# Lifetime Maximization of Sensor Networks for Area Monitoring (work in progress)

Dennis Schieferdecker (schiefer@ira.uka.de) Sanjeev Arora, Peter Sanders, David Steurer

ITI Sanders, University of Karlsruhe (TH)

23.10.2008

#### Table of Contents

- ⇒ Area Monitoring
  - >> Problem Formulation
  - >> Proof of NP-Completeness
  - >> Exact Algorithm
  - >> Approximation Algorithm
- >> Conclusion



# - I Area Monitoring energy-efficient, sensor-based

# Overview

#### Problem Formulation - 1

# Area Monitoring

- >> Permanent monitoring of area F (e.g. temperature profiles, intrusion detection, . . . )
- >> Spreading of N sensor nodes
  - → More sensors than necessary for full coverage of F
- At each point in time, activate only as many sensors as necessary
  - $\hookrightarrow$  maximize lifetime T



area F



# Area Monitoring

- $\gg$  Permanent monitoring of area F (e.g. temperature profiles, intrusion detection, ...)
- >> Spreading of N sensor nodes
  - full coverage of F
- >> At each point in time, activate only as many sensors as necessary
  - $\hookrightarrow$  maximize lifetime T



Dennis Schieferdecker - Area Monitoring

active sensor nodes





# Area Monitoring

- Permanent monitoring of area F (e.g. temperature profiles, intrusion detection, . . . )
- >> Spreading of N sensor nodes
  - → More sensors than necessary for full coverage of F
- At each point in time, activate only as many sensors as necessary
  - $\hookrightarrow$  maximize lifetime T





# **Overview**

#### Problem Formulation - 1

# Area Monitoring

- Permanent monitoring of area F (e.g. temperature profiles, intrusion detection, . . . )
- >> Spreading of N sensor nodes
  - → More sensors than necessary for full coverage of F
- At each point in time, activate only as many sensors as necessary
  - $\hookrightarrow$  maximize lifetime T







#### **Overview**

#### Problem Formulation - 2

#### Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

## Example

- Sensors A, B, C with capacity of 1
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t=1 $\hookrightarrow$  at T=1.0, no further covers possible
- (b) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow$  T=1.5, lifetime increased by 50%





#### Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

## Example

- Sensors A, B, C with capacity of 1
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t=1 $\hookrightarrow$  at T=1.0, no further covers possible
- (b) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow$  T=1.5, lifetime increased by 50%





#### Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

#### Example

- Sensors A, B, C with capacity of 1
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t=1 $\hookrightarrow$  at T=1.0, no further covers possible
- (b) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow$  T=1.5, lifetime increased by 50%





#### Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

#### Example

- Sensors A, B, C with capacity of 1
- >> 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1 $\hookrightarrow$  at T = 1.0, no further covers possible

(a) trivial solution





#### Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

# Example

- $\gg$  Sensors A, B, C with capacity of 1
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1 $\hookrightarrow$  at T = 1.0, no further covers possible





# Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

#### Example

- >> Sensors A, B, C with capacity of 1
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1 $\hookrightarrow$  at T = 1.0, no further covers possible







University of Karlsruhe

#### Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

## Example

- Sensors A, B, C with capacity of 1
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1 $\hookrightarrow$  at T = 1.0, no further covers possible

(b) optimal solution





#### **Overview**

#### Problem Formulation - 2

#### Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

# Example

- Sensors A, B, C with capacity of 1
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t=1 $\hookrightarrow$  at T=1.0, no further covers possible
- (b) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow$  T = 1.5, lifetime increased by 50%





#### **Overview**

#### Problem Formulation - 2

#### Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

## Example

- Sensors A, B, C with capacity of 1
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t=1 $\hookrightarrow$  at T=1.0, no further covers possible
- (b) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow$  T = 1.5, lifetime increased by 50%

t = 0.5





#### Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

# Example

- $\gg$  Sensors A, B, C with capacity of 1
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1 $\hookrightarrow$  at T = 1.0, no further covers possible





