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What is a Probability? ﬂ(IT

Karlsruhe Institute of Technology

Physical Accounts

Probabilities are persistent rates of outcomes
when observing the same (random) process over
and over again.
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https://en.wikipedia.org/wiki/Probability_interpretations

What is a Probability? ﬂ(IT

Karlsruhe Institute of Technology

Physical Accounts

Probabilities are persistent rates of outcomes
when observing the same (random) process over
and over again.

It's about objective stuff:
“The probability that the coin comes up
heads is 50%.”

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric No Replacement Reservoir Appendix
° o 0o [eJe} o o o 00

314 WS 2025/2026 Stefan Walzer: Important Random Variables and How to Sample Them ITI, Algorithm Engineering


https://en.wikipedia.org/wiki/Probability_interpretations

What is a Probability? ﬂ(IT

Karlsruhe Institute of Technology

Physical Accounts Evidential / Bayesian Accounts

Probabilities are persistent rates of outcomes Probabilities reflect how much a rational agent
when observing the same (random) process over believes in a proposition and about how much
and over again. they are willing to bet on it.

It's about objective stuff:
“The probability that the coin comes up
heads is 50%.”
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What is a Probability? ﬂ(IT

Karlsruhe Institute of Technology

Physical Accounts Evidential / Bayesian Accounts

Probabilities are persistent rates of outcomes Probabilities reflect how much a rational agent

when observing the same (random) process over believes in a proposition and about how much

and over again. they are willing to bet on it.

It's about objective stuff: It's about what | subjectively know:

“The probability that the coin comes up “The probability that it is going to rain
heads is 50%.” tomorrow is 33%.”

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric No Replacement Reservoir Appendix
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https://en.wikipedia.org/wiki/Probability_interpretations

What is a Probability? ﬂ(IT

Karlsruhe Institute of Technology

Physical Accounts Evidential / Bayesian Accounts

Probabilities are persistent rates of outcomes Probabilities reflect how much a rational agent
when observing the same (random) process over believes in a proposition and about how much
and over again. they are willing to bet on it.
It's about objective stuff: It's about what | subjectively know:
“The probability that the coin comes up “The probability that it is going to rain
heads is 50%.” tomorrow is 33%.”

See https://en.wikipedia.org/wiki/Probability_interpretations.
In this lecture, we use a naive notion.
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Bernoulli Distribution ﬂ(IT

Karlsruhe Institute of Technology

Definition: Ber(p) for p € [0, 1]

B ~ Ber(p) is a random variable with

Pr[B=1]=pand Pr[B=0]=1—p.
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Bernoulli Distribution ﬂ(IT

Karlsruhe Institute of Technology

Definition: Ber(p) for p € [0, 1]

B ~ Ber(p) is a random variable with

Pr[B=1]=pand Pr[B=0]=1—p.

Standard Assumption: Access to Coin Flips

Algorithms have access to a sequence By, By, ... ~ Ber(1/2) in independent uniformly random bits.
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Bernoulli Distribution ﬂ(IT

Karlsruhe Institute of Technology

Definition: Ber(p) for p € [0, 1]

B ~ Ber(p) is a random variable with

Pr[B=1]=pand Pr[B=0]=1—p.

Standard Assumption: Access to Coin Flips

Algorithms have access to a sequence By, By, ... ~ Ber(1/2) in independent uniformly random bits.

Exercise: Ber(1/3) from Ber(1/2)
Design an algorithm that outputs B such that B ~ Ber(1/3).
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Uniform Distribution ﬂ(IT

Definition: ¢/(D) on finite D
If |D| < oo, then X ~ U(D) is a random variable with

1
Pr[X =x] = D] forall x € D.
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Uniform Distribution ﬂ(IT

Definition: ¢/(D) on finite D
If |D| < oo, then X ~ U(D) is a random variable with

1
Pr[X = x] = — forall x € D.
Definition: ¢/(D) on infinite D

If D is infinite but has finite measure? then X ~ U/(D) is
a random variable with uniform density function on D.
Important example:

X ~U([0,1]) & Vx € [0,1] : Pr[X < x] = x.

