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Abstract

We present a new heuristic point-to-point routing algorithm based on contraction hierarchies (CH).
Given an ε ≥ 0, we can prove that the length of the path computed by our algorithm is at most (1 + ε)
times the length of the optimal (shortest) path. CH is based on node contraction: removing nodes from
a network and adding shortcut edges to preserve shortest path distances. Our algorithm tries to avoid
shortcuts even when a replacement path is ε times longer.

1 Introduction

Routing in static road networks is essentially solved. There exist fast routing algorithms that are exact.
However, for other graph classes, e.g. unit disk graphs as they appear in sensor networks, the algorithms
do not work very well. Also when several objective functions should be supported within a road network,
current algorithms [4] face some problems since the hierarchy of the network is different for different objective
functions, e. g. time and distance. One possibility to alleviate these problems is to drop the exactness of the
algorithms and allow some error. We show how to adapt contraction hierarchies (CH) [5] so that we can
guarantee an error of ε.

Related Work

There has been extensive work on speed-up techniques for road networks. We refer to [2, 6, 1] for an overview.
We can classify current algorithms into three categories: hierarchical algorithms, goal-directed approaches

and combinations of both. Our algorithm is based on contraction hierarchies (CH) [5]. A CH uses a single
node order and contracts the nodes in this order. A slightly modified bidirectional Dijkstra shortest path
search then answers a query request, touching only a few hundred nodes. For our algorithm, we modify the
node contraction, i.e. the decision which shortcuts we have to add, and the query.

Recently, also speed-up techniques for time-dependent road networks have been developed ([3] presents
an overview).

Also algorithms to support multiple objective function have been developed lately. The most recent one
is an adaption of the CH algorithm [4] to allow a flexible query.

2 Heuristic Node Contraction

CH performs precomputation on a directed graph G = (V,E) with edge weight function c : E → R+. The
precomputation of CH is based on node contraction: a node u is contracted by removing it from the network
in such a way that shortest paths in the remaining graph are preserved. In the exact scenario, where we
want to find the optimal path, we use Algorithm 1. To preserve all shortest path distances, it is enough to
preserve the shortest paths distances between the neighbors of u. So given two neighbors v and w with edges
(v, u) and (u,w), we should find the shortest path P between v and w avoiding u (Line 4). When the length
of P is longer than the length of the path 〈v, u, w〉, a shortcut between v and w is necessary with weight
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c(v, u) + c(u,w). When the length of P is not longer, no shortcut is necessary and P witnesses this, in this
case we call P a witness.

In the heuristic scenario, we use Algorithm 2. Intuitively, we want to avoid more shortcuts than in the
exact scenario, i.e. a shortcut between v and w should be avoided, even when the path P is a bit longer
than 〈v, u, w〉. To be able to guarantee a maximum relative error of ε, we need to ensure that the errors
do not stack when a node on P is contracted later. So we store another edge weight c̃ with each edge.
Intuitively, c̃ is the witness memory of an edge. When a witness P prevents a shortcut, even though in the
exact scenario, the shortcut would be necessary, the witness must remember this delta. We let the edges of
the witness remember this (Lines 9–11), so that c̃(P ) ≤ c̃(v, u) + c̃(u,w). Note that γ ≤ ε (Line 9), which
gives Lemma 1.

Lemma 1 For each edge (v, w) holds

c(v, w)
1 + ε

≤ c̃(v, w) ≤ c(v, w) .

Note that there are other ways to ensure that the errors do not stack. Currently, we proportionally
distribute the delta among all edges of the witness. We could distribute the delta differently or even try to
find other potential witnesses. Also, avoiding a shortcut can lead to more shortcuts later, as every shortcut
is a potential witness later.

