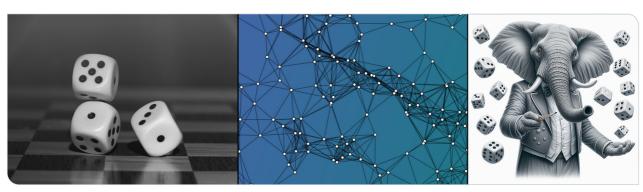


Probability and Computing – Important Random Variables and How to Sample Them

Stefan Walzer | WS 2025/2026



Content

- 1. What is Probability?
- 2. Bernoulli Distribution
- 3. Uniform Distribution
- 4. Rejection Sampling
- 5. Inverse Transform Sampling
- 6. Geometric Distribution
- 7. Sampling Without Replacement
- 8. Reservoir Sampling

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

WS 2025/2026

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about objective stuff:

"The probability that the coin comes up heads is 50%."

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about objective stuff:

"The probability that the coin comes up heads is 50%."

Evidential / Bayesian Accounts

Probabilities reflect how much a rational agent believes in a proposition and about how much they are willing to bet on it.

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about objective stuff:

"The probability that the coin comes up heads is 50%."

Evidential / Bayesian Accounts

Probabilities reflect how much a rational agent believes in a proposition and about how much they are willing to bet on it.

It's about what I subjectively know:

"The probability that it is going to rain tomorrow is 33%."

Physical Accounts

Probabilities are persistent rates of outcomes when observing the same (random) process over and over again.

It's about objective stuff:

"The probability that the coin comes up heads is 50%."

Evidential / Bayesian Accounts

Probabilities reflect how much a rational agent believes in a proposition and about how much they are willing to bet on it.

It's about what I subjectively know:

"The probability that it is going to rain tomorrow is 33%."

See https://en.wikipedia.org/wiki/Probability_interpretations. In this lecture, we use a naive notion.

Probability?
•

Bernoulli Distribution

Definition: Ber(p) for $p \in [0, 1]$

 $B \sim \text{Ber}(p)$ is a random variable with

$$Pr[B = 1] = p \text{ and } Pr[B = 0] = 1 - p.$$

Probability?

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Bernoulli Distribution

Definition: Ber(p) for $p \in [0, 1]$

 $B \sim \text{Ber}(p)$ is a random variable with

$$Pr[B = 1] = p \text{ and } Pr[B = 0] = 1 - p.$$

Standard Assumption: Access to Coin Flips

Algorithms have access to a sequence $B_1, B_2, \ldots \sim \text{Ber}(1/2)$ in independent uniformly random bits.

Probability?

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Bernoulli Distribution

Definition: Ber(p) for $p \in [0, 1]$

 $B \sim \text{Ber}(p)$ is a random variable with

$$Pr[B = 1] = p \text{ and } Pr[B = 0] = 1 - p.$$

Standard Assumption: Access to Coin Flips

Algorithms have access to a sequence $B_1, B_2, \ldots \sim \text{Ber}(1/2)$ in independent uniformly random bits.

Exercise: Ber(1/3) from Ber(1/2)

Design an algorithm that outputs B such that $B \sim \text{Ber}(1/3)$.

Probability?

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Definition: $\mathcal{U}(D)$ on finite D

If $|D| < \infty$, then $X \sim \mathcal{U}(D)$ is a random variable with

$$\Pr[X = x] = \frac{1}{|D|}$$
 for all $x \in D$.

Probability?

Bernoulli

Uniform ●○ Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Definition: $\mathcal{U}(D)$ on finite D

If $|D| < \infty$, then $X \sim \mathcal{U}(D)$ is a random variable with

$$\Pr[X = x] = \frac{1}{|D|}$$
 for all $x \in D$.

