
Probability and Computing – Random Graphs

Stefan Walzer | WS 2025/2026

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu


Dates and Time Slots

19.2. date of the last lecture

We 11.03. Oral Exams
Th 12.03. Oral Exams
Fr 13.03. Oral Exams

We 25.3. Oral Exams
Th 26.3. Oral Exams
Fr 27.3. Oral Exams

Other dates may be possible on request.

Available time slots:

10:00, 10:25, 10:50, 11:15

14:00, 14:25, 14:50, 15:15

Registration via our secretary:
Anja Blancani (blancani@kit.edu)
cc to me (stefan.walzer@kit.edu)
Please specify:

your full name
matriculation number
subject of study (Studienfach)
version of the exam regulation
(Version der Prüfungsordnung)

Cancellation also via our secretary

Location: Stefan’s Office (50.34, Room 209).

duration: 20 minutes

scope: content of lectures and exercises
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Theory-Practice Gap

Minimum Vertex Cover is APX-hard ???←→ small vertex covers can often
be computed efficiently in practice

⇝ relevant graph classes (e.g. social networks) are not worst-case.

Bridging the Gap
1 Define a distribution G on graphs.

G should be realistic, i.e. model real world instances
G should have simple mathematical structure

2 Consider randomised complexity of handling G ∼ G.

Goals
model real world instances

identify useful properties of
these instances

build algorithms exploiting
these properties
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Stay tuned
Random graphs occur naturally in

cuckoo hash tables

retrieval data structures

perfect hash functions
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Probabilistic Method for Graph Theory
Show that graphs with a property P exist by showing
that a random graph G satisfies Pr[G has P] > 0].

(we’re not doing this)
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Original Erdős-Renyi Model G(n,m): “Uniformly random graph with n nodes and m edges”

Gilbert Model G(n, p): “Every edge with probability p”

Uniform Endpoint Model GUE(n,m): “randomly attach the 2m endpoints of edges”

Definition
Let n ∈ N, 0 ≤ m ≤

(n
2

)
. We use G(n,m) to refer

to a graph sampled uniformly from the set of all
graphs with vertex set [n] and m edges.

Example: n = 5,m = 6
12

3 4

5

12

3 4

5

12

3 4

5

probability 1/
((n

2)
m

)
0 0
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Original Erdős-Renyi Model G(n,m): “Uniformly random graph with n nodes and m edges”

Gilbert Model G(n, p): “Every edge with probability p”

Uniform Endpoint Model GUE(n,m): “randomly attach the 2m endpoints of edges”

Definition
Let n ∈ N and p ∈ (0, 1). We use G(n, p) to
refer to a graph with vertex set [n] that contains
each of the

(n
2

)
possible edges with probability p,

independently from other edges.

Example: n = 5
12

3 4

5

12

3 4

5

12

3 4

5

probability p6(1− p)4 p4(1− p)6 0
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Original Erdős-Renyi Model G(n,m): “Uniformly random graph with n nodes and m edges”

Gilbert Model G(n, p): “Every edge with probability p”

Uniform Endpoint Model GUE(n,m): “randomly attach the 2m endpoints of edges”

Definition
Let n,m ∈ N and v1, . . . , v2m ∼ U([n]). We use
GUE(n,m) to refer to a multi-graph with vertex set
[n] and a multiset of edges that contains a copy of
{v2i−1, v2i} for each i ∈ [m].

Example: n = 5,m = 6
12

3 4

5

12

3 4

5

12

3 4

5

probability 6! · 26 · 5−12 0 6! · 24 · 5−12
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Original Erdős-Renyi Model G(n,m): “Uniformly random graph with n nodes and m edges”

Gilbert Model G(n, p): “Every edge with probability p”

Uniform Endpoint Model GUE(n,m): “randomly attach the 2m endpoints of edges”

Remarks
for p = m/

(n
2

)
the three distributions are

similar in many ways

the original Erdős-Renyi model is often
inconvenient to work with

the uniform endpoint model is non-standard
(we’ll need it in later chapters)
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Focus on Expected Degree λ ∈ O(1)
for G(n,m) choose m = λn

2 ⇒ average vertex degree 2m
n = λ

for G(n, p) choose p = λ
n−1 ⇒ expected vertex degree (n − 1) · p = λ

for GUE(n,m) choose m = λn
2 ⇒ average vertex degree 2m

n = λ // loops contribute 2 to a vertex degree

Goals
Build intuition for properties of Erdős-Renyi graphs.

