

Probability and Computing – Streaming

Stefan Walzer | WS 2025/2026



Content

- 1. Definition: What is a Streaming Algorithm?
- **2. Morris' Algorithm for** $F_1 = m$
- **3.** The CVM Algorithm for $F_0 = |\{a_1, \dots, a_m\}|$
- 4. Conclusion

What is a Streaming Algorithm?

- looong input data stream $(a_1, ..., a_m) \in [n]^m$ can only be read *once* from left to right
- goal: approximate some value $F = F(a_1, \ldots, a_m)$ with small relative error ε and failure probability δ .

 \hookrightarrow streaming algorithms are approximation algorithms

• challenge: use less *space* than exact algorithm (in particular: cannot store (a_1, \ldots, a_m)).

 \hookrightarrow don't care about running time

Formally, a streaming algorithm is given by three algorithms init, update and result used as follows:

$$Z \leftarrow \text{init()}$$

for i = 1 to m do

$$Z \leftarrow \text{update}(Z, a_i)$$

return result(Z)

Its space complexity is the space required for Z.

Definition: What is a Streaming Algorithm?

Morris' Algorithm for
$$F_1 = m$$

Today's Motivating Examples

- Router approximately counts traffic over each connection.
 - \hookrightarrow maybe: detect anomalies related to DDoS
- Website approximately counts number of unique users visiting a resource.

Today's Formal Results

- A Approximate $F_1(a_1, ..., a_m) = m$ in expected space $\frac{1}{\varepsilon^2 \delta} \log \log m$.
- Approximate $F_0(a_1, \ldots, a_m) = |\{a_1, \ldots, a_m\}|$ in expected space $\frac{1}{c^2} \log(n) \cdot \log(m/\delta)$.

The CVM Algorithm for
$$F_0 = |\{a_1 \ldots, a_m\}|$$

Content

- **2.** Morris' Algorithm for $F_1 = m$

Attempt I: Naive Counting

Approximate Counting

• stream
$$(a_1, \ldots, a_m)$$

Naive Counting

Algorithm init:

 $Z \leftarrow 0$ return Z

Algorithm update(Z, a):

$$Z \leftarrow Z + 1$$

return Z

Algorithm result(Z):

return Z

Observations on Naive counting

- No errors ($\varepsilon = \delta = 0$).
- Requires $\lceil \log(m+1) \rceil$ bits of memory.
- No deterministic algorithm can use less space
 - Would have to "reuse" a state Z.
 - Is then trapped in an infinite loop.
 - Result arbitrarily far off if m large enough.

Definition: What is a Streaming Algorithm?

Morris' Algorithm for $F_1 = m$ 000000

The CVM Algorithm for $F_0 = |\{a_1, \ldots, a_m\}|$

Attempt II: Lossy Counting

Approximate Counting

stream
$$(a_1, \ldots, a_m)$$

want $F_1 = m$

Lossy Counting, parameter p

Algorithm init:

 $Z \leftarrow 0$ return Z

Algorithm update(Z, a):

with probability p do

 $Z \leftarrow Z + 1$

return 7

Algorithm result(Z):

return Z/p

Analysis (Exercise)

For any $p \in (0, 1]$ we have

- \blacksquare $\mathbb{E}[\text{result}] = m$
- $\Pr[|\operatorname{result} m| \le \varepsilon m] \ge 1 2 \exp(-\varepsilon^2 pm/3)$.
- $\mathbb{E}[\text{space}] \leq \log_2(1 + mp) + 1$.

Corollary

By choosing $p = \frac{3}{\epsilon^2 m} \ln(2/\delta)$ we get

 $\Pr[\text{fail}] \leq \delta \text{ and } \mathbb{E}[\text{space}] \leq \mathcal{O}(\log(\frac{1}{\epsilon}) + \log\log(1/\delta)).$

Serious Objection

Correctly choosing p requires already knowing m.

(or at least the order of magnitude of m)

Definition: What is a Streaming Algorithm?