Definition: $\mathcal{U}(D)$ on infinite D

If D is infinite but has finite measure^a then $X \sim \mathcal{U}(D)$ is a random variable with uniform density function on D. Important example:

$$X \sim \mathcal{U}([0,1]) \Leftrightarrow \forall x \in [0,1] : \Pr[X < x] = x.$$

^aFormal details: Not in this lecture.

Probability?

Bernoulli

Uniform ●○ Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Definition: $\mathcal{U}(D)$ on finite D

If $|D| < \infty$, then $X \sim \mathcal{U}(D)$ is a random variable with

$$\Pr[X = x] = \frac{1}{|D|}$$
 for all $x \in D$.

Definition: $\mathcal{U}(D)$ on infinite D

If D is infinite but has finite measure^a then $X \sim \mathcal{U}(D)$ is a random variable with uniform density function on D. Important example:

$$X \sim \mathcal{U}([0,1]) \Leftrightarrow \forall x \in [0,1] : \Pr[X < x] = x.$$

^aFormal details: Not in this lecture.

Standard Assumption

Algorithms have access to $X_1, X_2, \ldots \sim \mathcal{U}([0,1])$. In practice: Initialise the significand^a of floating point number with random bits.

^aDeutsch: Mantisse.

Probability?

Bernoulli

Uniform ●○ Rejection

Inverse Transform

Geometric O No Replacement

Reservoir

Definition: $\mathcal{U}(D)$ on finite D

If $|D| < \infty$, then $X \sim \mathcal{U}(D)$ is a random variable with

$$\Pr[X = x] = \frac{1}{|D|}$$
 for all $x \in D$.

Definition: $\mathcal{U}(D)$ on infinite D

If D is infinite but has finite measure^a then $X \sim \mathcal{U}(D)$ is a random variable with uniform density function on D. Important example:

$$X \sim \mathcal{U}([0,1]) \Leftrightarrow \forall x \in [0,1] : \Pr[X < x] = x.$$

^aFormal details: Not in this lecture.

Standard Assumption

Algorithms have access to $X_1, X_2, \ldots \sim \mathcal{U}([0,1])$. In practice: Initialise the significand^a of floating point number with random bits.

^aDeutsch: Mantisse.

Exercise: $\mathcal{U}(\{1,\ldots,n\})$ from $\mathcal{U}([0,1])$

Design an algorithm that outputs X such that $X \sim \mathcal{U}(\{1,\ldots,n\})$.

Probability?

Bernoulli

Uniform ●○ Rejection

Inverse Transform

Geometric O No Replacement

Reservoir

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Probability?

Bernoulli o Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task

Sample $P \sim U(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Flawed Attempt

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $R \sim \mathcal{U}([0, 1])$ return $(R \cdot \cos \Phi, R \cdot \sin \Phi)$

Probability?

Bernoulli

Uniform ○● Rejection

Inverse Transform

Geometric

No Replacement

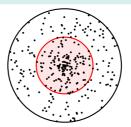
Reservoir

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Flawed Attempt

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $R \sim \mathcal{U}([0, 1])$ **return** $(R \cdot \cos \Phi, R \cdot \sin \Phi)$



Probability?

Bernoulli 0 Uniform ○● Rejection

Inverse Transform

Geometric

No Replacement

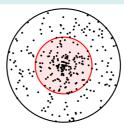
Reservoir

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Flawed Attempt

sample $\Phi \sim \mathcal{U}([0, 2\pi])$ sample $R \sim \mathcal{U}([0, 1])$ **return** $(R \cdot \cos \Phi, R \cdot \sin \Phi)$



Issue

Disc of half the radius is hit 50% of the time but makes up only 1/4 of the area!

Probability?

Bernoulli

Jniform • Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

cement Reservoir

ir Appendix

Task

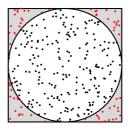
Sample $P \sim U(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Solution with Rejection Sampling

repeat

sample $X \sim \mathcal{U}([-1,1])$ sample $Y \sim \mathcal{U}([-1,1])$ until $X^2 + Y^2 < 1$

return
$$(X, Y)$$



Probability?