Algorithm 1: SimplifiedExactConstructionProcedure(G = (V,E),<)

foreach u ∈ V ordered by < ascending do1

foreach (v, u) ∈ E with v > u do2

foreach (u,w) ∈ E with w > u do3

find shortest path P = 〈v, . . . , w〉 63 u;4

if c(P ) > c(v, u) + c(u,w) then5

E:= E ∪ {(v, w)} (use weight c(v, w):= c(v, u) + c(u,w))6

Algorithm 2: SimplifiedHeuristicConstructionProcedure(G = (V,E),<,ε)

c̃:= c; // store second weight per edge1

foreach u ∈ V ordered by < ascending do2

foreach (v, u) ∈ E with v > u do3

foreach (u,w) ∈ E with w > u do4

find shortest path P = 〈v, . . . , w〉 63 u;5

if c(P ) > (1 + ε)(c̃(v, u) + c̃(u,w)) then6

E:= E ∪ {(v, w)} (use weight c(v, w):= c(v, u) + c(u,w), c̃(v, w):= c̃(v, u) + c̃(u,w));7

else8

γ:= c(P )
c̃(v,u)+c̃(u,w) - 1; // c(P ) = (1 + γ)(c̃(v, u) + c̃(u,w))9

foreach (x, y) ∈ P do10

c̃(x, y):= min
{
c̃(x, y), c(x,y)1+γ

}
;11

3 Heuristic Query

The basic query algorithm is the same as for exact CH (Algorithm 3). It is a symmetric Dijkstra-like
bidirectional procedure. We will introduce it formally and prove its correctness.



The query algorithm does not relax edges leading to nodes lower than the current node. This property is
reflected in the upward graph G↑:= (V,E↑) with E↑:= {(u, v) ∈ E | u < v} and, analogously, the downward
graph G↓:= (V,E↓) with E↓:= {(u, v) ∈ E | u > v}).

We perform a forward search in G↑ and a backward search in G↓. Forward and backward search are
interleaved, we keep track of a tentative shortest-path length and abort the forward/backward search process
when all keys in the respective priority queue are greater than the tentative shortest-path length (abort-on-
success criterion).

Both search graphs G↑ and G↓ can be represented in a single, space-efficient data structure: an adjacency
array. Each node has its own edge group of incident edges. Since we perform a forward search in G↑ and a
backward search in G↓, we only need to store an edge in the edge group of the lower incident node. This
formally results in a search graph G∗ = (V,E∗) with E↓ := {(v, u) | (u, v) ∈ E↓} and E∗ := E↑∪E↓. Finally,
we introduce a forward and a backward flag such that for any edge e ∈ E∗, ↑ (e) = true iff e ∈ E↑ and
↓ (e) = true iff e ∈ E↓. Note that G∗ is a directed acyclic graph.

Algorithm 3: ExactQuery(s,t)

d↑:= 〈∞, . . . ,∞〉; d↑[s]:= 0; d↓:= 〈∞, . . . ,∞〉; d↓[t]:= 0, d:= ∞; // tentative distances1

Q↑ = {(0, s)}; Q↓ = {(0, t)}; r:= ↑; // priority queues2

while (Q↑ 6= ∅ or Q↓ 6= ∅) and (d > min {minQ↑,minQ↓}) do3

if Q¬r 6= ∅ then r:= ¬r; // interleave direction, ¬ ↑=↓ and ¬ ↓=↑4

(·, u):= Qr.deleteMin(); d:= min {d, d↑[u] + d↓[u]}; // u is settled and new candidate5

foreach e = (u, v) ∈ E∗ do // relax edges of u6

if r(e) and (dr[u] + c(e) < dr[v]) then // shorter path found7

dr[v]:= dr[u] + c(e); // update tentative distance8

Qr.update(dr[v],v); // update priority queue9

return d;10

Lemma 2 Let P be an s-t-path P in the heuristic CH (G = (V,E), <, ε). Then there exists an s-t-path P ′

in the CH of form 〈s = u0, u1, . . . , up, . . . , uq = t〉 with p, q ∈ N, ui < ui+1 for i ∈ N, i < p and uj > uj+1

for j ∈ N, p ≤ j < q, short path form (PF) And for P ′ holds c̃(P ′) ≤ c̃(P ).

Proof. Given a shortest s-t-path P = 〈s = u0, u1, . . . , up, . . . , uq = t〉 with p, q ∈ N, up = maxP , that is
not of the form (PF). Then there exists a k ∈ N, k < q with uk−1 > uk < uk+1. We will recursively construct
a path of the form (PF).

Let MP := {uk | uk−1 > uk < uk+1} denote the set of local minima excluding nodes s, t. We show that
there exists a s-t-path P ′ with MP ′ = ∅ or minMP ′ > minMP .