Morris' Algorithm for $F_1 = m$ 000000

The CVM Algorithm for $F_0 = |\{a_1, \ldots, a_m\}|$

Attempt III: Morris' Algorithm

Approximate Counting

• stream
$$(a_1, \ldots, a_m)$$

• want $F_1 = m$

Morris' Algorithm

Algorithm init:

 $Z \leftarrow 0$ return 7

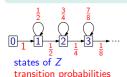
Algorithm update(Z, a):

with probability
$$2^{-Z}$$
 do $| Z \leftarrow Z + 1$

return Z

Algorithm result(Z):

return $2^Z - 1$



Definition: What is a Streaming Algorithm?

Lemma: Morris' Algorithm is an *Unbiased Estimator*

 $\mathbb{E}[\text{result}] = m$.

Proof

Let Z_i for $i \in [m]$ denote the value of Z after i updates. Consider the expected change to 2^{Z} in one step...

• ... conditioned on a current value $j \in \mathbb{N}$:

$$\mathbb{E}[0Z_{i+1} \quad 0Z_{i+1} \quad z_{i+1}] = 0$$

$$\mathbb{E}[2^{Z_{i+1}} - 2^{Z_i} \mid Z_i = j] = 2^{-j} \cdot (2^{j+1} - 2^j) + (1 - 2^{-j}) \cdot \underbrace{(2^j - 2^j)}_{=0} = 2 - 1 = 1.$$
unconditionally:

... unconditionally:

$$\mathbb{E}[2^{Z_{i+1}} - 2^{Z_i}] \stackrel{\text{LTE}}{=} \sum_{j \ge 0} \Pr[Z_i = j] \cdot \underbrace{\mathbb{E}[2^{Z_{i+1}} - 2^{Z_i} \mid Z_i = j]}_{=1} = \sum_{j \ge 0} \Pr[Z_i = j] = 1.$$

Hence:

$$\mathbb{E}[\text{result}] = \mathbb{E}[2^{Z_m} - 1] = \mathbb{E}[2^{Z_m} - 2^{Z_0}] = \mathbb{E}[\sum_{i=1}^m 2^{Z_{i+1}} - 2^{Z_i}] = \sum_{i=1}^m \mathbb{E}[2^{Z_{i+1}} - 2^{Z_i}] = m.$$

Morris' Algorithm for $F_1 = m$ 0000000

The CVM Algorithm for $F_0 = |\{a_1, \ldots, a_m\}|$

Attempt III: Morris' Algorithm

stream
$$(a_1, \ldots, a_m)$$

want $F_1 = m$

Morris' Algorithm

Algorithm init:

$$Z \leftarrow 0$$

return Z

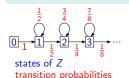
Algorithm update(Z, a):

with probability
$$2^{-Z}$$
 do $| Z \leftarrow Z + 1$

return Z

Algorithm result(Z):

return
$$2^Z - 1$$



Definition: What is a Streaming Algorithm?

Lemma 1: Worryingly large Variance

$$Var(2^{Z_i}) = \frac{j^2 - i}{2} = \Theta(i^2).$$

Lemma 2

$$\mathbb{E}[2^{2Z_i}] = \tfrac{3i(i+1)}{2} + 1.$$

Proof of Lemma 1 using Lemma 2.

$$\text{Var}(2^{Z_i}) = \mathbb{E}[2^{2Z_i}] - \mathbb{E}[2^{Z_i}]^2 \stackrel{\text{Lem. 2}}{=} \frac{3i(i+1)}{2} + 1 - (i+1)^2 = \frac{3}{2}i^2 - i^2 \pm \mathcal{O}(i) = \Theta(i^2)$$

Morris' Algorithm for $F_1 = m$

The CVM Algorithm for $F_0 = |\{a_1 \dots, a_m\}|$

Conclusion

Attempt III: Morris' Algorithm

Approximate Counting

stream (a_1, \ldots, a_m) want $F_1 = m$

Morris' Algorithm

Algorithm init:

$$Z \leftarrow 0$$

return Z

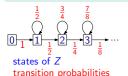
Algorithm update(Z, a):

with probability
$$2^{-Z}$$
 do $| Z \leftarrow Z + 1$

return Z

Algorithm result(Z):

return $2^Z - 1$



Definition: What is a Streaming Algorithm?

Lemma 1: Worryingly large Variance

$$\operatorname{Var}(2^{Z_i}) = \frac{j^2 - i}{2} = \Theta(i^2).$$

Lemma 2

$$\mathbb{E}[2^{2Z_i}] = \frac{3i(i+1)}{2} + 1.$$

Proof of Lemma 2.