Get a feeling for how to work with them.

For simplicity: Focus on the Gilbert model only.
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On the next few slides we consider:

Vertex Degrees
For large n, the degree of a given vertex is
approximately Poisson distributed.

Degree Statistics
The number of vertices of each degree is highly
concentrated around its expectation.

Local Structure
The neighbourhood around a vertex resembles a
Galton-Watson tree.

Largest Connected Component
Size of the largest component is highly
predictable.
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Exercise: Degrees are approximately Poisson distributed
For each n ∈ N consider G(n, λ/n) and the degree
Xn ∼ Bin(n − 1, λ/n) of vertex 1. Moreover, let X ∼ Pois(λ). Then

Xn
d−→ X for n→∞.

The same holds for G(n, ⌊λn/2⌋) and GUE(n, λn/2).
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Notation
Let d ∈ N, λ > 0. We consider G(n, λ/n). // Gilbert model

Let Nd := |{v ∈ [n] | deg(v) = d}|

Is Nd highly concentrated?
Note: (deg(v))v∈[n] are correlated.

Otherwise Nd would have a binomial distribution and we could use Chernoff
bounds.

d 0 1 2 3 4 5 6 7 8 9
Nd 0 2 8 6 7 7 3 2 3 1

d 0 1 2 3 4 5 6 7 8 9
Nd 1 2 5 8 9 11 3 1 0 0
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Lemma (Near Independence of Degrees)
Let u ̸= v be two vertices of G(n, λ/n). Then Pr[deg(u) = d , deg(v) = d ] = Pr[deg(u) = d ] Pr[deg(v) = d ]±Θ(1/n).
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Lemma (Near Independence of Degrees)
Let u ̸= v be two vertices of G(n, λ/n). Then Pr[deg(u) = d , deg(v) = d ] = Pr[deg(u) = d ] Pr[deg(v) = d ]±Θ(1/n).

Proof
Let deg′(u) = deg(u)− [{u, v} ∈ E ] be the degree of u when ignoring {u, v} if present. Then

Pr[deg(u) ̸= deg′(u)] = Pr[{u, v} ∈ E ] = λ/n = Θ(1/n).

The same holds for deg′(v) = deg(v)− [{u, v} ∈ E ]. We conclude:

Pr[ deg(v1) = d , deg(v2) = d ] = Pr[deg′(v1) = d , deg′(v2) = d ]±Θ(1/n)

= Pr[deg′(v1) = d ] Pr[deg′(v2) = d ]±Θ(1/n) = Pr[deg(v1) = d ] Pr[deg(v2) = d ]±Θ(1/n).
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Lemma (Near Independence of Degrees)
Let u ̸= v be two vertices of G(n, λ/n). Then Pr[deg(u) = d , deg(v) = d ] = Pr[deg(u) = d ] Pr[deg(v) = d ]±Θ(1/n).

Theorem

Pr[|Nd − npd | ≥ n2/3] = O(n−1/3) where pd = Pr[deg(1) = d ] ≈ e−λ λd

d! .

Proof
E[Nd ] = ? E[N2

d ] = ? Var(Nd) = ?.
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Lemma (Near Independence of Degrees)
Let u ̸= v be two vertices of G(n, λ/n). Then Pr[deg(u) = d , deg(v) = d ] = Pr[deg(u) = d ] Pr[deg(v) = d ]±Θ(1/n).

Theorem

Pr[|Nd − npd | ≥ n2/3] = O(n−1/3) where pd = Pr[deg(1) = d ] ≈ e−λ λd

d! .

Proof
E[Nd ] = ? E[N2

d ] = ? Var(Nd) = ?.

E[Nd ] = E[
∑
v∈[n]

[deg(v) = d ]] = n · Pr[deg(1) = d ] = n · pd .

Motivation Erdős-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)

15/34 WS 2025/2026 Stefan Walzer: Random Graphs ITI, Algorithm Engineering

Concentration of Nd



Lemma (Near Independence of Degrees)
Let u ̸= v be two vertices of G(n, λ/n). Then Pr[deg(u) = d , deg(v) = d ] = Pr[deg(u) = d ] Pr[deg(v) = d ]±Θ(1/n).