Let uk:= minMP and consider the two edges (uk−1, uk), (uk, uk+1) ∈ E. Both edges already exist at the
beginning of the contraction of node uk. So there is either a witness path Q = 〈uk−1, . . . , uk+1〉 consisting of
nodes higher than uk with c(Q) ≤ (1 + ε)(c̃(uk−1, uk) + c̃(uk, uk+1)) or a shortcut (uk−1, uk+1) of the same
weight is added. So the subpath P |uk−1→uk+1 can either be replaced by Q or by the shortcut (uk−1, uk+1).
If we replace the subpath by Q, our construction ensures that c̃(Q) ≤ c̃(P |uk−1→uk+1). Also if we added
a shortcut, c̃(uk−1, uk+1) ≤ c̃(P |uk−1→uk+1) holds. So the resulting path P ′ consists of nodes higher than
uk and has the property c̃(P ′) ≤ c̃(P ). Since n < ∞, there must exist a s-t-path P ′′ with MP ′′ = ∅,
c̃(P ′′) ≤ c̃(P ) and of the form described in (PF). �

Theorem 1 proofs the correctness of our basic query algorithm.

Theorem 1 Given a source node s and a target node t. Let d̃(s, t) be the distance computed by the heuristic
CH algorithm with ε ≥ 0 and let d(s, t) be the optimal (shortest) distance in the original graph. Then
d(s, t) ≤ d̃(s, t) ≤ (1 + ε)d(s, t).

Proof. Let (G = (V,E), <, ε) be a heuristic CH with ε ≥ 0. Let s, t ∈ V be the source/target pair
of a query. It follows from the definition of a shortcut, that the shortest path distance between s and t



in the CH is the same as in the original graph. So d(s, t) ≤ d̃(s, t) holds. Every shortest s-t-path in the
original graph still exists in the CH but there may be additional s-t-paths. However since we use a modified
Dijkstra algorithm that does not relax all incident edges of a settled node, our query algorithm does only
find particular ones. In detail, exactly the shortest paths of the form (PF) are found by our query algorithm.
From Lemma 2, we know that if there exists a shortest s-t-path P then there also exists an s-t-path P ′ of
the form (PF) with c̃(P ′) ≤ c̃(P ). Because of Lemma 1, we know that c(P ′)

1+ε ≤ c̃(P ′) and c̃(P ) ≤ c(P ) so
that c(P ′) ≤ (1 + ε)c(P ). So our query algorithm will either find P ′ or another path, that is not longer than
P ′. �

Although we use c̃ in the proof, the query algorithm does not use it at all. So we only need to store it
during precomputation but we do not need to store it for the query.

4 Heuristic Stall-on-Demand

In the previous section, we proved that the basic heuristic query algorithm does not need any changes
compared to the exact scenario. However, an important ingredient of a practically efficient query algorithm is
the stall-on-demand technique first described by Schultes et al. [7]. This single improvement brings additional
speedup of factor two or more.

While performing a query, we do not relax all edges of a node, we only relax edges leading upwards. Here
and in the following we well assume that the query is from source node s to target node t and we will only
consider the forward search. The backward search is completely symmetric to the forward search. We call
a path leading only upwards being an upward path. In the exact scenario, we check, whether a settled node
u in the forward search is reached suboptimally via a s-u-path P = 〈s = v1, . . . , vk = u〉, i.e if there is a
s-u-path P ′ with c(P ) > c(P ′). If this was the case, we can safely stop (stall) the search at u since it would
never contribute to a shortest path. The path P is an upward path and stalling happens if and only if the
path P ′ is not an upward path..

However, in the heuristic scenario with ε > 0, we would destroy the correctness of our algorithm when
we would apply the same rule. Consider as example the graph in Figure 1. During the contraction of u, no
shortcut for the path 〈x, u, v〉 is added since the path 〈x, y, v〉 is a witness that is just a factor 1 + ε larger.
The forward query starting at s should settle the nodes in the order s, x, y, u, v, z. However, if we would not
change the stalling condition, we would stall u while settling it because the path 〈s, u〉 is longer than the
path 〈s, x, u〉, which is not an upward path. Furthermore, we would propagate the stalling information to v,
so node v reached via upward path P = 〈s, x, y, v〉 gets stalled by the shorter path P ′ = 〈s, x, u, v〉. So node
v is stalled and we would never reach node z with the forward search and therefore could never meet with
the backward search there.
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Figure 1: The stalling condition of the exact query fails in a heuristic CH, as node z is never reached in the
forward search from s.

