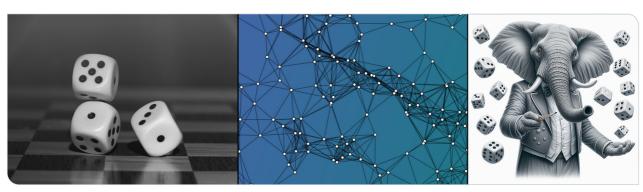


Probability and Computing – Important Random Variables and How to Sample Them

Stefan Walzer | WS 2025/2026



Content

What is a Probability?

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about objective stuff:

"The probability that the coin comes up heads is 50%."

Evidential / Bayesian Accounts

Probabilities reflect how much a rational agent believes in a proposition and about how much they are willing to bet on it.

It's about what I subjectively know:

"The probability that it is going to rain tomorrow is 33%."

See https://en.wikipedia.org/wiki/Probability_interpretations. In this lecture, we use a naive notion.

Bernoulli Distribution

Definition: Ber(p) for $p \in [0, 1]$

 $B \sim \text{Ber}(p)$ is a random variable with

$$Pr[B = 1] = p \text{ and } Pr[B = 0] = 1 - p.$$

Standard Assumption: Access to Coin Flips

Algorithms have access to a sequence $B_1, B_2, \ldots \sim \text{Ber}(1/2)$ in independent uniformly random bits.

Exercise: Ber(1/3) from Ber(1/2)

Design an algorithm that outputs B such that $B \sim \text{Ber}(1/3)$.

Uniform Distribution

Definition: $\mathcal{U}(D)$ on finite D

If $|D| < \infty$, then $X \sim \mathcal{U}(D)$ is a random variable with

$$\Pr[X = x] = \frac{1}{|D|}$$
 for all $x \in D$.

Definition: $\mathcal{U}(D)$ on infinite D

If D is infinite but has finite measure^a then $X \sim \mathcal{U}(D)$ is a random variable with uniform density function on D. Important example:

$$X \sim \mathcal{U}([0,1]) \Leftrightarrow \forall x \in [0,1] : \Pr[X < x] = x.$$

Standard Assumption

Algorithms have access to $X_1, X_2, \ldots \sim \mathcal{U}([0,1])$. In practice: Initialise the significand^a of floating point number with random bits.

^aDeutsch: Mantisse.

Exercise: $\mathcal{U}(\{1,\ldots,n\})$ from $\mathcal{U}([0,1])$

Design an algorithm that outputs X such that $X \sim \mathcal{U}(\{1, \dots, n\})$.

^aFormal details: Not in this lecture.

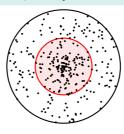
Uniform Distribution on a Disc

Task

Sample $P \sim U(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Flawed Attempt

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $R \sim \mathcal{U}([0,1])$ **return** $(R \cdot \cos \Phi, R \cdot \sin \Phi)$



Issue

Disc of half the radius is hit 50% of the time but makes up only 1/4 of the area!

Uniform Distribution on a Disc with Rejection Sampling

Task

Sample $P \sim U(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Solution with Rejection Sampling

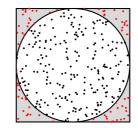
repeat

sample
$$X \sim \mathcal{U}([-1,1])$$

sample $Y \sim \mathcal{U}([-1,1])$
until $X^2 + Y^2 < 1$

until
$$X^2 + Y^2 \le 1$$

return (X, Y)



- Idea: $P \sim \mathcal{U}([-1, 1]^2)$ conditioned on $P \in D$ is uniform on D.
- Each sample is accepted with probability $\pi/4$.
- Expected number of rounds is $1/(\pi/4) = \mathcal{O}(1)$.

Spoiler alert: We'll get worst-case constant time with inverse transform sampling later.

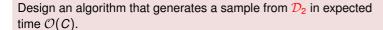
Rejection Sampling in General Discrete Distributions

Exercise

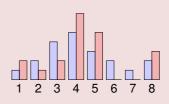
Let \mathcal{D}_1 and \mathcal{D}_2 be distributions on a finite a set D. Assume

- 1 We can sample in constant time from \mathcal{D}_1 .
- There exists C > 0 such that for any $x \in D$ we have

$$\Pr_{X \sim \mathcal{D}_2}[X = x] \le C \cdot \Pr_{X \sim \mathcal{D}_1}[X = x].$$



^aThis can be generalised.



Inverse Transform Sampling

• Let \mathcal{D} be a distribution on \mathbb{R} .

