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Previous Work

Motivation

Automatic analysis of networks requires fast computation of
centrality indices.
The networks grow faster than the speed of our computers so
fast approximation algorithms gain importance.
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Transportation

applications:
e.g. routing
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Graph drawing
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Definition Betweenness Centrality

Let
G = (V ,E) be a weighted directed (multi)-graph,
SPst = set of shortest paths between source s and target t
SPst (v) = set of shortest paths that have v in their interior.

Then the betweenness centrality for node v is

c(v) :=
∑

s,t∈V

σst (v)

σst
, where σst := |SPst | and σst (v) := |SPst (v)| .
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Exact algorithm

Brandes [Brandes01] exact algorithm:
solve single source shortest path problem (SSSP) from
each node
backward aggregation of counter values

s v

w

w′
s v

w

w′

+ =
s v

w

w′

Time requirements:
Θ(nm) for unit distance, otherwise
Θ
(
nm + n2 log(n)

)
.
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Approximation approach

Brandes and Pich [BrandesPich06] approximation algorithm:
choose subset k of starting nodes (pivots)
solve only k single source shortest path problem (SSSP)
extrapolate betweenness values

This yields an unbiased estimator for betweenness.

pivot
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Deficiency of previous approach

Overestimation of betweenness values of nodes near a pivot.

pivot

large overestimation small overestimation "false zero"
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Main idea

Consider the length to the pivot to scale contributions.

pivot

large overestimation small overestimation "false zero"
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Generalized Framework

Parameters:
length function ` on the edges
For a path P = 〈e1, . . . ,ek 〉 let `(P):=

∑
1≤i≤k `(ei)

scaling function f : [0,1]→ [0,1]

Features:
unbiased estimator
focus on differences between approximation methods
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Generalized Framework (continuation)

For each shortest path of the form

〈
Q︷ ︸︸ ︷

s, . . . , v , . . . , t︸ ︷︷ ︸
P

〉

we define a scaled contribution

δP(v):=
f (`(Q)/`(P))

σst

Overall, v gets a contribution from a pivot s

δs(v):=
∑

t∈V

∑
{δP(v) : P ∈ SPst (v)}
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Proposed Parameters

Length function `:
edge weight function used for shortest-path calculation
unit distance

Scaling function f :
Brandes and Pich constant
linear scaling f (x) = x
bisection scaling

f (x) =

{
0 for x ∈ [0,1/2)

1 for x ∈ [1/2,1]

0 1

0

1
0 1 0 1

Brandes and Pich linear scaling bisection scaling
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Linear Time Computation

Brandes [Brandes01]:
compute σst on the fly during the shortest path calculation
subsequent aggregation phase, like exact algorithm

linear scaling:
Let µst denote the shortest path distance from s to t ,
aggregate 1/µst instead of 1, multiply with µsv at the end.

s

t

t′
v

w

1
µst

1
µst′

µsv

(
1

µsw
+ 1

µst
+ 1

µ
st′

)

µsw

(
1

µst
+ 1

µ
st′

)
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Linear Time Computation of bisection scaling

use unit distance
depth first traversal of shortest path DAG, keep an array
storing the current path from s
increment counter of current node v and decrement
counter of middle node v ′

s v′ v

0
⌊

d
2

⌋
− 1 d

`

f

+1−1

Comments:
only efficient for σst ∈ {0,1}
for σst ≥ 2 sampling of shortest paths required
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Overview of used graphs

graph nodes edges source
Belgian road network 463 514 596 119 PTV AG
Belgian road network (unit dist.) 463 514 596 119 PTV AG
Actor co-starring network 392 400 16 557 451 [NotreD]
US patent network 3 774 769 16 518 947 [NBER]
World-Wide-Web graph 325 729 1 497 135 [NotreD]
CNR 2000 Webgraph 325 557 3 216 152 [LabWA]
CiteSeer undir. citation network 268 495 2 313 294 [Citeseer]
CiteSeer co-authorship network 227 320 1 628 268 [Citeseer]
CiteSeer co-paper network 434 102 32 073 440 [Citeseer]
DBLP co-authorship network 299 067 1 955 352 [DBLP]
DBLP co-paper network 540 486 30 491 458 [DBLP]
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Belgium road network
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Belgium road network
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Motivation
Our Contributions

Summary

Summary

The bisection scaling algorithm achieves the best results.

Future work
efficient exact bisection scaling algorithm for σst ≥ 2
local searches to eliminate "false zeros"
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Appendix Additional Experiments

Belgian road network
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Appendix Additional Experiments

Belgian road network (Brandes and Pich)

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

2
3

2
3

24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

pivots for Brandes' algorithm

%
 o

f p
os

si
bl

e 
in

ve
rs

io
ns

Robert Geisberger, Peter Sanders, Dominik Schultes Better Approximation of Betweenness Centrality



Appendix Additional Experiments

Additional networks
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