Bernoulli

Inverse Transform

Geometric

No Replacement

Reservoir

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

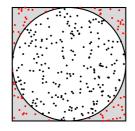
Solution with Rejection Sampling

repeat

sample
$$X \sim \mathcal{U}([-1,1])$$

sample $Y \sim \mathcal{U}([-1,1])$
until $X^2 + Y^2 < 1$

return
$$(X, Y)$$



■ Idea: $P \sim \mathcal{U}([-1,1]^2)$ conditioned on $P \in D$ is uniform on D.

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task

Sample $P \sim U(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

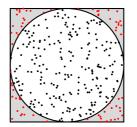
Solution with Rejection Sampling

repeat

sample
$$X \sim \mathcal{U}([-1,1])$$

sample $Y \sim \mathcal{U}([-1,1])$
until $X^2 + Y^2 < 1$

return
$$(X, Y)$$



- Idea: $P \sim \mathcal{U}([-1, 1]^2)$ conditioned on $P \in D$ is uniform on D.
- Each sample is accepted with probability $\pi/4$.
- Expected number of rounds is $1/(\pi/4) = \mathcal{O}(1)$.

Probability?

Bernoulli

Uniform

Inverse Transform

Geometric

No Replacement

Reservoir

Task

Sample $P \sim \mathcal{U}(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Solution with Rejection Sampling

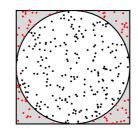
repeat

sample
$$X \sim \mathcal{U}([-1, 1])$$

sample $Y \sim \mathcal{U}([-1, 1])$

until
$$X^2 + Y^2 \le 1$$

return (X, Y)



- Idea: $P \sim \mathcal{U}([-1,1]^2)$ conditioned on $P \in D$ is uniform on D.
- Each sample is accepted with probability $\pi/4$.
- Expected number of rounds is $1/(\pi/4) = \mathcal{O}(1)$.

Spoiler alert: We'll get worst-case constant time with inverse transform sampling later.

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

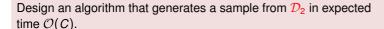
Rejection Sampling in General Discrete Distributions

Exercise

Let \mathcal{D}_1 and \mathcal{D}_2 be distributions on a finite a set D. Assume

- We can sample in constant time from \mathcal{D}_1 .
- There exists C > 0 such that for any $x \in D$ we have

$$\Pr_{X \sim \mathcal{D}_2}[X = x] \leq C \cdot \Pr_{X \sim \mathcal{D}_1}[X = x].$$



^aThis can be generalised.

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

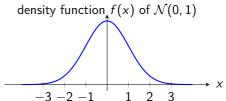
Geometric

No Replacement

Reservoir

• Let \mathcal{D} be a distribution on \mathbb{R} .

$$\hookrightarrow$$
 e.g. $\mathcal{D} = \mathcal{N}(0,1)$



Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

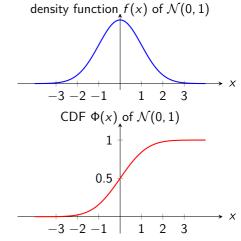
No Replacement

Reservoir

• Let \mathcal{D} be a distribution on \mathbb{R} .

$$\hookrightarrow$$
 e.g. $\mathcal{D} = \mathcal{N}(0,1)$

- Let $X \sim \mathcal{D}$ and $F_X(x) = \Pr[X \leq x]$.
 - \hookrightarrow F_X is the *cumulative distribution function* of X
 - \hookrightarrow the CDF of the normal distribution is called Φ



Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

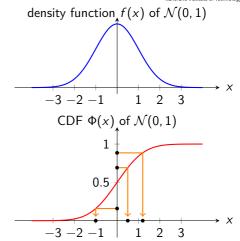
No Replacement

Reservoir

• Let \mathcal{D} be a distribution on \mathbb{R} .

$$\hookrightarrow$$
 e.g. $\mathcal{D} = \mathcal{N}(0,1)$

- Let $X \sim \mathcal{D}$ and $F_X(x) = \Pr[X \leq x]$. \hookrightarrow F_X is the *cumulative distribution function* of X \hookrightarrow the CDF of the normal distribution is called Φ
- Let $F_{\mathbf{v}}^{-1}(u) := \inf\{x \in \mathbb{R} \mid F_X(x) \geq u\}.$ \hookrightarrow ordinary inverse for strictly monotone F_X



Probability?