# **Overview**

#### Problem Formulation - 2

#### Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

#### Example

- >> Sensors A, B, C with capacity of 1
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1 $\hookrightarrow$  at T = 1.0, no further covers possible

t = 1.5





# **Model Description**

#### Given:

- ≫ arbitrary area F
- $\gg$  N sensor nodes  $S = \{s_i\}$ , with
  - $\gg$  fixed position in or near area F
  - $\gg$  circular monitoring area (radius r)
  - $\gg$  limited capacity  $c_i$



Dennis Schieferdecker - Area Monitoring

#### Wanted:

- $\gg$  Maximum time T, the whole area can be monitored (lifetime)
- >> Feasible solutions include:
  - $\gg$  grouping of sensors in M covers  $\{C_i\}$ , monitoring the whole area
  - $\gg$  durations  $\{t_i\}$ , for which each cover  $C_i$  is active (scheduling)







# Formulation with Linear Programming (LP)

maximize: lifetime

$$T = max\{\mathbf{1}^T \mathbf{t} | \mathbf{t} \in \mathbb{R}^M\}$$

subject to: limited node capacities

$$\sum_{i=1}^{M} A_{i,j} \ t_j \leq c_i \qquad i = 1, \dots N$$

- $\gg t_i$ : duration for which cover  $C_i$  is active
- $A_{i,j}$ : 1, if node  $s_i$  in cover  $C_i$  is active, 0 otherwise
- $\gg c_i$ : capacity of node  $s_i$





# Useful Attributes

# Dual problem

For each primal problem

$$max\{\mathbf{1}^T \mathbf{t} | \mathbf{A} \mathbf{t} \leq \mathbf{c}, \mathbf{t} \in \mathbb{R}^M\}$$

there is a dual problem

$$min\{c^Tw|A^Tw \geq 1, w \in \mathbb{R}^N\}$$

>> w<sub>i</sub>: newly introduced variables by dual problem, interpretation in context of SLC: "cost" of node si





# Hardness of the Problem

#### Sketch of the Proof of NP-Completeness - 1

#### Utilized Problems

(1) Separation problem for dual problem of SLC (SEP): same complexity as primal problem, see [GrötschelLoSc81]

Given w, does a cover  $C_j$  exist with cost  $\sum_{i, A_{i,j}=1} w_i < b_j$ ?

(2) Minimum Dominating Set (MDS) on Unit Disk Graphs (UD): proven to be NP-hard, see [MasuyamalbHa81]

> Given a unit disk graph G = (S, E), find  $D \subseteq S$  with |D|minimal and f.a.  $d \in D$ :  $d \in S$  or  $(d,s) \in E$  with  $s \in S$







# Hardness of the Problem

#### Sketch of the Proof of NP-Completeness - 2

#### Basic Ideas

- ≫ MDS-UD can be interpreted as special case of SEP
  - ≫ equal costs for all nodes
  - ≫ area coverage → point coverage
  - ≫ sensor networks → unit disk graphs
  - sensor positions as points to be covered (dominated)
- ⇒ SLC is NP-hard
- >> A potential solution can be verified in polynomial time
- ⇒ SLC is NP-complete





#### **Prelimenaries**

#### Naive Idea

>> Use LP formulation with LP solver (e.g. CPLEX)

#### **Problems**

- matrix A for all possible covers is exponential in size
- $\gg$  actually required covers  $C_i$  not known a priori

#### Solution

≫ Column Generation Technique (CGT)





# Column Generation Technique - 1

#### Definition

- $\gg$  Let  $\mathbf{A} = \{\mathbf{a}_1, \dots, \mathbf{a}_M\}$  be the constraint matrix
  - $\hookrightarrow$  each  $\mathbf{a}_i$  represents a cover