Theorem

Pr[|Nd − npd | ≥ n2/3] = O(n−1/3) where pd = Pr[deg(1) = d ] ≈ e−λ λd

d! .

Proof
E[Nd ] = npd E[N2

d ] = ? Var(Nd) = ?.

E[N2
d ] = E

[
(
∑
v∈[n]

[deg(v) = d ])2] = E
[ ∑

u∈[n]

∑
v∈[n]

[deg(u) = d , deg(v) = d ]
]

=
∑
u∈[n]

∑
v∈[n]

Pr[deg(u) = d , deg(v) = d ] =
∑
u∈[n]

Pr[deg(u) = d ] +
∑
u∈[n]

∑
v ̸=u

Pr[deg(u) = d , deg(v) = d ]

= n · pd + n · (n − 1) · (p2
d ±O(1/n)) = n2p2

d ±O(n).
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Lemma (Near Independence of Degrees)
Let u ̸= v be two vertices of G(n, λ/n). Then Pr[deg(u) = d , deg(v) = d ] = Pr[deg(u) = d ] Pr[deg(v) = d ]±Θ(1/n).

Theorem

Pr[|Nd − npd | ≥ n2/3] = O(n−1/3) where pd = Pr[deg(1) = d ] ≈ e−λ λd

d! .

Proof
E[Nd ] = npd E[N2

d ] = n2p2
d ±O(n) Var(Nd) = ?.

Var(Nd) = E[N2
d ]− E[Nd ]

2 ≤ n2p2
d +O(n)− (npd)

2 = O(n).
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Lemma (Near Independence of Degrees)
Let u ̸= v be two vertices of G(n, λ/n). Then Pr[deg(u) = d , deg(v) = d ] = Pr[deg(u) = d ] Pr[deg(v) = d ]±Θ(1/n).

Theorem

Pr[|Nd − npd | ≥ n2/3] = O(n−1/3) where pd = Pr[deg(1) = d ] ≈ e−λ λd

d! .

Proof
E[Nd ] = npd E[N2

d ] = n2p2
d ±O(n) Var(Nd) = O(n).

Hence:Pr[|Nd − npd | ≥ n2/3] = Pr[|Nd − E[Nd ]| ≥ n2/3]
Cheb.
≤ Var(Nd)

n4/3
= O(n−1/3).
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Theorem: There are few short cycles in Erdős-Renyi graphs

Let Ck be the number of cycles of length k in G(n, λ/n) where k , λ = Θ(1). Then E[Ck ] ≤ λk

2k = Θ(1).

Proof.

The number of potential cycles is n(n − 1) · . . . · (n − k + 1)︸ ︷︷ ︸
sequences (v1, . . . , vk )

· 1
k
· 1

2︸ ︷︷ ︸
startpoint and direction

irrelevant

The probability that (v1, . . . , vk , v1) is a cycle is (λ/n)k . Hence:

E[Ck ] ≤
nk

2k

(λ
n

)k
=

λk

2k
.
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Definition

Let D be a distribution on N0 and Xi,j ∼ D for i, j ∈ N. Define Z0 = 1 and Zi =
∑Zi−1

j=1 Xi,j for i ≥ 1.

Intuition
Start with a population of size Z1 = 1.

Each individual has a random number of decendents.

Key question: What is the probability of extinction,
i.e. for lim

i→∞
Zi = 0?

Exercise: Galton-Watson Process with D = Pois(λ)

If λ ≤ 1 then the process goes extinct with probability 1.
If λ > 1 then the process survives with probability sλ > 0.

Galton-Watson Tree

Xi,j 1 2 3 4 . . .
1 3 1 0 2 . . .
2 1 0 1 3 . . .
3 1 2 2 0 . . .
4 0 3 0 0 . . .
5 0 0 0 2 . . ....

...
...

...
...

Zi

1
3
2
3
3
0
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Theorem: The Neighbourhood of v looks like a Galton Watson Tree
Let R = O(1). Let H be an (ordered) tree of depth R given by a sequence c1, . . . , ck specifiying the
number of children of nodes in all layers except the last, in level order.
Let GWT(λ)|R be the first R layers of a Pois(λ)-Galton-Watson tree.