For $i \in \{0, 1\}$ \checkmark . Let now $i \ge 1$. Note $\Pr[Z_{i+1} = 0] = \Pr[Z_i = 0] = 0$.

$$\begin{split} \mathbb{E}[2^{2Z_{i+1}}] &= \sum_{j \geq 1} 2^{2j} \Pr[Z_{i+1} = j] = \sum_{j \geq 1} 2^{2j} (\Pr[Z_i = j - 1] \cdot 2^{-j+1} + \Pr[Z_i = j] \cdot (1 - 2^{-j})) \\ &= \sum_{j \geq 1} 2^{j+1} \Pr[Z_i = j - 1] + \sum_{j \geq 1} 2^{2j} \Pr[Z_i = j] - \sum_{j \geq 1} 2^{j} \Pr[Z_i = j] \\ &= 4 \sum_{j \geq 0} 2^{j} \Pr[Z_i = j] + \sum_{j \geq 0} 2^{2j} \Pr[Z_i = j] - \sum_{j \geq 0} 2^{j} \Pr[Z_i = j] \\ &= 4 \mathbb{E}[2^{Z_i}] + \mathbb{E}[2^{2Z_i}] - \mathbb{E}[2^{Z_i}] = 3\mathbb{E}[2^{Z_i}] + \mathbb{E}[2^{2Z_i}] = 3(i+1) + \mathbb{E}[2^{2Z_i}] \\ &\stackrel{\text{lod.}}{=} 3(i+1) + \frac{3i(i+1)}{2} + 1 = \frac{3(i+2)(i+1)}{2} + 1. \quad \Box \end{split}$$

Morris' Algorithm for $F_1 = m$

The CVM Algorithm for $F_0 = |\{a_1 \ldots, a_m\}|$

Conclusion 000

Space

Expected Space

$$\begin{split} \mathbb{E}[\text{space}] &\leq \mathbb{E}[\lceil \log_2(1+Z_m) \rceil] \leq 1 + \mathbb{E}[\log_2(1+Z_m)] = 1 + \mathbb{E}[\log_2(1+\log_2(2^{Z_m}))] \\ &\stackrel{(\star)}{\leq} 1 + \log_2(1+\log_2(\mathbb{E}[2^{Z_m}])) = 1 + \log_2(1+\log_2(m+1)) = \Theta(\log\log m). \end{split}$$

 (\star) uses Jensen's inequality that you'll prove as an exercise.

Interim Conclusion: Morris is not good enough *yet*

- $\mathbb{E}[\text{result}] = m \checkmark$ unbiased estimator
- $\mathbb{E}[\text{space}] = \mathcal{O}(\log \log m) \checkmark$ highly space efficient
- $Var(result) = \Theta(m^2) X$
 - Standarddeviation $\Theta(m)$
 - → typically right order of magnitude, but not better.

Definition: What is a Streaming Algorithm?

Morris' Algorithm for $F_1 = m$ 0000000

The CVM Algorithm for $F_0 = |\{a_1, \ldots, a_m\}|$

Conclusion

Morris⁺: Use many copies of Morris' Algorithm

Theorem

Consider a streaming algorithm that maintains a sequence $Z = (Z_1, \dots, Z_s)$ of independent Morris-counters and returns $\operatorname{result}(Z) := \frac{\operatorname{result}(Z_1) + \cdots + \operatorname{result}(Z_s)}{s}$. For $s = \frac{1}{s^2 \delta}$ we obtain

- $\mathbb{E}[\operatorname{result}(Z)] = m \text{ and } \mathbb{E}[\operatorname{space}] = \mathcal{O}(\frac{1}{\varepsilon^2 \lambda} \log \log m)$
- $\Pr[|\operatorname{result}(Z) m| < \varepsilon m] = 1 \mathcal{O}(\delta)$.