4Formal details: Not in this lecture.
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Uniform Distribution

Definition: ¢/(D) on finite D
If |D| < oo, then X ~ U(D) is a random variable with

1
Pr[X = x] = — forall x € D.
Definition: ¢/(D) on infinite D

If D is infinite but has finite measure? then X ~ U/(D) is
a random variable with uniform density function on D.
Important example:

X ~U([0,1]) & Vx € [0,1] : Pr[X < x] = x.

4Formal details: Not in this lecture.

Probability? Uniform
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Inverse Transform
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Ui

Karlsruhe Institute of Technology

Standard Assumption

Algorithms have access to Xi, Xz, ... ~ U([0, 1]).
In practice: Initialise the significand? of floating
point number with random bits.

4Deutsch: Mantisse.

Geometric No Replacement Reservoir Appendix
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Uniform Distribution ﬂ(IT

Definition: ¢/(D) on finite D
If |D| < oo, then X ~ U(D) is a random variable with

Standard Assumption
Algorithms have access to Xi, Xz, ... ~ U([0, 1]).

Pr[X =x] = 1 forall x € D.

|D| In practice: Initialise the significand? of floating
point number with random bits.
Definition: ¢/(D) on infinite D aDeutsch: Mantisse.
If D is infinite but has finite measure? then X ~ U/(D) is
a random variable with uniform density function on D. Exercise: L{({1 ooy n}) from U([O, 1])

Important example:

Design an algorithm that outputs X such that
X~U({1,...,n}).

X ~U([0,1]) & Vx € [0,1] : Pr[X < x] = x.

4Formal details: Not in this lecture.
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Uniform Distribution on a Disc AT

Karlsruhe Institute of Technology

Sample P ~ U(D) for D = {(x,y) € R? | x? +y? < 1}.
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Uniform Distribution on a Disc AT

Karlsruhe Institute of Technology

Sample P ~ U(D) for D = {(x,y) € R? | x? +y? < 1}.

Flawed Attempt

sample ® ~ U([0, 27])
sample R ~ U([0, 1])
return (R - cos ®, R - sin ®)
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Uniform Distribution on a Disc AT

Karlsruhe Institute of Technology

Sample P ~ U(D) for D = {(x,y) € R? | x? +y? < 1}.

Flawed Attempt

sample ® ~ U([0, 27])
sample R ~ U([0, 1])
return (R - cos ®, R - sin ®)

No Replacement Reservoir Appendix
o o 00
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Uniform Distribution on a Disc AT

Karlsruhe Institute of Technology

Sample P ~ U(D) for D = {(x,y) € R? | x? +y? < 1}.

Flawed Attempt

sample ® ~ U([0, 27])
sample R ~ U([0, 1])
return (R - cos ®, R - sin ®)

Issue

Disc of half the radius is hit 50% of the time
but makes up only 1/4 of the areal!
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Uniform Distribution on a Disc with Rejection Sampling ﬂ(l'l'

Karlsruhe Institute of Technology

Sample P ~ U(D) for D = {(x,y) € R? | x2 + y? < 1}.
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Uniform Distribution on a Disc with Rejection Sampling ﬂ(l'l'

Karlsruhe Institute of Technology

Sample P ~ U(D) for D = {(x,y) € R? | x2 + y? < 1}.

Solution with Rejection Sampling

repeat

sample X ~ U([-1,1])
sample Y ~ U([—1,1])
until X% + Y2 <1

return (X, Y)

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric No Replacement Reservoir Appendix
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Uniform Distribution on a Disc with Rejection Sampling ﬂ(l'l'

Karlsruhe Institute of Technology

Sample P ~ U(D) for D = {(x,y) € R? | x2 + y? < 1}.

Solution with Rejection Sampling

repeat

sample X ~ U([-1,1])
sample Y ~ U([—1,1])
until X% + Y2 <1

return (X, Y)

® |dea: P ~ U([—1,1]?) conditioned on P € D is uniform on D.
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Uniform Distribution on a Disc with Rejection Sampling

Sample P ~ U(D) for D = {(x,y) € R? | x2 + y? < 1}.

Solution with Rejection Sampling

repeat

sample X ~ U([—1,1])
sample Y ~ U([—1,1])
until X% + Y2 <1

return (X, Y)

® |dea: P ~ U([—1,1]?) conditioned on P € D is uniform on D.
® Each sample is accepted with probability /4.
® Expected number of rounds is 1/(7w/4) = O(1).