Bernoulli

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

 \blacksquare Let \mathcal{D} be a distribution on \mathbb{R}

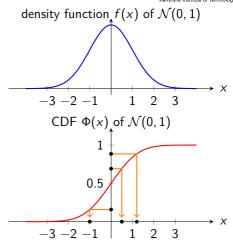
$$\hookrightarrow$$
 e.g. $\mathcal{D} = \mathcal{N}(0,1)$

- Let $X \sim \mathcal{D}$ and $F_X(x) = \Pr[X \leq x]$. \hookrightarrow F_X is the *cumulative distribution function* of X \hookrightarrow the CDF of the normal distribution is called Φ
- Let $F_{\mathbf{v}}^{-1}(u) := \inf\{x \in \mathbb{R} \mid F_{\mathcal{X}}(x) \geq u\}.$ \hookrightarrow ordinary inverse for strictly monotone F_X

Theorem (Inverse Transform Sampling)

If $U \sim \mathcal{U}([0,1])$ then $F_x^{-1}(U) \stackrel{d}{=} X$, i.e. $F_x^{-1}(U) \sim \mathcal{D}$.

("\delta" means: "has the same distribution as")



Probability?

Bernoulli

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

• Let \mathcal{D} be a distribution on \mathbb{R} .

$$\hookrightarrow$$
 e.g. $\mathcal{D} = \mathcal{N}(0,1)$

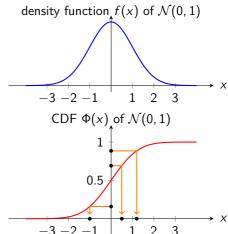
- Let $X \sim \mathcal{D}$ and $F_X(x) = \Pr[X \leq x]$. $\hookrightarrow F_X$ is the *cumulative distribution function* of X \hookrightarrow the CDF of the normal distribution is called Φ
- Let $F_X^{-1}(u) := \inf\{x \in \mathbb{R} \mid F_X(x) \ge u\}$. \hookrightarrow ordinary inverse for strictly monotone F_X

Theorem (Inverse Transform Sampling)

If $U \sim \mathcal{U}([0,1])$ then $F_X^{-1}(U) \stackrel{d}{=} X$, i.e. $F_X^{-1}(U) \sim \mathcal{D}$.

(" $\stackrel{d}{=}$ " means: "has the same distribution as")

Reason: $\Pr[F_X^{-1}(U) \le x] = \Pr[U \le F_X(x)] = F_X(x)$.



Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Uniform Distribution on a Disc with Inverse Transform Sampling

Task

Sample $P \sim U(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Probability?

10/14

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement Reservoir

Uniform Distribution on a Disc with Inverse Transform Sampling

Task

Sample $P \sim U(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Preparation

If $(x, y) \sim \mathcal{U}(D)$ then $R = \sqrt{x^2 + y^2}$ satisfies

$$F_R(r) = \Pr[R \le r] = r^2 \pi / \pi = r^2 \text{ hence } F_R^{-1}(u) = \sqrt{u}.$$

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Uniform Distribution on a Disc with Inverse Transform Sampling

Task

Sample $P \sim U(D)$ for $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

Preparation

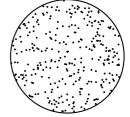
If
$$(x, y) \sim \mathcal{U}(D)$$
 then $R = \sqrt{x^2 + y^2}$ satisfies

$$F_R(r) = \Pr[R \le r] = r^2 \pi / \pi = r^2 \text{ hence } F_R^{-1}(u) = \sqrt{u}.$$

