u, x_v)}.$



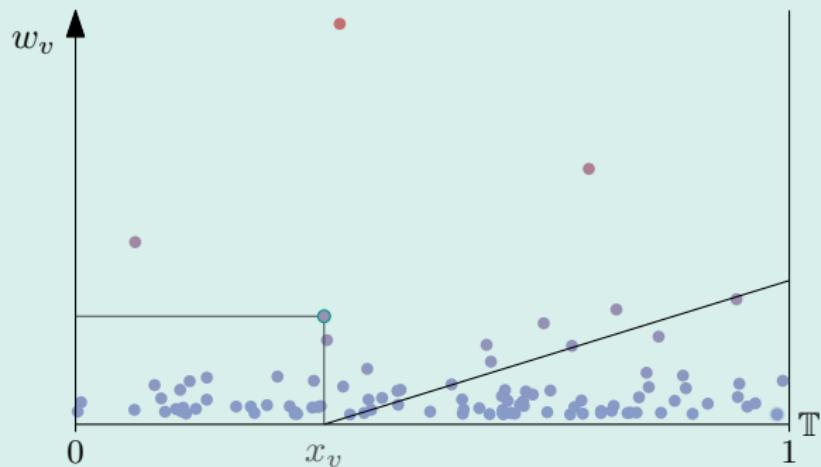
A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$
- for each v : position $x_v \sim \mathcal{U}(\mathbb{T})$
- for each v : weight $w_v \sim \text{Par}(\tau - 1, 1)$
the Pareto distribution is a power law distribution with exponent τ
- $\{u, v\} \in E \Leftrightarrow \text{dist}(x_u, x_v) \leq \frac{\lambda}{n} w_u w_v$
 $\Leftrightarrow \frac{n}{\lambda w_v} \leq \frac{w_u}{\text{dist}(x_u, x_v)}.$



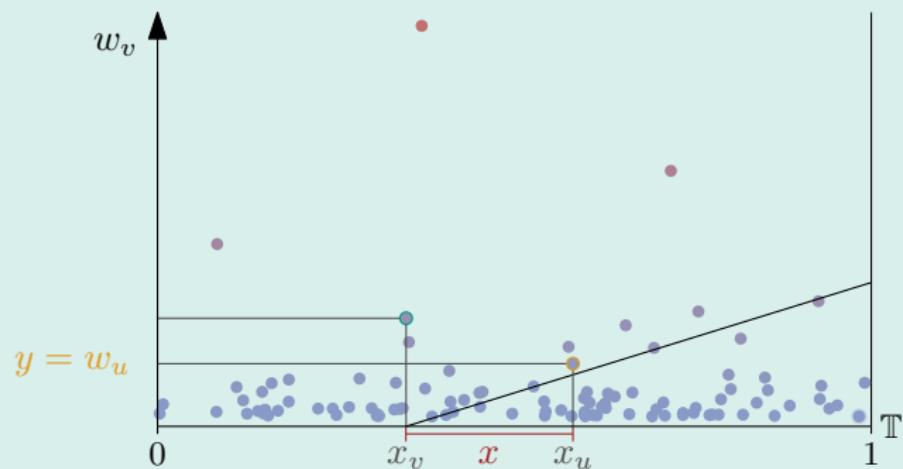
A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$
- for each v : position $x_v \sim \mathcal{U}(\mathbb{T})$
- for each v : weight $w_v \sim \text{Par}(\tau - 1, 1)$
the Pareto distribution is a power law distribution with exponent τ
- $\{u, v\} \in E \Leftrightarrow \text{dist}(x_u, x_v) \leq \frac{\lambda}{n} w_u w_v$
 $\Leftrightarrow \frac{n}{\lambda w_v} \leq \frac{w_u}{\text{dist}(x_u, x_v)} \cdot$