Reminder on Variance

If X, Y are independent random variables and s > 0 then

- $extstyle Var(sX) = s^2 Var(X)$
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)$

Proof of Concentration using Chebyshev

$$\begin{aligned} \text{Var}(\text{result}(Z)) &= \text{Var}(\frac{1}{s}\sum_{i=1}^{s} \text{result}(Z_{i})) = \frac{1}{s^{2}} \text{Var}(\sum_{i=1}^{s} \text{result}(Z_{i})) \\ &= \frac{1}{s^{2}}\sum_{i=1}^{s} \text{Var}(\text{result}(Z_{i})) = \frac{s}{s^{2}} \text{Var}(\text{result}(Z_{1})) = \frac{1}{s} \Theta(m^{2}) = \Theta(m^{2}/s). \end{aligned}$$

$$(m^2) = \Theta(m^2/s).$$

$$\Pr[\mathsf{fail}] = \Pr[|\mathsf{result}(Z) - m| > \varepsilon m] = \Pr[|\mathsf{result}(Z) - \mathbb{E}[\mathsf{result}(Z)]| > \varepsilon m] \le \frac{\mathsf{Var}(\mathsf{result}(Z))}{\varepsilon^2 m^2} = \Theta(1/(\varepsilon^2 s)) = \Theta(\delta). \quad \Box$$

Chebyschev:

 $\Pr[X - \mathbb{E}[X] > c] < \frac{\operatorname{Var}(X)}{2}$

Definition: What is a Streaming Algorithm?

Morris' Algorithm for $F_1 = m$ 0000000

The CVM Algorithm for $F_0 = |\{a_1, \ldots, a_m\}|$

Morris*: Use a different base in Morris' Algorithm

Morris with base $1 < \rho \ll 2$

- In every update: increment Z with probability ρ^{-Z} .
- In the end: return $\frac{\rho^2-1}{\rho-1}$.

Modified Analysis (There is a bug in here, I'll fix it till the next lecture)

Show similarly to before:

- \blacksquare $\mathbb{E}[\text{result}] = m$
- Var(result) = $\Theta(\frac{m^2}{n-1})$

Choosing $\rho = 1 + \varepsilon^2 \delta$ gives:

- $\Pr[|\operatorname{result} m| > \varepsilon m] = \mathcal{O}(\delta).$
- $\mathbb{E}[\operatorname{space}] = \mathcal{O}(\log\log m + \log\frac{1}{\delta_c}).$

Definition: What is a Streaming Algorithm?

Morris' Algorithm for $F_1 = m$ 000000

The CVM Algorithm for $F_0 = |\{a_1, \ldots, a_m\}|$

Content

- 1. Definition: What is a Streaming Algorithm?
- **2.** Morris' Algorithm for $F_1 = m$
- 3. The CVM Algorithm for $F_0 = |\{a_1, \dots, a_m\}|$
- 4. Conclusion

History

Counting Distinct Elements

- stream $(a_1, \ldots, a_m) \in [n]^m$
- want $F_0 = |\{a_1, \dots, a_m\}|$

Remark: CVM is not well-known

Popular line of algorithms for F_0 by Philippe Flajolet et al:

- 1984: Flajolet-Martin (deprecated)
 - → https://en.wikipedia.org/wiki/Flajolet-Martin_algorithm
- 2003: LogLog (deprecated)
- 2007: HyperLogLog
 - → https://en.wikipedia.org/wiki/HyperLogLog

The CVM-Algorithm

- 2022: European Symposium on Simplicity in Algorithms 2022
- is a bit worse than HyperLogLog
- is easier to analyse than HyperLogLog

Next: We develop CVM in three steps.

Definition: What is a Streaming Algorithm?

Morris' Algorithm for $F_1 = m$

The CVM Algorithm for $F_0 = |\{a_1, \ldots, a_m\}|$

Conclusion

Attempt I: Naively storing the set

Counting Distinct Elements

• stream
$$(a_1, ..., a_m) \in [n]^m$$

• want $F_0 = |\{a_1, ..., a_m\}|$

Naive Storing

Algorithm init:

 $\mathbf{7} \leftarrow \emptyset$ return Z

Algorithm update(Z, a):

 $Z \leftarrow Z \cup \{a\}$ return Z

Algorithm result(Z):

return |Z|

Observation

Naively storing the set requires $\Omega(F_0 \cdot \log n)$ bits.

Definition: What is a Streaming Algorithm?

