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What is a Probability? ﬂ(IT

Karlsruhe Institute of Technology

Physical Accounts Evidential / Bayesian Accounts

Probabilities are persistent rates of outcomes Probabilities reflect how much a rational agent
when observing the same (random) process over believes in a proposition and about how much
and over again. they are willing to bet on it.
It's about objective stuff: It's about what | subjectively know:
“The probability that the coin comes up “The probability that it is going to rain
heads is 50%.” tomorrow is 33%.”

See https://en.wikipedia.org/wiki/Probability_interpretations.
In this lecture, we use a naive notion.
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Bernoulli Distribution ﬂ(IT
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Definition: Ber(p) for p € [0, 1]

B ~ Ber(p) is a random variable with

Pr[B=1]=pand Pr[B=0]=1—p.

Standard Assumption: Access to Coin Flips

Algorithms have access to a sequence By, By, ... ~ Ber(1/2) in independent uniformly random bits.

Exercise: Ber(1/3) from Ber(1/2)
Design an algorithm that outputs B such that B ~ Ber(1/3).
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Uniform Distribution ﬂ(IT

Definition: ¢/(D) on finite D
If |D| < oo, then X ~ U(D) is a random variable with

Standard Assumption
Algorithms have access to Xi, Xz, ... ~ U([0, 1]).

Pr[X =x] = 1 forall x € D.

|D| In practice: Initialise the significand? of floating
point number with random bits.
Definition: ¢/(D) on infinite D aDeutsch: Mantisse.
If D is infinite but has finite measure? then X ~ U/(D) is
a random variable with uniform density function on D. Exercise: L{({1 ooy n}) from U([O, 1])

Important example:

Design an algorithm that outputs X such that
X~U({1,...,n}).

X ~U([0,1]) & Vx € [0,1] : Pr[X < x] = x.

4Formal details: Not in this lecture.
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Uniform Distribution on a Disc AT
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Sample P ~ U(D) for D = {(x,y) € R? | x? +y? < 1}.

Flawed Attempt

sample ® ~ U([0, 27])
sample R ~ U([0, 1])
return (R - cos ®, R - sin ®)

Issue

Disc of half the radius is hit 50% of the time
but makes up only 1/4 of the areal!
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Uniform Distribution on a Disc with Rejection Sampling ﬂ(l'l'
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Sample P ~ U(D) for D = {(x,y) € R? | x2 + y? < 1}.

Solution with Rejection Sampling

repeat

sample X ~ U([—1,1])
sample Y ~ U([—1,1])
until X% + Y2 <1

return (X, Y)

® |dea: P ~ U([—1,1]?) conditioned on P € D is uniform on D. Spoiler alert: We'll get

® Each sample is accepted with probability /4. wor: St'Cé;se cc;nstant t/m/g W’;ht
inverse transform samplin g

® Expected number of rounds is 1/(w/4) = O(1). piing 1ater
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Rejection Sampling in General Discrete Distributions ﬂ(IT
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Exercise

Let Dy and D- be distributions on a finite? set D. Assume
We can sample in constant time from D;.
There exists C > 0 such that for any x € D we have

XB%Z[X x]<C xBra[X X] EDD]H]
1 2 3

Design an algorithm that generates a sample from D in expected
time O(C).

sl

4 5

4This can be generalised.
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Inverse Transform Sampling ﬂ(IT
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ity function f(x) of (0, 1
® Let D be a distribution on R. density function f(x) of N'(0,1)

—e.g. D =N(0,1)
® Let X ~ D and Fx(x) = Pr[X < x].
— Fx is the cumulative distribution function of X
— the CDF of the normal distribution is called ¢
w Let /(1) :=inf{x € R| Fx(x) > u}.
— ordinary inverse for strictly monotone Fyx CDF &(x) of N(0,1)

321 1 2 3

Theorem (Inverse Transform Sampling)

If U~ 1([0,1]) then F'(U) £ X, i.e. Fy'(U) ~ D. 0.5
(“g” means: “has the same distribution as”) %

Reason: Pr[Fy " (U) < x] = Pr{U < Fx(x)] = Fx(x). 3 5.1 ] 1 2 3
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Uniform Distribution on a Disc with Inverse Transform Sampling ﬂ(IT
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Task
Sample P ~ U(D) for D = {(x,y) € R? | x> + y? < 1}.

Preparation

If (x,y) ~ U(D) then R = /X2 + y? satisfies

Fi(r) = PR < 1] = r’m/m = 1 hence " (u) = /&

Solution with Inverse Transform Sampling

sample ¢ ~ U([0, 27])
sample U ~ U([0, 1])

R+ VU

return (R - cos ®, R - sin ®)

101 WS 2025/2026 Stefan Walzer: Important Random Variables and How to Sample Them ITI, Algorithm Engineering



Geometric Distribution ﬂ(IT
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Sampling G ~ Geom;(p) in time O(G)

Definition: G ~ Geomy(p) and G’ ~ Geomy(p)

Letp € (0,1] and By, Bs, ... ~ Ber(p). :';—e(:lt
Then we define the geometric random variables peat
i i+1
G:=min{ieN|B =1} sample X ~ Ber(p)
until X =1
< number of Ber(p) trials until (and including) the first success .
return /

G =G-1

< number of Ber(p) failures before the first success

Quite bad: E[G] = 1/p might be large.

We write G ~ Geom;(p) and G' ~ Geomg(p).2 Exercise

2| the literature Geom is used inconsistently. Use inverse transform sampling to sample
G ~ Geom;y(p) in time O(1).
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Sampling Without Replacement

Exercise

Design an algorithm that, given k, n € N with

0 < k < noutputs a set S C [n] of size |S| = k
uniformly at random.
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Reservoir Sampling

Task: Maintain a fair sample of k items while
reading a (possibly infinite) stream.
Algorithm init(k):

allocate reservoir[1..k]

n+2o0

Algorithm observeltem(x):
n<n+1
if n < k then
| reservoir[n] < x
else
sample | ~U({1,...,n})
if | < k then
| reservoir[l] « x
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Theorem

Assume we call init(k) and then observeltem(x) for
x € {x1,...,X,} with n > k. Afterwards reservoir contains
every subset of {xi, ..., X,} of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

1
Odlh O£ & X

U{L, ..., 6}) ~ =1V

stream: g

reservoir:

ITI, Algorithm Engineering



Conclusion ﬂ(l'l'
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General Techniques

® rejection sampling

® inverse transform sampling

Distributions
& Bernoulli distribution

® uniform distribution
® geometric distribution

Other Stuff

® sampling from a set without replacement

® reservoir sampling
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Appendix: Possible Exam Questions | A\‘(IT
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® How can one sample B ~ Ber(p)? What about X ~ ({1, ..., n})? Under which assumptions?

® How does rejection sampling work in general? Under which conditions does rejection sampling lead to an
efficient algorithm?

® How does inverse transform sampling work in general? Under which conditions does inverse transform
sampling lead to an efficient algorithm?

® How can one sample a random point from a disk? Name two techniques and state their advantages and
disadvantages.

& Given a set of size n. How can | determine a random subset of size k < n and how long does that take?

® Explain reservoir sampling. Isn’t that just a slower algorithm for “sampling without replacement”?
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