Solution with Inverse Transform Sampling

sample $\Phi \sim \mathcal{U}([0,2\pi])$ sample $U \sim \mathcal{U}([0,1])$ $R \leftarrow \sqrt{U}$

return $(R \cdot \cos \Phi, R \cdot \sin \Phi)$



Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Geometric Distribution

Definition: $G \sim \text{Geom}_1(p)$ and $G' \sim \text{Geom}_0(p)$

Let $p \in (0, 1]$ and $B_1, B_2, \ldots \sim \text{Ber}(p)$. Then we define the geometric random variables

$$G := \min\{i \in \mathbb{N} \mid B_i = 1\}$$

 \hookrightarrow number of Ber(p) trials until (and including) the first success

G' := G - 1

 \hookrightarrow number of Ber(p) failures before the first success

We write $G \sim \text{Geom}_1(p)$ and $G' \sim \text{Geom}_0(p)$.

^aIn the literature Geom is used inconsistently.

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Geometric Distribution

Definition: $G \sim \text{Geom}_1(p)$ and $G' \sim \text{Geom}_0(p)$

Let $p \in (0, 1]$ and $B_1, B_2, \ldots \sim \text{Ber}(p)$. Then we define the geometric random variables

$$G:=\min\{i\in\mathbb{N}\mid B_i=1\}$$

 \hookrightarrow number of Ber(p) trials until (and including) the first success

G' := G - 1

 \hookrightarrow number of Ber(p) failures before the first success

We write $G \sim \text{Geom}_1(p)$ and $G' \sim \text{Geom}_0(p)$.

^aIn the literature Geom is used inconsistently.

Sampling $G \sim \text{Geom}_1(p)$ in time $\mathcal{O}(G)$

Quite bad: $\mathbb{E}[G] = 1/p$ might be large.

Geometric Distribution

Definition: $G \sim \text{Geom}_1(p)$ and $G' \sim \text{Geom}_0(p)$

Let $p \in (0, 1]$ and $B_1, B_2, ... \sim Ber(p)$. Then we define the geometric random variables

$$G := \min\{i \in \mathbb{N} \mid B_i = 1\}$$

 \hookrightarrow number of Ber(p) trials until (and including) the first success

G' := G - 1

 \hookrightarrow number of Ber(p) failures before the first success

We write $G \sim \text{Geom}_1(p)$ and $G' \sim \text{Geom}_0(p)$.

^aIn the literature Geom is used inconsistently.

Sampling $G \sim \text{Geom}_1(p)$ in time $\mathcal{O}(G)$

Quite bad: $\mathbb{E}[G] = 1/p$ might be large.

Exercise

return i

Use inverse transform sampling to sample $G \sim \text{Geom}_1(p)$ in time $\mathcal{O}(1)$.

Probability?

11/14

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Sampling Without Replacement

Exercise

Design an algorithm that, given $k, n \in \mathbb{N}$ with $0 \le k \le n$ outputs a set $S \subseteq [n]$ of size |S| = k uniformly at random.

Probability?

Bernoulli 0 Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of *k* items while reading a (possibly infinite) stream.

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

```
n \leftarrow n+1

if n \le k then

\mid \text{reservoir}[n] \leftarrow x

else

\mid \text{sample } I \sim \mathcal{U}(\{1,\ldots,n\})

if I \le k then

\mid \text{reservoir}[I] \leftarrow x
```

Theorem

Assume we call $\operatorname{init}(k)$ and then observeItem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

allocate reservoir[1..
$$k$$
] $n \leftarrow 0$

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } I \sim \mathcal{U}(\{1, \dots, n\})$
if $I \le k$ **then**
 $\mid \text{ reservoir}[I] \leftarrow x$

Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \dots, x_n\}$ with n > k. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Probability?

