Algorithm Engineering for Large Graphs

Fast Route Planning

Veit Batz, Robert Geisberger, Dennis Luxen,

Peter Sanders, Christian Vetter

Universität Karlsruhe (TH)

Goals:

Applications:

□ route planning systems in the internet, car navigation systems,

ride sharing, traffic simulation, logistics optimisation

2

Contraction Hierarchies

[WEA 08]

 \Box order nodes by "importance", $V = \{1, 2, \dots, n\}$

 \Box contract nodes in this order, node v is contracted by

foreach *pair* (u, v) *and* (v, w) *of edges* **do if** $\langle u, v, w \rangle$ *is a unique shortest path* **then** \lfloor add shortcut (u, w) with weight $w(\langle u, v, w \rangle)$

node order

☐ query relaxes only edges
to more "important" nodes
⇒ valid due to shortcuts

Contraction Hierarchies

[WEA 08]

]

 \Box order nodes by "importance", $V = \{1, 2, \dots, n\}$

contract nodes in this order, node v is contracted by foreach pair (u, v) and (v, w) of edges do if $\langle u, v, w \rangle$ is a unique shortest path then add shortcut (u, w) with weight $w(\langle u, v, w \rangle)$

☐ query relaxes only edges
to more "important" nodes
⇒ valid due to shortcuts

Node Order

use priority queue of nodes, node *v* is weighted with a linear combination of:

edge difference: #shortcuts – #edges incident to v

uniformity: e.g. #deleted neighbors

_ _ _ _

integrated construction and ordering:

- 1. pop node v on top of the priority queue
- 2. contract node *v*
- 3. update weights of remaining nodes

Saarbrücken to Karlsruhe 299 edges compressed to 13 shortcuts.

Image © 2009 GeoContent Image © 2009 DigitalGlobe © 2009 Cnes/Spot Image © 2009 Tele Atlas

200 Google

Saarbrücken to Karlsruhe

316 settled nodes and 951 relaxed edges

Data SIO, NOAA, U.S. Navy, NGA, GEBGO Image © 2009 Geoimage Austria Image © 2009 GeoContent © 2009 Cnes/SpotImage

Contraction Hierarchies

foundation for our other methods

- conceptually very simple
- handles dynamic scenarios

Static scenario:

- **7.5 min** preprocessing
- 0.21 ms to determine the path length
- 0.56 ms to determine a complete path description
 - little space consumption (23 bytes/node)

8

Transit-Node Routing

[DIMACS Challenge 06, ALENEX 07, Science 07]

joint work with H. Bast, S. Funke, D. Matijevic

very fast queries

(down to 1.7 µs, 3000 000 times faster than DIJKSTRA)

winner of the 9th DIMACS Implementation Challenge

more preprocessing time (2:37 h) and space (263 bytes/node) needed

joint work with S. Knopp, F. Schulz, D. Wagner [ALENEX 07]

efficient many-to-many variant of hierarchical bidirectional algorithms

10000 imes 10000 table in 10s

10

Many-to-Many Shortest Paths

input: sources $S = \{s_1, \ldots, s_n\}$ and targets $T = \{t_1, \ldots, t_m\}$

□ naive algorithm a: perform $\min(n, m)$ Dijkstra one-to-many searches

$$n = m = 10000: 10000 \cdot 5s \approx 13.9h$$

Image: naive algorithm b: perform $n \cdot m$ TNR-queriesT $n = m = 10000: 10000 \cdot 10000 \cdot 1.7 \mu s = 170 s$ Image: naive algorithm: exploit hierarchical nature of CHImage: better algorithm: exploit hierarchical nature of CHImage: naive algorithm set of CHImage: set of the set of th

Many-to-Many Shortest Paths

] perform *n* forward-upward searches from each s_i

 \Box store the distance $d = \delta(s_i, v)$ of each reached node v in buckets

] then perform m backward-upward searches from each t_i

scan buckets at each reached node

correctness of CH ensures that

Ride Sharing

Current approaches:

match only ride offers with identical start/destination (perfect fit)

sometimes radial search around start/destination

Our approach:

 \Box driver picks passenger up and gives him a ride to his destination

find the driver with the minimal detour (reasonable fit)

Efficient algorithm:

adaption of the many-to-many algorithm

 \Rightarrow matches a request to 100 000 offers in \approx 25 ms

Turn Penalties

- convert node-based graph to edge-based graph
- apply speedup technique, e.g. CH
- □ Germany: 1.8 \rightarrow 12 min preprocessing, 200 \rightarrow 422 µs query

0 0

Dynamic Scenarios

change entire cost function

(e.g., use different speed profile)

□ change a few edge weights

(e.g., due to a traffic jam)

Dynamic Scenarios

change a few edge weights

- server scenario: if something changes,
 - update the preprocessed data structures
 - answer many subsequent queries very fast
 - mobile scenario: if something changes,
 - it does not pay to update the data structures
 - perform single 'prudent' query that takes changed situation into account

Mobile Contraction Hierarchies

- highly compressed blocked graph representation
- **compact** route reconstruction data structure
- experiments on a Nokia N800 at 400 MHz
 - **cold query** with empty block cache
 - compute complete path
- recomputation, e.g. if driver took the wrong exit 14 ms
 - query after 1 000 edge-weight changes, e.g. traffic jams 699 ms

- 8 bytes/node
- + 8 bytes/node

Time-Dependent Route Planning

edge weights are travel time functions:

- {time of day \mapsto travel time}
- piecewise linear
- **FIFO**-property \Rightarrow waiting does not help
- \Box query (s, t, τ_0) start, target, departure time

looking for:

a fastest route from s to t depending on τ_0

 \Rightarrow Earliest Arrival Problem

18

Travel Time Functions

we need three operations

- \Box evaluation: $f(\tau)$ "O(1)" time
- \Box merging: $\min(f,g)$
- \Box chaining: f * g (f "after" g)

 $\mathcal{O}(|f|+|g|)$ time

 $\mathcal{O}(|f|+|g|)$ time

note: $\min(f,g)$ and f * g have O(|f| + |g|) points each.