Morris' Algorithm for $F_1 = m$

The CVM Algorithm for $F_0 = |\{a_1, \dots, a_m\}|$ 00000

Conclusion

Attempt II: Storing the set lossily

Counting Distinct Elements

■ stream
$$(a_1, ..., a_m) \in [n]^m$$

■ want $F_0 = |\{a_1, ..., a_m\}|$

LossyStore, parameter p

Algorithm init:

$$Z \leftarrow \emptyset$$
 return Z

Algorithm update(Z, a):

$$Z \leftarrow Z \setminus \{a\}$$
 with probability p do $\ \ \ \ Z \leftarrow Z \cup \{a\}$

return Z

Algorithm result(Z):

| **return** |*Z*|/p;

Chernoff for $X \sim \text{Bin}(n, p)$

$$\Pr[|X - \mathbb{E}[X]| > \varepsilon \mathbb{E}[X]] \le 2 \exp(-\varepsilon^2 \mathbb{E}[X]/3).$$

Analysis

Let Z_0, \ldots, Z_m be the states of Z over time. Invariant: Each $a \in \{a_1, \ldots, a_i\}$ is in Z_i independently with probability p. Hence $|Z_m| \sim \text{Bin}(F_0, p)$.

- \blacksquare $\mathbb{E}[\text{result}] = \mathbb{E}[|Z_m|/p] = \mathbb{E}[|Z_m|]/p = F_0p/p = F_0.$ \hookrightarrow result is *unbiased estimator* of F_0 .
- $\Pr[\text{fail}] = \Pr[|\text{result} F_0| > \varepsilon F_0] = \Pr[||Z_m|/p F_0| > \varepsilon F_0]$ $= \Pr[||Z_m| - pF_0| > \varepsilon pF_0] = \Pr[||Z_m| - \mathbb{E}[|Z_m|]| > \varepsilon \mathbb{E}[|Z_m|]]$ Chern. $\leq 2 \exp(-\varepsilon^2 \mathbb{E}[|Z_m|]/3) = 2 \exp(-\varepsilon^2 p F_0/3).$ \hookrightarrow choose $p = p_{\delta} := \frac{3 \log(2/\delta)}{c^2 E}$ for $\Pr[\text{fail}] \leq \delta$.
- **Expected space** *in the end* for $p = p_{\delta}$ ($\triangle \neq$ peak space consumption) $\mathbb{E}[|Z_m| \cdot \mathcal{O}(\log n)] = F_0 p_\delta \cdot \mathcal{O}(\log n) = \mathcal{O}(\frac{\log(1/\delta)}{2} \log n).$

Serious Objection: Need to know F_0 to choose p

- for $p \gg p_{\delta}$: space is wasted
- for $p \ll p_{\delta}$: failure becomes likely

Definition: What is a Streaming Algorithm?

Morris' Algorithm for $F_1 = m$

The CVM Algorithm for $F_0 = |\{a_1, \ldots, a_m\}|$ 00000

Counting Distinct Elements

Attempt III: Adjust lossiness dynamically

• stream $(a_1,\ldots,a_m)\in [n]^m$ • want $F_0 = |\{a_1, \dots, a_m\}|$

CVM, parameter T

```
Algorithm init:
    \mathbf{7} \leftarrow \boldsymbol{\alpha}
    P ← 1
   return (P, Z)
Algorithm update((P, Z), a):
    Z \leftarrow Z \setminus \{a\}
    with probability P do
      Z \leftarrow Z \cup \{a\}
    while |Z| > T do // shrink
        Z' \leftarrow \varnothing
         for a \in \mathcal{I} do
             with probability 1/2 do
            L Z' \leftarrow Z' \cup \{a\}
      (Z,P) \leftarrow (Z',P/2)
   return (P, Z)
```