#### **Iterative Process**

- $\gg$  Solve reduced problem with  $\hat{\mathbf{A}} \subset \mathbf{A}$ 
  - >> fewer possible covers available
  - $\gg$  primal & dual solutions:  $\hat{\mathbf{t}}$ ,  $\hat{\mathbf{w}}$
- $\gg$  Solve subproblem:  $W = min\{\mathbf{a}^T\hat{\mathbf{w}} 1|\mathbf{a} \in \mathbf{A}\}$ 
  - $\gg$  if  $W \ge 0$ ,  $\hat{\mathbf{t}}$  optimal solution for original problem,
  - $\gg$  otherwise, **a** provides a new column for  $\hat{\mathbf{A}}$



# Column Generation Technique - 2

# Subproblem

$$W = min\{\mathbf{a}^T\hat{\mathbf{w}} - 1|\mathbf{a} \in \mathbf{A}\}$$

- $\gg$  **a**: cover of area F
- » ŵ: weights of each sensor
- >> equivalent to Min-Cost Set Cover
  - ≫ still NP-hard.
  - but many exisiting solvers

#### sensor nodes



#### Results

>> large candidate set of covers becomes manageable with CGT



# Exact Algorithm

# Column Generation Technique - 2

# Subproblem

$$W = min\{\mathbf{a}^T\hat{\mathbf{w}} - 1|\mathbf{a} \in \mathbf{A}\}$$

- a: cover of area F
- **ŵ**: weights of each sensor
- > equivalent to Min-Cost Set Cover
  - ≫ still NP-hard,
  - but many exisiting solvers



#### Results

large candidate set of covers becomes manageable with CGT



# Column Generation Technique - 2

# Subproblem

$$W = min\{\mathbf{a}^T\hat{\mathbf{w}} - 1|\mathbf{a} \in \mathbf{A}\}$$

- a: cover of area F
- ŵ: weights of each sensor
- > equivalent to Min-Cost Set Cover
  - ≫ still NP-hard,
  - but many exisiting solvers



#### Results

>> large candidate set of covers becomes manageable with CGT



# Approximation Algorithm

#### **Prelimenaries**

#### Some Definitions

- $\gg$  Let  $T_r$  be a feasible solution of an SLC instance with sensor radii r,
- $\gg$  let  $T_r = opt_r$  be the optimal solution

# Approach

- >> Relax two attributes to provide a fast approximation algorithm for the SLC problem
  - $\gg$  sensor radii r
  - maximum lifetime T





# Approximation Algorithm Approach - First Relaxation

# Sensor Radii

- $\gg$  Relocation of all sensor nodes to a grid of size  $r \cdot \delta/2$
- $\gg$  Let algorithm  ${\cal A}$  provide an  $\alpha$ -approximation for this problem
  - $\rightarrow \mathcal{A}$  yields solution for the general problem with  $T_r \geq \alpha \cdot opt_{(1-\delta)r}$
- >> Relaxation of sensor radii:
  - $\hookrightarrow$  reduction by a factor of  $(1 \delta)$

sensor nodes







# Approximation Algorithm

## Approach - First Relaxation

#### Sensor Radii

- Relocation of all sensor nodes to a grid of size  $r \cdot \delta/2$
- $\gg$  Let algorithm  $\mathcal{A}$  provide an  $\alpha$ -approximation for this problem
  - $\rightarrow \mathcal{A}$  yields solution for the general problem with  $T_r \geq \alpha \cdot opt_{(1-\delta)r}$



 $\hookrightarrow$  reduction by a factor of  $(1 - \delta)$ 





# Approach - First Relaxation

#### Sensor Radii

- $\gg$  Relocation of all sensor nodes to a grid of size  $r \cdot \delta/2$
- $\gg$  Let algorithm  ${\mathcal A}$  provide an  $\alpha$ -approximation for this problem
  - $\rightarrow \mathcal{A}$  yields solution for the general problem with  $T_r \geq \alpha \cdot opt_{(1-\delta)r}$