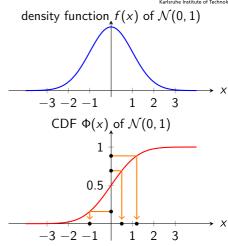
$$\hookrightarrow$$
 e.g. $\mathcal{D} = \mathcal{N}(0,1)$

- Let $X \sim \mathcal{D}$ and $F_X(x) = \Pr[X \leq x]$. \hookrightarrow F_X is the *cumulative distribution function* of X \hookrightarrow the CDF of the normal distribution is called Φ
- Let $F_{\mathbf{v}}^{-1}(u) := \inf\{x \in \mathbb{R} \mid F_{\mathcal{X}}(x) \geq u\}.$ \hookrightarrow ordinary inverse for strictly monotone F_X

Theorem (Inverse Transform Sampling)

If $U \sim \mathcal{U}([0,1])$ then $F_v^{-1}(U) \stackrel{d}{=} X$, i.e. $F_v^{-1}(U) \sim \mathcal{D}$. (" $\stackrel{d}{=}$ " means: "has the same distribution as")

Reason: $\Pr[F_{Y}^{-1}(U) < x] = \Pr[U < F_{X}(x)] = F_{X}(x)$.



Uniform Distribution on a Disc with Inverse Transform Sampling

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Preparation

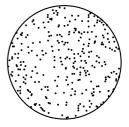
If $(x, y) \sim \mathcal{U}(D)$ then $R = \sqrt{x^2 + y^2}$ satisfies

$$F_R(r) = \Pr[R \le r] = r^2 \pi / \pi = r^2 \text{ hence } F_R^{-1}(u) = \sqrt{u}.$$

Solution with Inverse Transform Sampling

sample
$$\Phi \sim \mathcal{U}([0, 2\pi])$$

sample $U \sim \mathcal{U}([0, 1])$
 $R \leftarrow \sqrt{U}$
return $(R \cdot \cos \Phi, R \cdot \sin \Phi)$



Geometric Distribution

Definition: $G \sim \text{Geom}_1(p)$ and $G' \sim \text{Geom}_0(p)$

Let $p \in (0, 1]$ and $B_1, B_2, ... \sim Ber(p)$. Then we define the geometric random variables

$$G:=\min\{i\in\mathbb{N}\mid B_i=1\}$$

 \hookrightarrow number of Ber(p) trials until (and including) the first success

$$G' := G - 1$$

 \hookrightarrow number of Ber(p) failures before the first success

We write $G \sim \text{Geom}_1(p)$ and $G' \sim \text{Geom}_0(p)$.

^aIn the literature Geom is used inconsistently.

Sampling $G \sim \text{Geom}_1(p)$ in time $\mathcal{O}(G)$

$$i \leftarrow 0$$
repeat
$$| i \leftarrow i + 1$$

$$| sample X \sim Ber(p)$$
until $X = 1$
return i

Quite bad: $\mathbb{E}[G] = 1/p$ might be large.

Exercise

Use inverse transform sampling to sample $G \sim \text{Geom}_1(p)$ in time $\mathcal{O}(1)$.

Sampling Without Replacement

Exercise

Design an algorithm that, given $k, n \in \mathbb{N}$ with $0 \le k \le n$ outputs a set $S \subseteq [n]$ of size |S| = k uniformly at random.

Reservoir Sampling

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

$$n \leftarrow n+1$$
if $n \le k$ then
 $| \text{reservoir}[n] \leftarrow x$
else
 $| \text{sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ then
 $| \text{reservoir}[l] \leftarrow x$

Theorem

Assume we call $\operatorname{init}(k)$ and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

stream: $\S \heartsuit \spadesuit \natural \diamondsuit \pounds \oplus \clubsuit \times$

reservoir: $f(1, ..., 6) \sim I = 1$

Conclusion

General Techniques

- rejection sampling
- inverse transform sampling

Distributions

- Bernoulli distribution
- uniform distribution
- geometric distribution

Other Stuff

- sampling from a set without replacement
- reservoir sampling

Appendix: Possible Exam Questions I

- How can one sample $B \sim \text{Ber}(p)$? What about $X \sim \mathcal{U}(\{1, ..., n\})$? Under which assumptions?
- How does rejection sampling work in general? Under which conditions does rejection sampling lead to an efficient algorithm?
- How does inverse transform sampling work in general? Under which conditions does inverse transform sampling lead to an efficient algorithm?
- How can one sample a random point from a disk? Name two techniques and state their advantages and disadvantages.
- Given a set of size n. How can I determine a random subset of size $k \le n$ and how long does that take?
- Explain reservoir sampling. Isn't that just a slower algorithm for "sampling without replacement"?