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric No Replacement
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Uniform Distribution on a Disc with Rejection Sampling ﬂ(l'l'

Sample P ~ U(D) for D = {(x,y) € R? | x2 + y? < 1}.

Karlsruhe Institute of Technology

Solution with Rejection Sampling

repeat

sample X ~ U([—1,1])
sample Y ~ U([—1,1])
until X% + Y2 <1

return (X, Y)

® |dea: P ~ U([—1,1]?) conditioned on P € D is uniform on D.
® Each sample is accepted with probability /4.
® Expected number of rounds is 1/(7w/4) = O(1).

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric
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Spoiler alert: We'll get
worst-case constant time with
inverse transform sampling later.
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Rejection Sampling in General Discrete Distributions ﬂ(IT

Karlsruhe Institute of Technology

Exercise

Let Dy and D- be distributions on a finite? set D. Assume
We can sample in constant time from D;.
There exists C > 0 such that for any x € D we have

XB%Z[X x]<C XErD[X X] EDD]H]
1 2 3

Design an algorithm that generates a sample from D in expected
time O(C).

sl

4 5

4This can be generalised.
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Inverse Transform Sampling

@ Let D be a distribution on R.
—e.g. D =N(0,1)

Probability? Bernoulli
o o

914
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Uniform Rejection Inverse Transform
0o oo

Stefan Walzer: Important Random Variables and How to Sample Them

KIT

Karlsruhe Institute of Technology

density function f(x) of (0, 1)

Geometric No Replacement Reservoir Appendix
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Inverse Transform Sampling A“(IT

Karlsruhe Institute of Technology

density function f(x) of (0, 1)

® Let D be a distribution on R.
—e.g. D =N(0,1)
® Let X ~ D and Fx(x) = Pr[X < x].
— Fx is the cumulative distribution function of X
— the CDF of the normal distribution is called ® — T X
-3-2-1 1 2 3
CDF &(x) of (0, 1)
1 f
j
+ i + + + + X
-3-2-1 1 2 3
Probability? Bernoulli Uniform Rejection Inverse Transform Geometric No Replacement Reservoir Appendix
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Inverse Transform Sampling ﬂ(l'l'

density function f(x) of (0, 1)

® Let D be a distribution on R.
—e.g. D =N(0,1)
® Let X ~ D and Fx(x) = Pr[X < x].
— Fx is the cumulative distribution function of X
— the CDF of the normal distribution is called ® — T X
1 _ 3-2-1 1 2 3
® et F, '(u) :=inf{x € R| Fx(x) > u}.
— ordinary inverse for strictly monotone Fx CDF &(x) of N(0,1)
1 [
j
+ ; - >~—to— ; X
-3-2-1 1 2 3
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Inverse Transform Sampling ﬂ(IT

Karlsruhe Institute of Technology

density function f(x) of (0, 1)

a et D be a distribution on R.
—e.g. D =N(0,1)
® Let X ~ D and Fx(x) = Pr[X < x].
— Fx is the cumulative distribution function of X
— the CDF of the normal distribution is called ¢ = L X
1 . -3-2-1 1 2 3
® et F, '(u) :=inf{x € R| Fx(x) > u}.
— ordinary inverse for strictly monotone Fyx CDF &(x) of N(0,1)
1
Theorem (Inverse Transform Sampling) 1
If U~ 1([0,1]) then F'(U) £ X, i.e. Fy'(U) ~ D. 0.5
(“%” means: “has the same distribution as”) %
u i * *—o + + X
-3-2-1 1 2 3
Fo’robabiHIW %emoul\i Lénoiform ggjeclion Inverse Transform Geometric No Replacement Reservoir Appendix

9/14 WS 2025/2026 Stefan Walzer: Important Random Variables and How to Sample Them ITI, Algorithm Engineering



Inverse Transform Sampling ﬂ(IT

Karlsruhe Institute of Technology

density function f(x) of (0, 1)