Let G(n, λ/n)|v,R be the (ordered) subgraph of G(n, λ/n) induced by vertices with distance ≤ R from v .

Pr[GWT(λ)|R = H]
(i)
=

k∏
i=1

Pr
X∼Pois(λ)

[X = ci ] =
k∏

i=1

e−λλ
ci

ci !

(ii)
≈ Pr[G(n, λ/n)|v,R = H].

Example for H

(c1, c2, c3) = (2, 3, 0)
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Theorem: The Neighbourhood of v looks like a Galton Watson Tree
Let R = O(1). Let H be an (ordered) tree of depth R given by a sequence c1, . . . , ck specifiying the
number of children of nodes in all layers except the last, in level order.
Let GWT(λ)|R be the first R layers of a Pois(λ)-Galton-Watson tree.
Let G(n, λ/n)|v,R be the (ordered) subgraph of G(n, λ/n) induced by vertices with distance ≤ R from v .

Pr[GWT(λ)|R = H]
(i)
=

k∏
i=1

Pr
X∼Pois(λ)

[X = ci ] =
k∏

i=1

e−λλ
ci

ci !

(ii)
≈ Pr[G(n, λ/n)|v,R = H].

Example for H

(c1, c2, c3) = (2, 3, 0)

Proof of (ii) by Example: The following has to “go right” for G(n, λ/n)|v ,R = H

random variable desired outcome probability
deg(v) ∼ Bin(n − 1, λ/n) ≈ Pois(λ) 2 ≈ e−λ λ2

2!
[{u,w} ∈ E ] 0 1− λ

n ≈ 1
deg(u)− 1 ∼ Bin(n − 3, λ/n) ≈ Pois(λ) 3 ≈ e−λ λ3

3!

deg(w)− 1 ∼ Bin(n − 3, λ/n) ≈ Pois(λ) 0 ≈ e−λ λ0

0!
[{x1, x2} ∈ E ∨ {x2, x3} ∈ E ∨ {x1, x3} ∈ E ] 0 (1− λ

n )
3 ≈ 1

v

u

x1 x2 x3

w
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Theorem: The Neighbourhood of v looks like a Galton Watson Tree
Let R = O(1). Let H be an (ordered) tree of depth R given by a sequence c1, . . . , ck specifiying the
number of children of nodes in all layers except the last, in level order.
Let GWT(λ)|R be the first R layers of a Pois(λ)-Galton-Watson tree.
Let G(n, λ/n)|v,R be the (ordered) subgraph of G(n, λ/n) induced by vertices with distance ≤ R from v .

Pr[GWT(λ)|R = H]
(i)
=

k∏
i=1

Pr
X∼Pois(λ)

[X = ci ] =
k∏

i=1

e−λλ
ci

ci !

(ii)
≈ Pr[G(n, λ/n)|v,R = H].

Example for H

(c1, c2, c3) = (2, 3, 0)

Corollaries

G(n, λ/n)|v,R
d−→ GWT(λ)|R // convergence in distribution for n → ∞

The number NH of “copies” of H in G(n, λ/n) satisfies E[NH ] ≈ n ·
∏k

i=1 e−λ λci

ci !
.

Concentration of NH can be proved much like we proved concentration of Nd earlier.
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Theorem: Sudden Emergence of the Giant Component (Erdős, Renyi 1960)
Consider G(n, λ/n). The following holds with probability approaching 1 for n→∞.

i If λ < 1 then G(n, λ/n) only has components of size O(log n).
Each component is a tree or pseudotree. // pseudotree: connected and # edges = # vertices

↪→ Intuition: GWT(λ) dies out with probability 1.

ii If λ > 1 then G(n, λ/n) has one “giant” component of size ≈ s(λ) · n.
↪→ Intuition: s(λ) > 0 is the probability that GWT(λ) is infinite
≈ probability that fixed vertex is in giant component

iii If λ = 1 then the largest component of G(n, λ/n) has size Θ(n2/3).
↪→ Intuition: ?

wild pseudotree
https://crowspath.org/love-trees/
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Observation: Locality in Practice
Take social networks. A friend of my friend is more likely to be my friend than a random person.