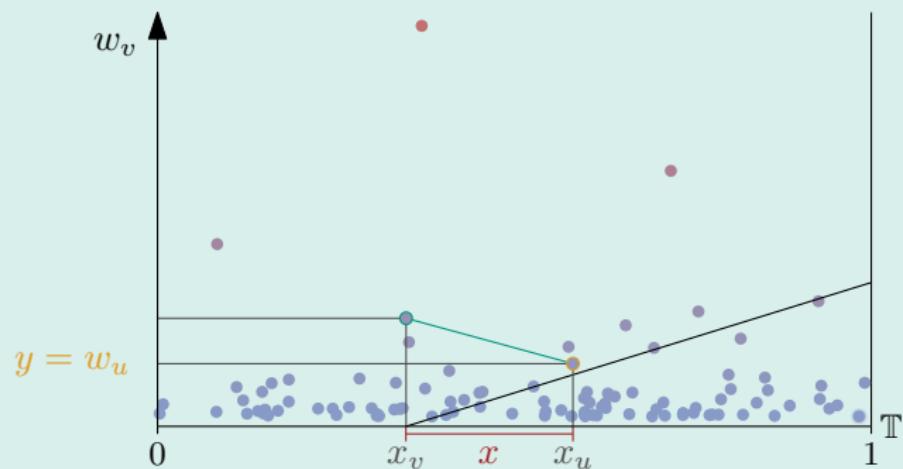
A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$
- for each v : position $x_v \sim \mathcal{U}(\mathbb{T})$
- for each v : weight $w_v \sim \text{Par}(\tau - 1, 1)$
the Pareto distribution is a power law distribution with exponent τ
- $\{u, v\} \in E \Leftrightarrow \text{dist}(x_u, x_v) \leq \frac{\lambda}{n} w_u w_v$
 $\Leftrightarrow \frac{n}{\lambda w_v} \leq \frac{w_u}{\text{dist}(x_u, x_v)}.$



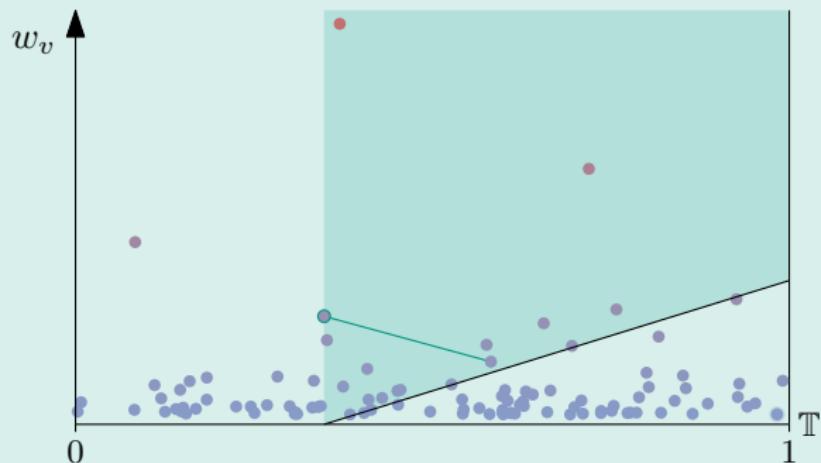
A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$
- for each v : position $x_v \sim \mathcal{U}(\mathbb{T})$
- for each v : weight $w_v \sim \text{Par}(\tau - 1, 1)$
the Pareto distribution is a power law distribution with exponent τ
- $\{u, v\} \in E \Leftrightarrow \text{dist}(x_u, x_v) \leq \frac{\lambda}{n} w_u w_v$
 $\Leftrightarrow \frac{n}{\lambda w_v} \leq \frac{w_u}{\text{dist}(x_u, x_v)}.$



A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$
- for each v : position $x_v \sim \mathcal{U}(\mathbb{T})$
- for each v : weight $w_v \sim \text{Par}(\tau - 1, 1)$
the Pareto distribution is a power law distribution with exponent τ
- $\{u, v\} \in E \Leftrightarrow \text{dist}(x_u, x_v) \leq \frac{\lambda}{n} w_u w_v$
 $\Leftrightarrow \frac{n}{\lambda w_v} \leq \frac{w_u}{\text{dist}(x_u, x_v)}.$