 $\hookrightarrow$  reduction by a factor of  $(1 - \delta)$ 





# Approximation Algorithm

# Approach - First Relaxation

#### Sensor Radii

- $\gg$  Relocation of all sensor nodes to a grid of size  $r \cdot \delta/2$
- $\gg$  Let algorithm  $\mathcal A$  provide an  $\alpha$ -approximation for this problem
  - $\rightarrow \mathcal{A}$  yields solution for the general problem with  $T_r \geq \alpha \cdot opt_{(1-\delta)r}$



 $\hookrightarrow$  reduction by a factor of  $(1 - \delta)$ 





#### Maximum Lifetime

- $\gg$  Generate tiling  $\mathcal{T}$  of area  $\mathcal{F}$ in squares of width  $k = \lceil 10/\epsilon \rceil$
- $\gg$  Generate shiftings  $T_i$  of Tby (i,i) with  $i \in \mathbb{Z}_k$

#### Observations for r = 1:

- each monitoring area
  - $\gg$  is cut by at most 2 of the tilings  $\mathcal{T}_i$ .
  - >> intersects at most 4 squares









#### Maximum Lifetime

- $\gg$  Generate tiling  $\mathcal T$  of area  $\mathcal F$  in squares of width  $k=\lceil 10/\epsilon \rceil$
- $\gg$  Generate shiftings  $\mathcal{T}_i$  of  $\mathcal{T}$  by (i,i) with  $i \in \mathbb{Z}_k$

#### Observations for r = 1:

- >> each monitoring area
  - $\gg$  is cut by at most 2 of the tilings  $\mathcal{T}_i$ ,
  - >> intersects at most 4 squares





#### Maximum Lifetime

- $\gg$  Generate tiling  $\mathcal{T}$  of area  $\mathcal{F}$ in squares of width  $k = \lceil 10/\epsilon \rceil$
- $\gg$  Generate shiftings  $T_i$  of Tby (i,i) with  $i \in \mathbb{Z}_k$



- each monitoring area
  - $\gg$  is cut by at most 2 of the tilings  $\mathcal{T}_i$ .
  - >> intersects at most 4 squares





# Approximation Algorithm

# Approach - Second Relaxation - 1

#### Maximum Lifetime

- $\gg$  Generate tiling  $\mathcal{T}$  of area  $\mathcal{F}$ in squares of width  $k = \lceil 10/\epsilon \rceil$
- $\gg$  Generate shiftings  $T_i$  of Tby (i,i) with  $i \in \mathbb{Z}_k$



#### Observations for r = 1:

- each monitoring area
  - $\gg$  is cut by at most 2 of the tilings  $\mathcal{T}_i$ ,
  - >> intersects at most 4 squares

# Approximation Algorithm

# Approach - Second Relaxation - 1

#### Maximum Lifetime

- $\gg$  Generate tiling  $\mathcal T$  of area  $\mathcal F$  in squares of width  $k=\lceil 10/\epsilon \rceil$
- $\gg$  Generate shiftings  $\mathcal{T}_i$  of  $\mathcal{T}$  by (i,i) with  $i \in \mathbb{Z}_k$



Dennis Schieferdecker - Area Monitoring

#### Observations for r = 1:

- each monitoring area
  - $\gg$  is cut by at most 2 of the tilings  $\mathcal{T}_i$ ,
  - ≫ intersects at most 4 squares



#### Maximum Lifetime

- $\gg$  Generate tiling  $\mathcal T$  of area  $\mathcal F$  in squares of width  $k=\lceil 10/\epsilon \rceil$
- $\gg$  Generate shiftings  $\mathcal{T}_i$  of  $\mathcal{T}$  by (i,i) with  $i \in \mathbb{Z}_k$

#### Observations for r = 1:

- each monitoring area
  - $\gg$  is cut by at most 2 of the tilings  $\mathcal{T}_i$ .
  - >> intersects at most 4 squares