Definition: Locality1

L = Pr[{u,w} ∈ E | {v , u} ∈ E ∧ {v ,w} ∈ E ] where v , u,w are distinct (random) vertices.

Similar numbers are sometimes called clustering coefficient.

Observation: No Locality in Erdős-Renyi Random Graphs

In G(n, λ/n) we have L = λ
n = O( 1

n ).

Next: Random Geometric Graphs with L = Ω(1).
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Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.

Simple Example: GT2
(n, r)

number of vertices: n

space: 2-dimensional torus T2 = [0, 1)2

// standard unit square is more common but less simple

metric: L∞ // L2 is more common but less simple
↪→ dist((x1, y1), (x2, y2)) = max(dist(x1, x2), dist(y1, y2)).

vertex distribution: for v ∈ [n]: Pv ∼ U(T2)

edge “probability” is 0 or 1: {u, v} ∈ E ⇔ dist(Pu,Pv) ≤ r
// not random when Pu and Pv are given

1 - 1

1

1
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Motivation Erdős-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)

24/34 WS 2025/2026 Stefan Walzer: Random Graphs ITI, Algorithm Engineering

Random Geometric Graphs



Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.

Simple Example: GT2
(n, r)

number of vertices: n

space: 2-dimensional torus T2 = [0, 1)2

// standard unit square is more common but less simple

metric: L∞ // L2 is more common but less simple
↪→ dist((x1, y1), (x2, y2)) = max(dist(x1, x2), dist(y1, y2)).

vertex distribution: for v ∈ [n]: Pv ∼ U(T2)

edge “probability” is 0 or 1: {u, v} ∈ E ⇔ dist(Pu,Pv) ≤ r
// not random when Pu and Pv are given

1 - 6

1

1
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Motivation Erdős-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)

24/34 WS 2025/2026 Stefan Walzer: Random Graphs ITI, Algorithm Engineering

Random Geometric Graphs



Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.

Simple Example: GT2
(n, r)

number of vertices: n

space: 2-dimensional torus T2 = [0, 1)2

// standard unit square is more common but less simple

metric: L∞ // L2 is more common but less simple
↪→ dist((x1, y1), (x2, y2)) = max(dist(x1, x2), dist(y1, y2)).

vertex distribution: for v ∈ [n]: Pv ∼ U(T2)

edge “probability” is 0 or 1: {u, v} ∈ E ⇔ dist(Pu,Pv) ≤ r
// not random when Pu and Pv are given

1 - 12

1

1
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Motivation Erdős-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)

24/34 WS 2025/2026 Stefan Walzer: Random Graphs ITI, Algorithm Engineering

Random Geometric Graphs



Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.

Simple Example: GT2
(n, r)

number of vertices: n

space: 2-dimensional torus T2 = [0, 1)2

// standard unit square is more common but less simple

metric: L∞ // L2 is more common but less simple
↪→ dist((x1, y1), (x2, y2)) = max(dist(x1, x2), dist(y1, y2)).

vertex distribution: for v ∈ [n]: Pv ∼ U(T2)

edge “probability” is 0 or 1: {u, v} ∈ E ⇔ dist(Pu,Pv) ≤ r
// not random when Pu and Pv are given

1 - 20

1

1

r

r
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Definition: Random Geometric Graph (RGG)
An RGG is obtained by distributing vertices in a metric space and connecting any two vertices with a probability
depending on their distance.
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Consider arbitrary v ∈ [n].

By symmetry of T2 each outcome of Pv behaves the same.

Pr[{u, v} ∈ E ] = Pr[Pu is in the 2r × 2r square centered at Pv ] = 4r2.