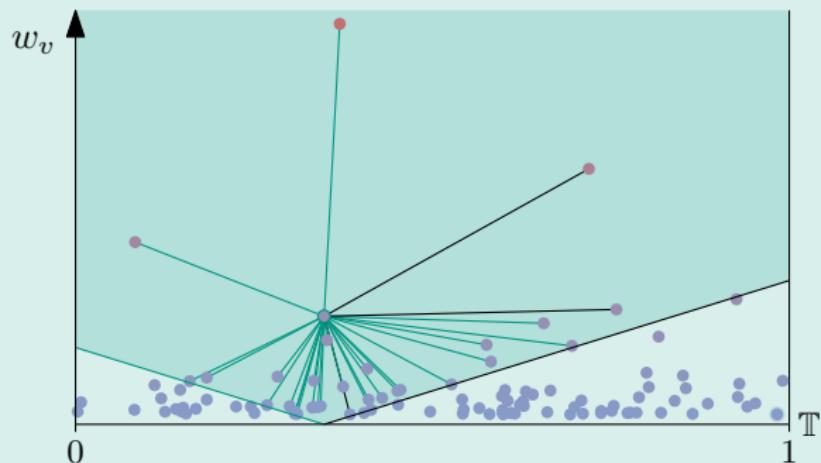
A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$
- for each v : position $x_v \sim \mathcal{U}(\mathbb{T})$
- for each v : weight $w_v \sim \text{Par}(\tau - 1, 1)$
the Pareto distribution is a power law distribution with exponent τ
- $\{u, v\} \in E \Leftrightarrow \text{dist}(x_u, x_v) \leq \frac{\lambda}{n} w_u w_v$
 $\Leftrightarrow \frac{n}{\lambda w_v} \leq \frac{w_u}{\text{dist}(x_u, x_v)}.$



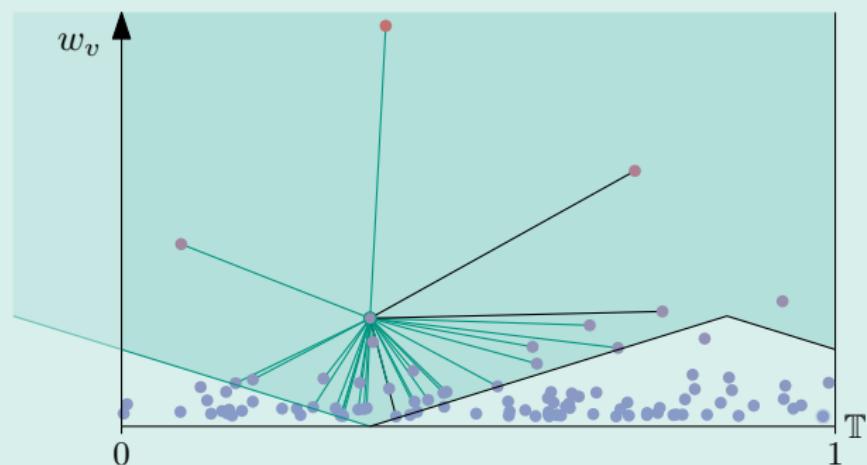
A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$
- for each v : position $x_v \sim \mathcal{U}(\mathbb{T})$
- for each v : weight $w_v \sim \text{Par}(\tau - 1, 1)$
the Pareto distribution is a power law distribution with exponent τ
- $\{u, v\} \in E \Leftrightarrow \text{dist}(x_u, x_v) \leq \frac{\lambda}{n} w_u w_v$
 $\Leftrightarrow \frac{n}{\lambda w_v} \leq \frac{w_u}{\text{dist}(x_u, x_v)}.$