@ Let D be a distribution on R.
—e.g. D =N(0,1)
® Let X ~ D and Fx(x) = Pr[X < x].
— Fx is the cumulative distribution function of X
— the CDF of the normal distribution is called ¢ = L X
1 . -3-2-1 1 2 3
® et F, '(u) :=inf{x € R| Fx(x) > u}.
< ordinary inverse for strictly monotone Fy CDF &(x) of N(0,1)
1
Theorem (Inverse Transform Sampling) 1
If U~ 1([0,1]) then F'(U) £ X, i.e. Fy'(U) ~ D. 0.5
(“i” means: “has the same distribution as”) %
u i * *—o + + X
Reason: Pr[Fy ' (U) < x] = Pr[U < Fx(x)] = Fx(x). 3.2 _1 1 2 3
Fo’robabiHIW EOBernouIH Lénoiform ggjeclion Inverse Transform geomelric No Replacement Reservoir Appendix
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Uniform Distribution on a Disc with Inverse Transform Sampling ﬂ(IT

Karlsruhe Institute of Technology

Task
Sample P ~ U(D) for D = {(x,y) € R? | x> + y? < 1}.
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Uniform Distribution on a Disc with Inverse Transform Sampling

Task
Sample P ~ U(D) for D = {(x,y) € R? | x> + y? < 1}.

If (x,y) ~ U(D) then R = /X2 + y? satisfies

Fi(r) = PR < 1] = r’m/m = 1 hence " (u) = /&

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric No Replacement
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Uniform Distribution on a Disc with Inverse Transform Sampling ﬂ(IT

Karlsruhe Institute of Technology

Task
Sample P ~ U(D) for D = {(x,y) € R? | x> + y? < 1}.

Preparation

If (x,y) ~ U(D) then R = /X2 + y? satisfies

Fi(r) = PR < 1] = r’m/m = 1 hence " (u) = /&

Solution with Inverse Transform Sampling

sample ¢ ~ U([0, 27])
sample U ~ U([0, 1])

R+ VU

return (R - cos ®, R - sin ®)
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Geometric Distribution ﬂ(IT

Karlsruhe Institute of Technology

Definition: G ~ Geomy(p) and G’ ~ Geomy(p)

Letp € (0,1] and By, Bs, ... ~ Ber(p).
Then we define the geometric random variables

G:=min{ieN|B =1}
< number of Ber(p) trials until (and including) the first success
G:=G-1

< number of Ber(p) failures before the first success

We write G ~ Geom+(p) and G’ ~ Geomg(p).?

4In the literature Geom is used inconsistently.

Rejection Inverse Transform Geometric No Replacement Reservoir Appendix
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Geometric Distribution ﬂ(IT

Karlsruhe Institute of Technology

Sampling G ~ Geom;(p) in time O(G)

Definition: G ~ Geomy(p) and G’ ~ Geomy(p)

Letp € (0,1] and By, Bs, ... ~ Ber(p). :':e(:lt
Then we define the geometric random variables peat
i i+1
G:=min{ieN|B =1} sample X ~ Ber(p)
until X =1
< number of Ber(p) trials until (and including) the first success .
return /

G =G-1

< number of Ber(p) failures before the first success

Quite bad: E[G] = 1/p might be large.

We write G ~ Geom+(p) and G’ ~ Geomg(p).?

4In the literature Geom is used inconsistently.
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Geometric Distribution

Definition: G ~ Geomy(p) and G’ ~ Geomy(p)

Letp € (0,1] and By, Bs, ... ~ Ber(p).
Then we define the geometric random variables
G:=min{ieN|B =1}
< number of Ber(p) trials until (and including) the first success
G =G-1

< number of Ber(p) failures before the first success

We write G ~ Geom+(p) and G’ ~ Geomg(p).?

4In the literature Geom is used inconsistently.

Probability? Bernoulli Uniform Rejection Inverse Transform
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Karlsruhe Institute of Technology

Sampling G ~ Geom;(p) in time O(G)

i+ 0
repeat
[ i+1
sample X ~ Ber(p)
until X =1
return j

Quite bad: E[G] = 1/p might be large.

Exercise

Use inverse transform sampling to sample
G ~ Geom;y(p) in time O(1).

Geometric No Replacement Reservoir Appendix
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Sampling Without Replacement

Exercise

Design an algorithm that, given k, n € N with

0 < k < noutputs a set S C [n] of size |S| = k
uniformly at random.