To ensure the correctness, we change the stalling condition. We split the path s-u-path P ′ in a path P ′1



and P ′2 so that P ′1 is the maximal upward subpath. Let x be the node that splits P ′ in these two parts.
Then we stall u only if node x is reached by the forward search and

c(P ′1) + (1 + ε)c(P ′2) < c(P ) (1)

The symmetric condition applies to the backward search.

Algorithm 4: ExactQuery(s,t)

d↑:= 〈∞, . . . ,∞〉; d↑[s]:= 0; d↓:= 〈∞, . . . ,∞〉; d↓[t]:= 0, d:= ∞; // tentative distances1

Q↑ = {(0, s)}; Q↓ = {(0, t)}; r:= ↑; // priority queues2

while (Q↑ 6= ∅ or Q↓ 6= ∅) and (d > min {minQ↑,minQ↓}) do3

if Q¬r 6= ∅ then r:= ¬r; // interleave direction, ¬ ↑=↓ and ¬ ↓=↑4

(·, u):= Qr.deleteMin(); d:= min {d, d↑[u] + d↓[u]}; // u is settled and new candidate5

if isStalled(r, u) then continue; // do not relax edges of a stalled node6

foreach e = (u, v) ∈ E∗ do // relax edges of u7

if r(e) and (dr[u] + c(e) < dr[v]) then // shorter path found8

dr[v]:= dr[u] + c(e); // update tentative distance9

Qr.update(dr[v],v); // update priority queue10

if isStalled(r, v) then unstall(r, v);11

if (¬r)(e) and (dr[v] + c(e) < dr[u]) then // path via v is shorter12

stall(r, u, dr[v] + c(e)); // stall u with stalling distance dr[v] + c(e)13

break; // stop relaxing edges of stalled node u14

return d;15

Algorithm 5: HeuristicQuery(s,t)

d↑:= 〈∞, . . . ,∞〉; d↑[s]:= 0; d↓:= 〈∞, . . . ,∞〉; d↓[t]:= 0, d:= ∞; // tentative distances1

Q↑ = {(0, s)}; Q↓ = {(0, t)}; r:= ↑; // priority queues2

while (Q↑ 6= ∅ or Q↓ 6= ∅) and (d > min {minQ↑,minQ↓}) do3

if Q¬r 6= ∅ then r:= ¬r; // interleave direction, ¬ ↑=↓ and ¬ ↓=↑4

(·, u):= Qr.deleteMin(); d:= min {d, d↑[u] + d↓[u]}; // u is settled and new candidate5

if isStalled(r, u) then continue; // do not relax edges of a stalled node6

foreach e = (u, v) ∈ E∗ do // relax edges of u7

if r(e) and (dr[u] + c(e) < dr[v]) then // shorter path found8

dr[v]:= dr[u] + c(e); // update tentative distance9

Qr.update(dr[v],v); // update priority queue10

if isStalled(r, v) then unstall(r, v);11

if (¬r)(e) ∧ dr[v] + (1 + ε)c(e) < dr[u] then // path via v is shorter12

stall(r, u, dr[v] + (1 + ε)c(e)); // stall u with stalling distance dr[v] + (1 + ε)c(e)13

break; // stop relaxing edges of stalled node u14

return d;15

To prove that the stall-on-demand with (1) is correct, we will iteratively construct in Lemma 3 a new
path from a stalled one.

Lemma 3 Let (P, v, w) be a stall state triple (SST): P being an s-t-path of the form (PF), node v being
reached by the forward search by P |s→v and not stalled and node w being reached by the backward search by
P |w→t and not stalled. Define a function g on an SST:

g(P, v, w) := c(P |s→v) + (1 + ε)c̃(P |v→w) + c(P |w→t).