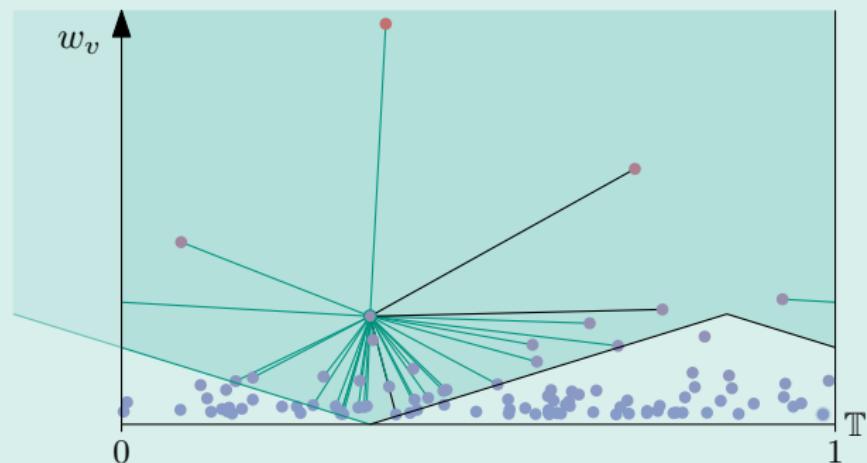
A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$
- for each v : position $x_v \sim \mathcal{U}(\mathbb{T})$
- for each v : weight $w_v \sim \text{Par}(\tau - 1, 1)$
the Pareto distribution is a power law distribution with exponent τ
- $\{u, v\} \in E \Leftrightarrow \text{dist}(x_u, x_v) \leq \frac{\lambda}{n} w_u w_v$
 $\Leftrightarrow \frac{n}{\lambda w_v} \leq \frac{w_u}{\text{dist}(x_u, x_v)}.$



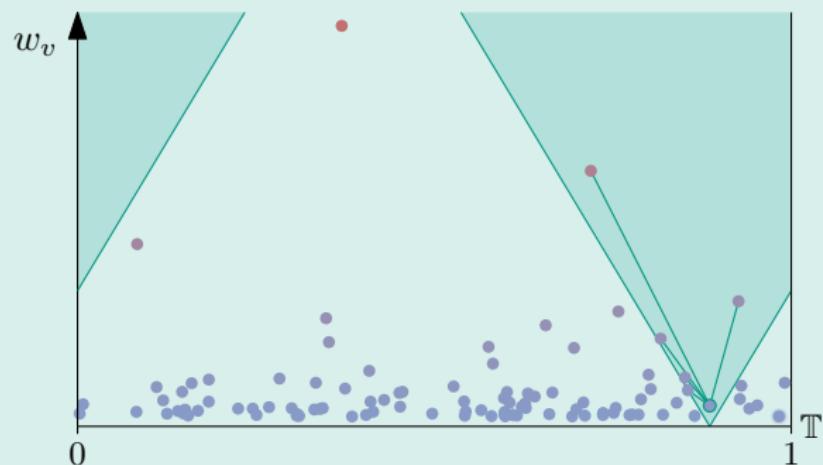
A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$
- for each v : position $x_v \sim \mathcal{U}(\mathbb{T})$
- for each v : weight $w_v \sim \text{Par}(\tau - 1, 1)$
the Pareto distribution is a power law distribution with exponent τ
- $\{u, v\} \in E \Leftrightarrow \text{dist}(x_u, x_v) \leq \frac{\lambda}{n} w_u w_v$
 $\Leftrightarrow \frac{n}{\lambda w_v} \leq \frac{w_u}{\text{dist}(x_u, x_v)}.$