13/14

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

allocate reservoir[1..
$$k$$
] $n \leftarrow 0$

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call $\operatorname{init}(k)$ and then observeItem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

allocate reservoir[1..
$$k$$
] $n \leftarrow 0$

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call $\operatorname{init}(k)$ and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

allocate reservoir[1..
$$k$$
] $n \leftarrow 0$

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \dots, x_n\}$ with n > k. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call $\operatorname{init}(k)$ and then observeItem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

allocate reservoir[1..
$$k$$
] $n \leftarrow 0$

Algorithm observeltem(x):

$$n \leftarrow n+1$$
if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[f] \leftarrow x$

Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \dots, x_n\}$ with n > k. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

reservoir:

 $\mathcal{U}(\{1,\ldots,4\}) \rightsquigarrow I=2$

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

allocate reservoir[1..
$$k$$
] $n \leftarrow 0$

Algorithm observeltem(x):

$$n \leftarrow n+1$$
if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call $\operatorname{init}(k)$ and then observeItem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

§ ♡ ♠ ≒ ♦ £ €

reservoir:

§ 4 •

 $\mathcal{U}(\{1,\ldots,4\}) \rightsquigarrow I = 2 \checkmark$

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

allocate reservoir[1..
$$k$$
] $n \leftarrow 0$

Algorithm observeltem(x):

$$n \leftarrow n+1$$
if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call $\operatorname{init}(k)$ and then observeItem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k]
n \leftarrow 0
```

Algorithm observeltem(x):

$$n \leftarrow n+1$$
if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \dots, x_n\}$ with n > k. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

reservoir:

 $\mathcal{U}(\{1,\ldots,5\}) \rightsquigarrow I=5$

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

allocate reservoir[1..
$$k$$
] $n \leftarrow 0$

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call $\operatorname{init}(k)$ and then observeltem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

reservoir:

§ ♡

 \Diamond

£

⊕ ♣

♣ ×

 $\mathcal{U}(\{1,\ldots,5\}) \rightsquigarrow I = 5 \times$

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k]
n \leftarrow 0
```

Algorithm observeltem(x):

$$n \leftarrow n+1$$
if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \dots, x_n\}$ with n > k. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

 $\mathcal{U}(\{1, ..., 6\})$ reservoir:

Probability? Bernoulli Rejection Inverse Transform No Replacement Uniform Geometric Reservoir Appendix

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

allocate reservoir[1..
$$k$$
] $n \leftarrow 0$

Algorithm observeltem(x):

$$n \leftarrow n+1$$
if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[f] \leftarrow x$

Theorem

Assume we call $\operatorname{init}(k)$ and then observeItem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

§ ♥ ♠ ↓ ♦ £ ⊕ ♣ >

reservoir:

 $\mathcal{U}(\{1,\ldots,6\}) \rightsquigarrow I = 1$

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call $\operatorname{init}(k)$ and then observeItem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

§ ♡ ♠ ≒ ♦ £ ⊕ ♣ >

reservoir:

$$\mathcal{U}(\{1,\ldots,6\}) \rightsquigarrow I = 1 \checkmark$$

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call $\operatorname{init}(k)$ and then observeItem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k]
n \leftarrow 0
```

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \dots, x_n\}$ with n > k. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

reservoir:

 $\mathcal{U}(\{1,\ldots,7\}) \rightsquigarrow I=3$

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call $\operatorname{init}(k)$ and then observeItem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

§ ♡ ♠ \ \ ♦ £

reservoir:

 $\mathcal{U}(\{1,\ldots,7\}) \rightsquigarrow I = 3 \checkmark$

Replacement Rese

voir Appendix

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call $\operatorname{init}(k)$ and then observeItem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k]
n \leftarrow 0
```

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \dots, x_n\}$ with n > k. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

reservoir:

 $\mathcal{U}(\{1,\ldots,8\}) \rightsquigarrow I=3$

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k]
n \leftarrow 0
```

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \dots, x_n\}$ with n > k. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

reservoir:

 $\mathcal{U}(\{1,\ldots,8\}) \rightsquigarrow I = 3 \checkmark$

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

allocate reservoir[1..
$$k$$
] $n \leftarrow 0$

Algorithm observeltem(x):

$$n \leftarrow n+1$$
if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[f] \leftarrow x$

Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \dots, x_n\}$ with n > k. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

 $\mathcal{U}(\{1, ..., 9\})$ reservoir:

> No Replacement Geometric

Appendix

13/14

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

allocate reservoir[1..
$$k$$
] $n \leftarrow 0$

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \dots, x_n\}$ with n > k. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

stream: $\{ \heartsuit \land \bot \diamondsuit \pounds \oplus \clubsuit \times \}$

reservoir:

 $\mathcal{U}(\{1,\ldots,9\}) \rightsquigarrow I=5$

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

```
allocate reservoir[1..k] n \leftarrow 0
```

Algorithm observeltem(x):

$$n \leftarrow n+1$$

if $n \le k$ **then**
 $\mid \text{ reservoir}[n] \leftarrow x$
else
 $\mid \text{ sample } l \sim \mathcal{U}(\{1, \dots, n\})$
if $l \le k$ **then**
 $\mid \text{ reservoir}[l] \leftarrow x$

Theorem

Assume we call $\operatorname{init}(k)$ and then observeItem(x) for $x \in \{x_1, \ldots, x_n\}$ with $n \ge k$. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

stream: $\S \heartsuit \spadesuit \natural \diamondsuit \pounds \oplus \clubsuit \times$

reservoir:

$$\mathcal{U}(\{1,\ldots,9\}) \rightsquigarrow I = 5 \times$$

Probability?

Bernoulli

Uniform

Rejection

Inverse Transform

Geometric

No Replacement

Reservoir

Task: Maintain a fair sample of k items while reading a (possibly infinite) stream.

Algorithm init(k):

allocate reservoir[1..
$$k$$
] $n \leftarrow 0$

Algorithm observeltem(x):

$$\begin{array}{l} n \leftarrow n+1 \\ \textbf{if } n \leq k \textbf{ then} \\ \mid \texttt{reservoir}[n] \leftarrow x \\ \textbf{else} \\ \mid \texttt{sample } I \sim \mathcal{U}(\{1,\ldots,n\}) \\ \mid \textbf{if } I \leq k \textbf{ then} \\ \mid \texttt{reservoir}[I] \leftarrow x \end{array}$$

Theorem

Assume we call init(k) and then observeltem(x) for $x \in \{x_1, \dots, x_n\}$ with n > k. Afterwards reservoir contains every subset of $\{x_1, \ldots, x_n\}$ of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

reservoir:

stream: $\{ \ \ \bigcirc \ \ \land \ \ \ \downarrow \ \ \land \ \ \pounds \ \oplus \ \ \ \ \ \ \ \ \, \ \ \, \}$

Conclusion

General Techniques

- rejection sampling
- inverse transform sampling

Distributions

- Bernoulli distribution
- uniform distribution
- geometric distribution

Other Stuff

- sampling from a set without replacement
- reservoir sampling

Probabilit	У
0	

Appendix: Possible Exam Questions I

- How can one sample $B \sim \text{Ber}(p)$? What about $X \sim \mathcal{U}(\{1, ..., n\})$? Under which assumptions?
- How does rejection sampling work in general? Under which conditions does rejection sampling lead to an efficient algorithm?
- How does inverse transform sampling work in general? Under which conditions does inverse transform sampling lead to an efficient algorithm?
- How can one sample a random point from a disk? Name two techniques and state their advantages and disadvantages.
- Given a set of size n. How can I determine a random subset of size $k \le n$ and how long does that take?
- Explain reservoir sampling. Isn't that just a slower algorithm for "sampling without replacement"?