Hence deg(v) ∼ Bin(n − 1, 4r2) and E[deg(v)] = 4r2(n − 1).
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Observation
Let p, q ∼ U([−0.5, 0.5]2) and Sp the unit square around p.
Then Pr[q ∈ Sp] =

∫ 0.5
−0.5

∫ 0.5
−0.5(1− |x |)(1− |y |)dx dy = 9

16 .

p

general case

p

best case

p

worst case

1 - 30
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Corollary

By “rescaling” the observation we get L = Pr[{u,w} ∈ E︸ ︷︷ ︸
Pw in square

around Pu

| {v , u} ∈ E ∧ {v ,w} ∈ E︸ ︷︷ ︸
Pu, Pw in square around Pv

] = 9
16 = Ω(1).
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Poissonised Variant GT2

Pois(n, r) of GT2
(n, r)

Replace the point set with a Poisson point process on T2 with intensity n.
↪→ i.e. region of size λ contains Pois(λn)-many points, independent for disjoint regions

Note: GT2

Pois(n, r)
d
= GT2

(N, r) where N ∼ Pois(n).

Advantages
No long-distance correlations. ✓
Pois(4r2)-distributed degrees. ✓

Disadvantages
Less natural in practice. ✗
Number of vertices N ∼ Pois(n) not fixed. ✗

De-Poissonisation (an analogous result holds for de-Poissonising balls-into-bins)

Let P be a graph property. If P is very unlikely for GT2

Pois(n, r) then P is unlikely for GT2
(n, r):

Pr[GT2

(n, r) ∈ P] = Pr[GT2

Pois(n, r) ∈ P | N = n] ≤ Pr[GT2
Pois(n,r)∈P]
Pr[N=n] = Θ(n1/2) Pr[GT2

Pois(n, r) ∈ P].
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1. Motivation

2. Erdős-Renyi Random Graphs
Degree Distribution
Degree Statistics
Tree-like local structure
Emergence of the Giant Component

3. Random Geometric Graphs

4. Scale-Free Networks (Teaser)
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Semi-Formal Definition
A scale-free network is a graph with a
degree distribution that follows a power
law (in an asymptotic sense)

Practical Consequence
There are vertices of very high
degree (hubs).

Contrast: Erdős-Renyi
exponentially decreasing tail.

Pois(λ)

for λ = 10.

Power Laws

1 2 3 4 5 6 7 8 9
d

Nd = #{v ∈ V | deg(v) = d}

Nd ∼ d−τ

τ ≤ 1: not a distribution
1 < τ ≤ 2: distribution, but E[deg(v)] = ∞
2 < τ ≤ 3: E[deg(v)] < ∞, but Var(deg(v)) = ∞
3 < τ ≤ 4: variance < ∞, but higher moments are ∞

τ ∈ (2, 3] is especially popular

“Internet”
konect.cc/plot/degree.a.topology.full.png
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law (in an asymptotic sense)

Practical Consequence
There are vertices of very high
degree (hubs).

Contrast: Erdős-Renyi
exponentially decreasing tail.

Pois(λ)

for λ = 10.

The Name “Scale-Free”
From Barabási: “Linked: The New Science of Networks”, 2002.
In a random network [...] the vast majority of nodes have the same number of links [...].
Therefore, a random network has a characteristic scale in its node connectivity [...]. In
contrast, the absence of a peak in a power-law degree distribution implies that [...] we
see a continuous hierarchy of nodes, spanning from rare hubs to the numerous tiny
nodes. There is no intrinsic scale in these networks. This is the reason my research
group started to describe networks with power-law degree distribution as scale-free.

“Youtube”
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Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree λ > 0

metric space T // more generally: Td for d ∈ N

for each v : position xv ∼ U(T)
for each v : weight wv ∼ Par(τ − 1, 1)
the Pareto distribution is a power law distribution
with exponent τ

{u, v} ∈ E ⇔ dist(xu, xv) ≤ λ
n wuwv

⇔ n
λwv
≤ wu

dist(xu,xv )
.

1 - 1

0 1
T
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Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree λ > 0

metric space T // more generally: Td for d ∈ N

for each v : position xv ∼ U(T)
for each v : weight wv ∼ Par(τ − 1, 1)
the Pareto distribution is a power law distribution
with exponent τ

{u, v} ∈ E ⇔ dist(xu, xv) ≤ λ
n wuwv

⇔ n
λwv
≤ wu

dist(xu,xv )
.

1 - 5

wv

0 1
T

xv
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Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree λ > 0

metric space T // more generally: Td for d ∈ N

for each v : position xv ∼ U(T)
for each v : weight wv ∼ Par(τ − 1, 1)
the Pareto distribution is a power law distribution
with exponent τ

{u, v} ∈ E ⇔ dist(xu, xv) ≤ λ
n wuwv

⇔ n
λwv
≤ wu

dist(xu,xv )
.