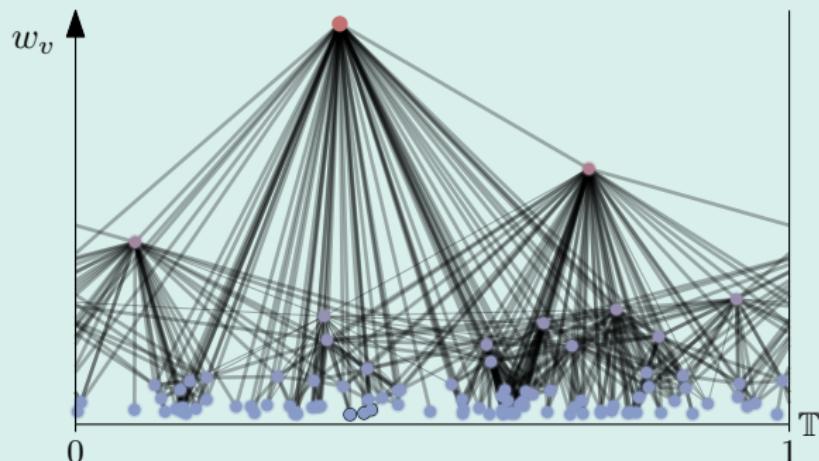
A Scale-Free Random Geometric Graph

Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

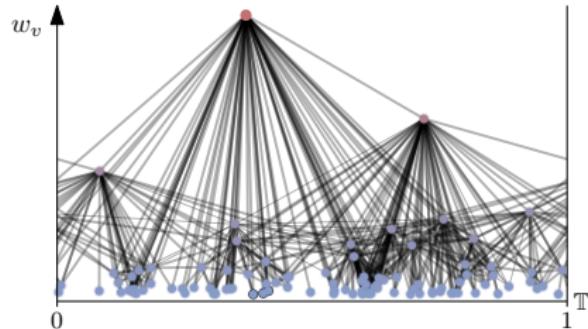
- number of vertices: n
- desired average degree $\lambda > 0$
- metric space \mathbb{T} // more generally: \mathbb{T}^d for $d \in \mathbb{N}$
- for each v : position $x_v \sim \mathcal{U}(\mathbb{T})$
- for each v : weight $w_v \sim \text{Par}(\tau - 1, 1)$
the Pareto distribution is a power law distribution with exponent τ
- $\{u, v\} \in E \Leftrightarrow \text{dist}(x_u, x_v) \leq \frac{\lambda}{n} w_u w_v$
 $\Leftrightarrow \frac{n}{\lambda w_v} \leq \frac{w_u}{\text{dist}(x_u, x_v)}.$



How GIRGs are Useful

GIRGs are Scale-Free

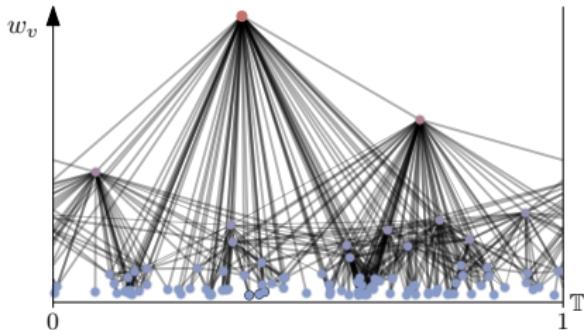
$\mathbb{E}[\deg(v) \mid w_v] = \Theta(w_v)$ and $\deg(v)$ follows a power law if w_v does.



How GIRGs are Useful

GIRGs are Scale-Free

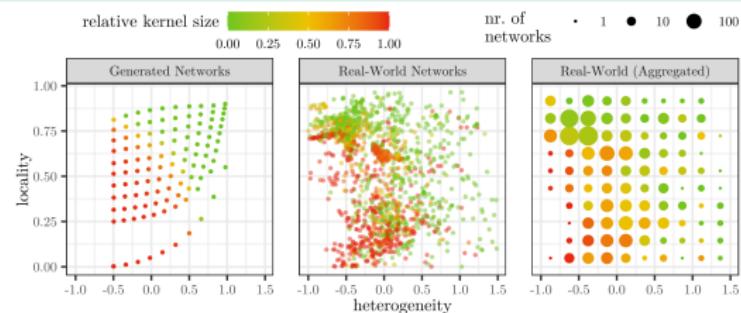
$\mathbb{E}[\deg(v) \mid w_v] = \Theta(w_v)$ and $\deg(v)$ follows a power law if w_v does.