- $\gg$  Let algorithm  $\mathcal A$  provide an  $\alpha$ -approximation for instances of SLC restricted to an area of size  $k \times k$ 
  - $\gg$  Run  $\mathcal{A}$  on each square of  $\mathcal{T}_i$ ; yields solution for F with:
    - $\gg T_1 = \alpha \cdot opt_1$
    - $\gg$  at most 4x excess use of each node
  - $\gg$  Combine solutions  $\{t_j\}_i$  of all  $\mathcal{T}_i$  according to  $\{t_j\} = \frac{1-\epsilon}{k} \sum_{i \in \mathbb{Z}_k} \{t_j\}_i$ ; yields overall solution for F with:
    - $\gg T_1 = (1 \epsilon) \cdot \alpha \cdot opt_1$
    - » no violation of capacity constraints
- >> Relaxation of maximum lifetime:
  - $\hookrightarrow$  reduction by a factor of  $(1 \epsilon)$





# Approximation Algorithm

# Approach - Joined Approximations

#### Combination of both Relaxations

- $\gg$  Let  $\mathcal A$  be an algorithm that provides an  $\alpha$ -approximation of SLC for
  - $\gg$  squared areas of width  $k \times k$ , and
  - $\gg$  sensor positions restricted to a grid of size  $\delta/2$



Dennis Schieferdecker - Area Monitoring

#### Observation:

- $\gg$  Each tile has to consider at most  $O(1/\delta^2\epsilon^2)$  sensor nodes
- $\rightarrow$  independent of N!



Results - 1

## Approximation guarantee

$$T_1 \geq (1 - \epsilon) \cdot \alpha \cdot opt_{1-\delta}$$

- $\gg (1-\epsilon)$ : Segmentation of area F into smaller tiles
- $\gg \alpha$ : Approximation guarantee of algorithm  ${\cal A}$
- $\gg opt_{1-\delta}$ : Restriction of sensor positions to a grid

#### Applied relaxations:

- $\gg$  Actual sensor radii are allowed to be smaller than r
- $\gg$  Maximum lifetime T is allowed to be smaller than the optimum





Results - 2

# Asymptotic running time

$$O\left(N + 1/\epsilon \cdot \frac{\epsilon^2 \cdot N}{opt_{1-\delta}} \cdot f\left(O\left(1/\delta^2 \epsilon^2\right)\right)\right)$$

- $\gg O(N)$ : Costs for relocation of sensor nodes to grid points
- $\gg O(1/\epsilon)$ : Number of tilings  $\mathcal{T}_i$  of area F
- $\gg O(\frac{\epsilon^2 \cdot N}{opt_{1-\delta}})$ : Number of tiles to be considered per tiling
- $\gg O(f(O(1/\delta^2\epsilon^2)))$ : Running time of algorithm A

#### Remarks:

- $\gg$  Running time is linear in N
- $\gg \mathcal{A}$  can even take exponential time, since independent of N



rea Monitoring Conclusion

# - || - Conclusion Summary and Outlook

# Summary and Outlook

#### Area Monitoring

#### Summary

- ≫ Proof of NP completeness
- Framework for exact algorithm
- >> Linear-time approximation scheme

#### Outlook

- >> Implementation of both algorithms
- >> Generalisation to arbitrary (convex) monitoring areas and general metriks (David Steurer - Princeton University)



# Time for questions

# Thank you, for your attention!

#### References

[BermanCa04] P. Berman, G. Calinescu, C. Shah, and A. Zelikovsky, Power efficient monitoring management in sensor networks, in "Wireless Communications and Networking Conference<sup>11</sup>, 2004

[GrötschelLoSc81] M. Grötschel, L. Lovász, and A. Schrijver, The ellipsoid method and its consequences in combinatorial optimization, in "Combinatorica 1 (1981) no. 2", 1981

[MasuyamalbHa81] S. Masuyama, T. Ibaraki, and T. Hasegawa, The computational complexity of the m-center problems on the plane, in "IEICE Transactions 64 (1981) no. 2", 1981

University of Karlsruhe