CVM behaves like LossyStore with dynamic p

```
Consider A^{(p)} := \text{LossyStore}(p) with states Z_0^{(p)}, \ldots, Z_m^{(p)} for p \in \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\}.
Let (P_0, Z_0^{(CVM)}), \dots, (P_m, Z_m^{(CVM)}) be the state of CVM.
  A^{(1)}: Z_0^{(1)} \longrightarrow Z_1^{(1)} \longrightarrow Z_2^{(1)} \longrightarrow Z_3^{(1)} \longrightarrow \dots \longrightarrow Z_m^{(1)}
                                                                                                                                            Intuition: The path of CVM:
 A^{(1/2)}\colon Z_0^{(1/2)} \xrightarrow{\bigcup ||} Z_1^{(1/2)} \xrightarrow{\bigcup ||} Z_2^{(1/2)} \xrightarrow{\bigcup ||} Z_3^{(1/2)} \xrightarrow{\bigoplus} \dots \xrightarrow{\bigoplus Z_m^{(1/2)}}
                                                                                                                                           (x, y) \leftarrow (0, 0) // \text{top left}
                                                                                                                                           for i = 1 to m do // m updates
                                                                                                                                                x \leftarrow x + 1 // \text{ ao right}
 A^{(1/4)}\colon Z_0^{(1/4)} \xrightarrow{\bigcup | \bigcup |} Z_1^{(1/4)} \xrightarrow{\bigoplus} Z_2^{(1/4)} \xrightarrow{\bigoplus} Z_3^{(1/4)} \xrightarrow{\bigoplus} \dots \xrightarrow{\bigoplus} Z_m^{(1/4)}
                                                                                                                                                while |Z_x^{(2^{-y})}| \geq T do
 v \leftarrow v + 1 // go down
                                                                                                                                           final state is Z_m^{(2^{-\gamma})}
```

Coupling between executions of $A^{(p)}$ and CVM:

- A^(p/2) uses coin tosses of A^(p) and one more. " $A^{(p/2)}$ keeps half of what $A^{(p)}$ keeps."
- CVM uses coin tosses of A^(P) to process elements.
- When shrinking, CVM inspects past coin tosses done by $A^{(P/2)}$. (the next unused coin for all $a \in \mathbb{Z}$)

Effects of the coupling:

- $Z_i^{(CVM)} = Z_i^{(P_j)}$ for $j \in [m]$
- result^(CVM) = result^(P_m)
- $fail^{(CVM)} = fail^{(P_m)}$

Definition: What is a Streaming Algorithm?

Algorithm result((P, Z)):

return |Z|/P

Morris' Algorithm for $F_1 = m$

The CVM Algorithm for $F_0 = |\{a_1, \ldots, a_m\}|$ 0000

Counting Distinct Elements

Attempt III: Adjust lossiness dynamically

• stream $(a_1,\ldots,a_m)\in [n]^m$ • want $F_0 = |\{a_1, \dots, a_m\}|$

CVM, parameter T

Algorithm init: 7 ← Ø

P ← 1 return (P, Z)

Algorithm update((P, Z), a): $Z \leftarrow Z \setminus \{a\}$

with probability P do $Z \leftarrow Z \cup \{a\}$ while |Z| > T do // shrink $Z' \leftarrow \varnothing$

for $a \in \mathcal{I}$ do with probability 1/2 do $L Z' \leftarrow Z' \cup \{a\}$

 $(Z,P) \leftarrow (Z',P/2)$ return (P, Z)

Algorithm result((P, Z)):

return |Z|/P

Lemma: Failure Probability and Space

With $T = \frac{18 \log_2(2m/\delta)}{c^2}$ we get $\Pr[\text{fail}^{\text{CVM}}] = \mathcal{O}(\delta)$ and $\text{space}^{\text{CVM}} = \mathcal{O}(\frac{\log(m/\delta)}{c^2} \log n) + \lceil \log_2(\log_2(1/P_m)) \rceil$.

Analysis of CVM's failure probability (a bit sketchy)

- Recall: LossyStore $(p_{\delta} = \frac{3 \log(2/\delta)}{\epsilon^2 F_0})$ has failure probability $\leq \delta$. Assume p_{δ} is power of 2.
- Then $\Pr[\mathsf{fail}^{(\rho_{\delta})}] < \delta$. $\Pr[\mathsf{fail}^{(2\rho_{\delta})}] < \delta^2$. $\Pr[\mathsf{fail}^{(4\rho_{\delta})}] < \delta^4$
- Therefore $\Pr[\mathsf{fail}^{(1)}] + \ldots + \Pr[\mathsf{fail}^{(2p_\delta)}] + \Pr[\mathsf{fail}^{(p_\delta)}] \leq \ldots + \delta^8 + \delta^4 + \delta^2 + \delta = \mathcal{O}(\delta).$