GIRGs are a Good Model for Real World Networks (Bläsius, Fischbeck, 2022)

- consider two graph parameters: locality and heterogeneity ($\approx \log \text{Var}(\deg(v))$).
- in many contexts, a real network behaves like a GIRG with the same parameters

On the External Validity of Average-Case Analyses of Graph Algorithms, ESA 2022.



■ Figure 7 The relative kernel size of the vertex cover domination rule.

Motivation
○○○

Erdős-Renyi Random Graphs
○○○○○○○○○○○○○○○○

Random Geometric Graphs
○○○○○○

Scale-Free Networks (Teaser)
○○○●○○○○

Hyperbolic Geometric Graphs

Poincaré Model of Hyperbolic Geometry

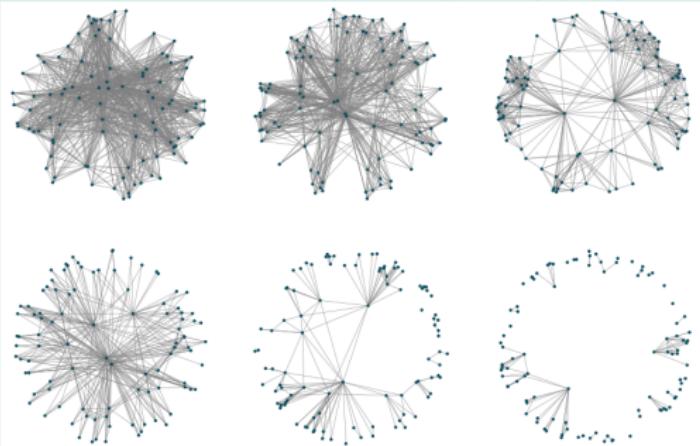
Illustration by M.C. Escher, Circle Limit III, 1959.

(All creatures are congruent in hyperbolic space.)

Hyperbolic Random Graph (HGGs)

Sample points with bias towards the centre.
Connect points if distance is beneath a threshold.

https://commons.wikimedia.org/wiki/File:Hyperbolic_graphs.png



Can yield power law distribution for node degrees.

Motivation

Erdős-Renyi Random Graphs

Random Geometric Graphs
oooooooo

Scale-Free Networks (Teaser)

Hyperbolic Geometric Graphs

Poincaré Model of Hyperbolic Geometry

Illustration by M.C. Escher, Circle Limit III, 1959.

(All creatures are congruent in hyperbolic space.)

Result (Bläsius, Friedrich, Katzmann, 2021)

Vertex Cover can be Approximated on HGGs.

Efficiently Approximating Vertex Cover on Scale-Free Networks with Underlying Hyperbolic Geometry, ESA 2021.

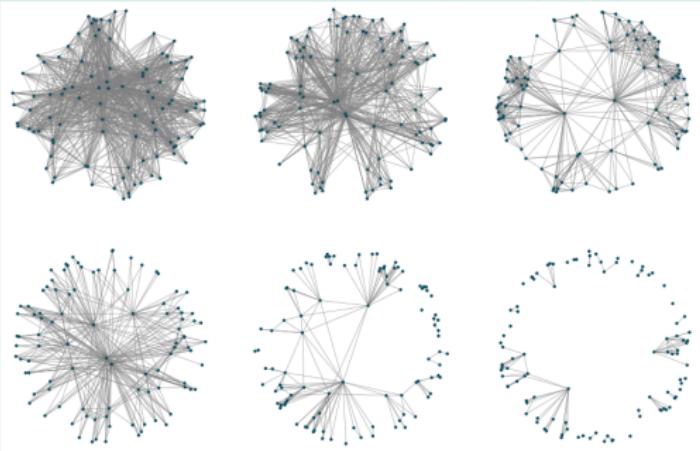
Motivation
○○○

Erdős-Renyi Random Graphs
○○○○○○○○○○○○○○○○

Hyperbolic Random Graph (HGGs)

Sample points with bias towards the centre.
Connect points if distance is beneath a threshold.

https://commons.wikimedia.org/wiki/File:Hyperbolic_graphs.png



Can yield power law distribution for node degrees.