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric No Replacement
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Reservoir Sampling ﬂ(IT

Karlsruhe Institute of Technology

Task: Maintain a fair sample of k items while
reading a (possibly infinite) stream.
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o o 0o [e]e} o o ° 00

13/14 WS 2025/2026 Stefan Walzer: Important Random Variables and How to Sample Them ITI, Algorithm Engineering



Reservoir Sampling ﬂ(IT

Karlsruhe Institute of Technology

Task: Maintain a fair sample of k items while
reading a (possibly infinite) stream. Theorem

Algorithm init(k): Assume we call init(k) and then observeltem(x) for
allocate reservoir[1..k]

x € {x1,...,X,} with n > k. Afterwards reservoir contains
L n<0 every subset of {xi, ..., x,} of size k with equal probability.
Alggr:h:l—ic_)t;serveltem(x). Proof by induction (not here).
if n < k then
| reservoir[n] < x

else

sample / ~ U({1,...,n})

if | < k then

| reservoir[l] « x

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric No Replacement Reservoir Appendix
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Reservoir Sampling

Task: Maintain a fair sample of k items while
reading a (possibly infinite) stream.
Algorithm init(k):

allocate reservoir[1..k]

n+2o0

Algorithm observeltem(x):
n<n+1
if n < k then
| reservoir[n] < x
else
sample | ~U({1,...,n})
if | < k then
| reservoir[l] « x

Ui

Karlsruhe Institute of Technology

Theorem

Assume we call init(k) and then observeltem(x) for
x € {x1,...,X,} with n > k. Afterwards reservoir contains
every subset of {xi, ..., X,} of size k with equal probability.

Proof by induction (not here).

Example (k = 3)
1
stream: § O & § & £ D & X

reservoir: \:‘:‘:‘

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric No Replacement Reservoir Appendix
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Reservoir Sampling

Task: Maintain a fair sample of k items while
reading a (possibly infinite) stream.
Algorithm init(k):

allocate reservoir[1..k]

n+2o0

Algorithm observeltem(x):
n<n+1
if n < k then
| reservoir[n] < x
else
sample | ~U({1,...,n})
if | < k then
| reservoir[l] « x

Ui

Karlsruhe Institute of Technology

Theorem

Assume we call init(k) and then observeltem(x) for
x € {x1,...,X,} with n > k. Afterwards reservoir contains
every subset of {xi, ..., X,} of size k with equal probability.

Proof by induction (not here).

Example (k = 3)
1
stream: § O & § & £ D & X

reservoir: ..

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric No Replacement Reservoir Appendix
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Reservoir Sampling

Task: Maintain a fair sample of k items while
reading a (possibly infinite) stream.
Algorithm init(k):

allocate reservoir[1..k]

n+2o0

Algorithm observeltem(x):
n<n+1
if n < k then
| reservoir[n] < x
else
sample | ~U({1,...,n})
if | < k then
| reservoir[l] « x

Ui

Karlsruhe Institute of Technology

Theorem

Assume we call init(k) and then observeltem(x) for
x € {x1,...,X,} with n > k. Afterwards reservoir contains
every subset of {xi, ..., X,} of size k with equal probability.

Proof by induction (not here).

Example (k = 3)

1
stream: § O & f O £ O & X

reservoir: ﬂ.

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric No Replacement Reservoir Appendix
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Conclusion ﬂ(l'l'

Karlsruhe Institute of Technology

General Techniques

® rejection sampling

® inverse transform sampling

Distributions
& Bernoulli distribution

® uniform distribution
® geometric distribution

Other Stuff

® sampling from a set without replacement

® reservoir sampling

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric No Replacement Reservoir Appendix
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Appendix: Possible Exam Questions | A\‘(IT

Karlsruhe Institute of Technology

® How can one sample B ~ Ber(p)? What about X ~ ({1, ..., n})? Under which assumptions?

® How does rejection sampling work in general? Under which conditions does rejection sampling lead to an
efficient algorithm?

® How does inverse transform sampling work in general? Under which conditions does inverse transform
sampling lead to an efficient algorithm?

® How can one sample a random point from a disk? Name two techniques and state their advantages and
disadvantages.

& Given a set of size n. How can | determine a random subset of size k < n and how long does that take?

® Explain reservoir sampling. Isn’t that just a slower algorithm for “sampling without replacement”?

Probability? Bernoulli Uniform Rejection Inverse Transform Geometric No Replacement Reservoir Appendix
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