If one of the nodes in P |v→w becomes stalled, then there exists an SST (Q, x, y) with

g(Q, x, y) < g(P, v, w).

Proof. Let u ∈ P |v→w be the node that becomes stalled. WLOG we assume that P |v→u is an upward
path, i.e. the stalling happens during the forward search. Then there exists an s-u-path P ′ that is split in P ′1
and P ′2 as defined in (1) so that c(P ′1) + (1 + ε)c(P ′2) < c(P |s→u). Let x be the node that splits P ′ into these
two subpaths. Let R be the path of form (PF) that is constructed following Lemma 2 from the concatenation
of P ′2 and P |u→w. Let Q be the concatenation of P ′1, R and P |w→t and y:= w. By construction, (Q, x, y) is
a SST and we will prove that it is the one that we are looking for.

g(Q, x, y) = c(Q|s→x) + (1 + ε)c̃(Q|x→y) + c(Q|y→t)
def.= c(P ′1) + (1 + ε)c̃(R) + c(P |w→t)
L.2
≤ c(P ′1) + (1 + ε)(c̃(P ′2) + c̃(P |u→w)) + c(P |w→t)
L.1
≤ c(P ′1) + (1 + ε)c(P ′2) + (1 + ε)c̃(P |u→w) + c(P |w→t)
(1)
< c(P |s→u) + (1 + ε)c̃(P |u→w) + c(P |w→t)
= c(P |s→v) + c(P |v→u) + (1 + ε)c̃(P |u→w) + c(P |w→t)
L.1
≤ c(P |s→v) + (1 + ε)c̃(P |v→u) + (1 + ε)c̃(P |u→w) + c(P |w→t)
= g(P, v, w)

�
With Lemma 3 we are able to prove the correctness of heuristic stall-on-demand (1) in Theorem 2.

Theorem 2 Theorem 1 still holds when we use heuristic stall-on-demand (1).

Proof. The proof will iteratively construct SST’s with Lemma 3 starting with the path P found in the
proof of Theorem 1/Lemma 2 and the nodes s and t. Obviously, at the beginning of the query, both nodes
s and t are reached and not stalled, so (P, s, t) is an SST and

g(P, s, t) = c(P |s→s) + (1 + ε)c̃(P |s→t) + c(P |t→t) = (1 + ε)c̃(P ) ≤ (1 + ε)d(s, t).

We will prove that after a finite number of applications of Lemma 3, we obtain an SST (Q, x, y) so that Q
is found by our query with stalling. For this path Q holds:

c(Q) = c(Q|s→x) + c(Q|x→y) + c(Q|y→t)
L.1
≤ c(Q|s→x) + (1 + ε)c̃(Q|x→y) + c(Q|y→t)
= g(Q, x, y)
L.3
≤ g(P, s, t)
≤ (1 + ε)d(s, t)

Since our graph is finite, and due to the “<” in Lemma 3, we can apply Lemma 3 only finitely many
times. The final SST (Q, x, y) will be found by our query algorithm since x is is reached in the forward
search and not stalled, y is reached in the backward search and not stalled. And since this is the final SST,
no node on the path Q|x→y will be stalled so our query will find the path Q or a shorter path. �

5 Applications

We described our heuristic for just a single edge weight function. Further applications may be time-dependent
road networks, where not only the travel time functions are approximations, but also the shortcuts. Also,
it can help for multi-criteria optimization. It would be simple to extend it to the flexible scenario [4] with
two edge weight functions. This would hopefully make the splitting of parameter intervals unnecessary, as
approximation can reduce the number of shortcuts. Without splitting, preprocessing time and space are
greatly reduced, this comes in handy as they are significantly larger than in the single-criteria scenario.



In general, heuristic CH can help to process graphs that are less hierarchically structured than road
networks. In theory, every graph can be preprocessed by CH. But in practice, this is not feasible. The
witness searches that decide the necessity of shortcuts take too long, especially when the remaining graph
is very dense after a lot of shortcuts have been added. Reducing the number of shortcuts can therefore
significantly reduce the preprocessing time.

6 Conclusion

We developed an algorithmic idea for an heuristic CH algorithm that guarantees the approximation ratio.
Now experiments have to show the feasibility of this approach in practice.
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