$$\begin{split} \Pr[P_m < p_\delta] &= \Pr[|Z_j^{(p_\delta)}| \geq T \text{ for some } j \in [m]] \leq m \cdot \Pr[|Z_m^{(p_\delta)}| \geq T] \\ &= m \cdot \Pr_{Z \sim \mathsf{Bin}(F_0, p_\delta)}[Z \geq T] \stackrel{\triangle}{=} m \cdot 2^{-T} \leq m \cdot 2^{-\log(m/\delta)} = \delta. \end{split}$$

where Δ uses a Chernoff bound and $6\mathbb{E}[Z] = 6F_0p_\delta = \frac{18\log_2(2/\delta)}{2} \leq T$.

• $fail^{CVM} \Leftrightarrow fail^{(P_m)} \Rightarrow (P_m < p_\delta \lor fail^{(1)} \lor fail^{(1/2)} \lor \ldots \lor fail^{(p_\delta)})$

Finally: $\Pr[\mathsf{fail}^{\mathsf{CVM}}] \leq \Pr[P_m < p_\delta \lor \mathsf{fail}^{(1)} \lor \mathsf{fail}^{(1/2)} \lor \dots \lor \mathsf{fail}^{(p_\delta)}] \overset{\mathsf{UB}}{\leq} \delta + \mathcal{O}(\delta) = \mathcal{O}(\delta).$

Definition: What is a Streaming Algorithm?

Morris' Algorithm for $F_1 = m$

The CVM Algorithm for $F_0 = |\{a_1, \ldots, a_m\}|$ 0000

Conclusion

Streaming Algorithms

- Input read only once, from left to right.
- Goal: Use little space. (less than what is needed to store input stream)
- Motivation: Network actor wants to maintain statistic on traffic.

Morris⁺ Algorithm for Counting the Stream Length

- **approximation in space** $\mathcal{O}(\frac{1}{\varepsilon^2 \lambda} \log \log m)$ // or $\mathcal{O}(\log \log m + \log \frac{1}{\lambda \varepsilon})$ using Morris*? $(\varepsilon = \text{relative error}, \delta = \text{failure probability})$
- deterministic algorithms need space $\lceil \log(1+m) \rceil$

CVM Algorithm for Counting Distinct Elements

• approximation in space $\mathcal{O}(\frac{1}{\varepsilon^2}\log(n)\log(m/\delta))$

Definition: What is a Streaming Algorithm?

Morris' Algorithm for $F_1 = m$

The CVM Algorithm for $F_0 = |\{a_1, \ldots, a_m\}|$

Conclusion

Appendix: Possible Exam Questions I

- Definition of streaming algorithms:
 - What is the task of a streaming algorithm (with respect to a quantity $F = F(a_1, \ldots, a_m)$)?
 - What is the specific challenge for streaming algorithms?
- Streaming algorithms for $F_1 = m$:
 - What could be an application in which one would like to estimate F₁?
 - How much memory is needed if one simply counts? Can a deterministic algorithm do something smarter?
 - How does the LossyCounting algorithm work? Why does it not help us here?
 - How does Morris' algorithm work?
 - Prove that Morris' algorithm is unbiased.*
 - Prove that the memory usage of Morris is doubly logarithmic in m.
 - What other weakness did Morris' algorithm have, and how did we fix it?

Definition: What is a Streaming Algorithm?

Morris' Algorithm for $F_1 = m$

The CVM Algorithm for $F_0 = |\{a_1, \ldots, a_m\}|$

Appendix: Possible Exam Questions II

- Streaming algorithms for $F_0 = \{a_1, \dots, a_m\}$:
 - What could be an application in which one would like to estimate F_0 ?
 - How much memory does the naive deterministic algorithm require? What can we achieve with CVM?
 - As an intermediate step, we formulated the LossyStore algorithm. How does it work?
 - How does the CVM algorithm work? How is it related to the LossyStore algorithm?
 - In the analysis of the error probability of CVM, we distinguished two types of problems. Which ones?*

Definition: What is a Streaming Algorithm?

Morris' Algorithm for $F_1 = m$

The CVM Algorithm for $F_0 = |\{a_1, \ldots, a_m\}|$