1 - 6

wv

0 1
T

xv

y = wu

xux
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Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.
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Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case
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desired average degree λ > 0
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Reminder: Random Geometric Graph (RGG)

Distribute vertices in a metric space and connect any two vertices with a probability depending on their distance.

Definition: Geometric Inhomogeneous Random Graph (GIRG), Special Case

number of vertices: n

desired average degree λ > 0

metric space T // more generally: Td for d ∈ N

for each v : position xv ∼ U(T)
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GIRGs are Scale-Free
E[deg(v) | wv ] = Θ(wv) and deg(v) follows a power law if wv does.

1 - 14
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GIRGs are a Good Model for Real World Networks (Bläsius, Fischbeck, 2022)

consider two graph parameters: locality and
heterogeneity (≈ logVar(deg(v))).

in many contexts, a real network behaves like a
GIRG with the same parameters

On the External Validity of Average-Case Analyses of Graph
Algorithms, ESA 2022.
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in many contexts, a real network behaves like a
GIRG with the same parameters

On the External Validity of Average-Case Analyses of Graph
Algorithms, ESA 2022.
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Poincaré Model of Hyperbolic Geometry
Illustration by M.C. Escher, Circle Limit III, 1959.

(All creatures are congruent
in hyperbolic space.)

Result (Bläsius, Friedrich, Katzmann, 2021)
Vertex Cover can be Approximated on HGGs.
Efficiently Approximating Vertex Cover on Scale-Free Networks with
Underlying Hyperbolic Geometry, ESA 2021.

Hyperbolic Random Graph (HGGs)
Sample points with bias towards the centre.

Connect points if distance is beneath a threshold.
https://commons.wikimedia.org/wiki/File:Hyperbolic_graphs.png

Can yield power law distribution for node degrees.
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How a Graph is Grown Over Time
There is a parameter m ∈ N.

start with any graph on ≥ m nodes.
add new nodes one by one

new node is connected to m existing nodes
existing nodes are selected with probability proportional to their degree

Why the Model is Interesting
node degrees approach a power law distribution with exponent 3

model may explain why scale-free networks emerge in practice

Motivation Erdős-Renyi Random Graphs Random Geometric Graphs Scale-Free Networks (Teaser)

33/34 WS 2025/2026 Stefan Walzer: Random Graphs ITI, Algorithm Engineering

Preferential Attachment and the Barabasi-Albert Model
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Erdős-Renyi Random Graphs
simplest type of random graphs

“Erdős-Renyi” refers to various related
models

arise in certain data structures (stay tuned)

look locally like Poisson Galton-Watson
Trees

no locality or high-degree vertices

Random Graphs for Average Case Analsis
Mimic properties of real world networks:

locality // a friend of my friend is often my friend

arises naturally in random geometric graphs

“scale-freeness” ≈ existence of hubs
assign weights to vertices (in GIRGs)
use hyperbolic geometry
use preferential attachment
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Summary



What is meant by the theory–practice gap in the context of graph algorithms?

What might a theoretician try to overcome the gap?
What is the classical model of Erdős and Rényi?

Which variants of the Erdős–Rényi model did we consider?
What can be said about the distribution of deg(v) when we set E[deg(v)] = λ?
What can be said about Nd = |{v ∈ [n] | deg(v) = d}|?
We studied the R-neighborhood G(n, λ/n)|v,R of a vertex v .

What holds for the distribution of G(n, λ/n)|v,R , and why?
What is a Galton–Watson tree?
What can be said about the extinction probability of a Poisson Galton–Watson tree?

What is meant by the “sudden emergence of the giant component”? State the result formally.
We considered a quantity L, called locality. How is it defined?
What locality do Erdős–Rényi graphs have?

Name properties that distinguish real-world networks from Erdős–Rényi graphs.
Give an example of a geometric random graph. What is the locality in this model?
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Appendix: Possible Exam Questions I



In what way might a poissonized model be more convenient?
When is a network “scale-free”?

Give an example of a real-world network to which this property is attributed.
Describe at least two ways in which networks of this type can be generated.
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Appendix: Possible Exam Questions II
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