Random Geometric Graphs
○○○○○○

Scale-Free Networks (Teaser)
○○○●○○○

How a Graph is Grown Over Time

- There is a parameter $m \in \mathbb{N}$.
- start with any graph on $\geq m$ nodes.
- add new nodes one by one
 - new node is connected to m existing nodes
 - existing nodes are selected with probability proportional to their degree

How a Graph is Grown Over Time

- There is a parameter $m \in \mathbb{N}$.
- start with any graph on $\geq m$ nodes.
- add new nodes one by one
 - new node is connected to m existing nodes
 - existing nodes are selected with probability proportional to their degree

Why the Model is Interesting

- node degrees approach a power law distribution with exponent 3
- model may explain *why* scale-free networks emerge in practice

Motivation
○○○

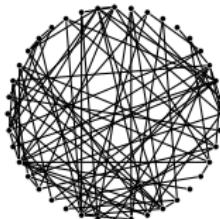
Erdős-Renyi Random Graphs
○○○○○○○○○○○○○○○○

Random Geometric Graphs
○○○○○○

Scale-Free Networks (Teaser)
○○○○○●○○○

Erdős-Renyi Random Graphs

- simplest type of random graphs
- “Erdős-Renyi” refers to various related models
- arise in certain data structures (stay tuned)
- look locally like Poisson Galton-Watson Trees
- no locality or high-degree vertices



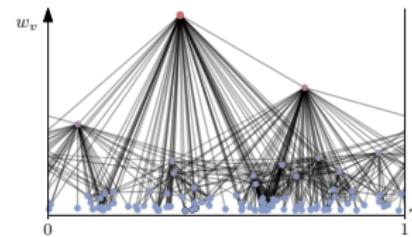
Motivation
○○○

Erdős-Renyi Random Graphs
○○○○○○○○○○○○○○○○

Random Graphs for Average Case Analisis

Mimic properties of real world networks:

- locality // a friend of my friend is often my friend
 - arises naturally in random geometric graphs
- “scale-freeness” \approx existence of hubs
 - assign weights to vertices (in GIRGs)
 - use hyperbolic geometry
 - use preferential attachment



Random Geometric Graphs
○○○○○○

Scale-Free Networks (Teaser)
○○○○○●○○

Appendix: Possible Exam Questions I

- What is meant by the theory–practice gap in the context of graph algorithms?
- What might a theoretician try to overcome the gap?
- What is the classical model of Erdős and Rényi?
 - Which variants of the Erdős–Rényi model did we consider?
 - What can be said about the distribution of $\deg(v)$ when we set $\mathbb{E}[\deg(v)] = \lambda$?
 - What can be said about $N_d = |\{v \in [n] \mid \deg(v) = d\}|$?
 - We studied the R -neighborhood $G(n, \lambda/n)|_{v,R}$ of a vertex v .
 - What holds for the distribution of $G(n, \lambda/n)|_{v,R}$, and why?
 - What is a Galton–Watson tree?
 - What can be said about the extinction probability of a Poisson Galton–Watson tree?
 - What is meant by the “sudden emergence of the giant component”? State the result formally.
 - We considered a quantity L , called locality. How is it defined?
 - What locality do Erdős–Rényi graphs have?
- Name properties that distinguish real-world networks from Erdős–Rényi graphs.
 - Give an example of a geometric random graph. What is the locality in this model?

Appendix: Possible Exam Questions II

- In what way might a poissonized model be more convenient?
- When is a network “scale-free”?
 - Give an example of a real-world network to which this property is attributed.
 - Describe at least two ways in which networks of this type can be generated.