 \Rightarrow increase of complexity

20

Only one difference to standard Dijkstra:

 \Box Cost of relaxed edge (u, v) depends...

 \Box ...on shortest path to u.

Modified Dijkstra:

- Node labels are travel time functions
- \Box Edge relaxation: $f_{\text{new}} := \min(f_{\text{old}}, f_{u,v} * f_u)$
- \Box PQ key is min f_u
- \Rightarrow A label correcting algorithm

Min-Max-Label Search

Approximate version of profile search:

Computes **upper** and **lower bounds**

□ Node labels are pairs $mm_u := (\min f_u, \max f_u)$

Edge relaxation:

 $mm_{new} := \min(mm_{old}, mm_u + (\min f_{u,v}, \max f_{u,v}))$

PQ key is the lower bound

 \Rightarrow A **label correcting** algorithm

Time-Dependent Contraction Hierarchies

two major challenges:

1. contraction during precomputation

witnesses can be found by profile search

...which is straightforward

...but incredibly slow!

- \Rightarrow do something more intelligent!
- 2. bidirectional search

 \Rightarrow problem: arrival time not known

...but can be solved

Sanders et al.: Route Planning **Restricted Profile Search phase 1:** restricts the search space Min-Max-Label Search min-max-label search **Profile Search** U might already find a witness if not: mark a corridor of nodes:

24

- initially mark node w
- for each node v' mark only those two predecessors corresponding to the upper / lower bound
- **phase 2:** profile search only using marked nodes

Bidirectional Time-Dependent Search

phase 1: two alternating searches:

forward: time-dependent Dijkstra

backward: min-max-label search

meeting points are **candidates**

phase 2: from all candidates...

...do time-dependent many-to-one forward Dijkstra

...only using visited edges

...using min/max distances to prune search

25

Experimental Comparision

		PREPROCESSING		QUERIES	
		time	space	time	speed
input	algorithm	[h:m]	[B/n]	[ms]	up
Germany	TCH timed ord	1:48 + 0:14	743	1.19	1 242
midweek	TCH min ord	0:05 + 0:20	1 029	1.22	1 212
Germany	TCH timed ord.	0:38 + 0:07	177	1.07	1 321
Sunday	TCH min ord.	0:05 + 0:06	248	0.71	1 980

Parallel Precomputation

contraction:

contract maximum independent sets of nodes, i.e. nodes that are least important in their 1 hop neighborhood, in parallel

add shortcuts even in case of equality

node order:

- use the current priority terms in the priority queue
- □ use 2-3 hop neighborhood for good results
- use priority terms that rarely decrease on update
- \Rightarrow 6.5x speedup on 8 cores

Summary

static routing in road networks is easy

- → applications that require massive amount or routing
- \rightsquigarrow instantaneous mobile routing
- \leadsto techniques for advanced models

time-dependent routing is fast

- \rightsquigarrow bidirectional time-dependent search
- \rightsquigarrow fast queries
- \rightsquigarrow fast (parallel) precomputation

Current / Future Work

- Multiple objective functions and restrictions (bridge height,...)
- □ Multicriteria optimization (cost, time,...)
- Integrate individual and public transportation
- Other objectives for time-dependent travel
- Routing driven traffic simulation
- Real-time traffic processing for optimal global routing

"Ultimate" Routing in Road Networks?

Massive floating car data \rightsquigarrow accurate current situation

Past data + traffic model + real time simulation

→ Nash euqilibrium predicting near future

time dependent routing in Nashequilibrium ~> realistic traffic-adaptive routing

Yet another step further

traffic steering towards a social optimum

Macroscopic Traffic Simulation

Goals:

fast simulation of traffic in large road networks

based on shortest paths

exploit speedup techniques

Status of implementation:

time independent version as student project

time dependent version under development

Basis for equilibria computation

Nash Equilibria in Road Networks

Computation: Iterative simulation with adapted edge weights

Basic approach (simplified):

Permute set of s - t-pairs

For each s - t-pair (until equilibrium is reached)

- compute path and update weights on its edges

Goals and applications:

Develop model for near future predictions of road traffic

Provide realistic traffic-adaptive routing

Traffic steering towards social optimum

Multi-Criteria Routing

multiple optimization criterias

e.g. distance, time, costs

flexibility at route calculation time
e.g. individual vehicle speeds

diversity of results

e.g. calculate Pareto-optimal results

roundtrips with scenic value

e.g. for tourists

adopt contraction hierarchies to multi-criteria:

modifiv the contraction so the query stays simple

add all necessary shortcuts during contraction

do this by modifying the local search

- linear combination of two: x + ay with $a \in [l, u]$

label is now a function of *x* (see timedependent CH)

- linear combination of more: $a_1x_1 + \cdots + a_nx_n$ with $a_i \in [l_i, u_i]$
- Pareto-optimal (may add too many shortcuts)

 \Rightarrow too many shortcuts needed when done naive

- current speedup-techniques largely rely on hierarchy
- every optimization criterion has a specific influence on the hierarchy of a road network
 - e.g. finding the fastest route contains more hierarchy than finding the shortest route
- however multiple criteria interfere with hierarchy, but the algorithm should work fast on large graphs
 e.g. motorways drop in the hierarchy because of road tolls
- \Rightarrow new algorithmic ideas necessary