
Algorithm Engineering for Large Graphs

Fast Route Planning

Veit Batz, Robert Geisberger, Dennis Luxen,

Peter Sanders, Christian Vetter

Universität Karlsruhe (TH)

Sanders et al.: Route Planning 2

Route Planning

?

Goals:

¤ exact shortest paths in large (time-dependent) road networks

¤ fast queries (point-to-point, many-to-many)

¤ fast preprocessing

¤ low space consumption

¤ fast update operations

Applications:

¤ route planning systems in the internet, car navigation systems,

¤ ride sharing, traffic simulation, logistics optimisation

1

1

1

1

1

v

Sanders et al.: Route Planning 3

Contraction Hierarchies
[WEA 08]

¤ order nodes by “importance”, V = {1,2, . . . ,n}
¤ contract nodes in this order, node v is contracted by

foreach pair (u,v) and (v,w) of edges do
if 〈u,v,w〉 is a unique shortest path then

add shortcut (u,w) with weight w(〈u,v,w〉)

¤ query relaxes only edges

to more “important” nodes

⇒ valid due to shortcuts
2

1 2

2

6

1

4

3

5

3

3

5

8

s

t

n
o
d
e

o
r
d
e
r

2

2

2

1

1

1

1

1

v

Sanders et al.: Route Planning 4

Contraction Hierarchies
[WEA 08]

¤ order nodes by “importance”, V = {1,2, . . . ,n}
¤ contract nodes in this order, node v is contracted by

foreach pair (u,v) and (v,w) of edges do
if 〈u,v,w〉 is a unique shortest path then

add shortcut (u,w) with weight w(〈u,v,w〉)

¤ query relaxes only edges

to more “important” nodes

⇒ valid due to shortcuts
2

1 2

2

6

1

4

3

5

3

3

5

8

s

t

n
o
d
e

o
r
d
e
r

2

2

2

1

1

1

1

1

v

Sanders et al.: Route Planning 5

Node Order

use priority queue of nodes, node v is weighted with a linear

combination of:

¤ edge difference: #shortcuts – #edges incident to v

¤ uniformity: e.g. #deleted neighbors

¤ . . .

integrated construction and ordering:

1. pop node v on top of the priority queue

2. contract node v

3. update weights of remaining nodes

Saarbrücken to Karlsruhe
299 edges compressed to 13 shortcuts.

Saarbrücken to Karlsruhe

316 settled nodes and 951 relaxed edges

Sanders et al.: Route Planning 8

Contraction Hierarchies

¤ foundation for our other methods

¤ conceptually very simple

¤ handles dynamic scenarios

Static scenario:

¤ 7.5 min preprocessing

¤ 0.21 ms to determine the path length

¤ 0.56 ms to determine a complete path description

¤ little space consumption (23 bytes/node)

Sanders et al.: Route Planning 9

Transit-Node Routing

[DIMACS Challenge 06, ALENEX 07, Science 07]

joint work with H. Bast, S. Funke, D. Matijevic

¤ very fast queries

(down to 1.7 µs, 3 000 000 times faster than DIJKSTRA)

¤ winner of the 9th DIMACS Implementation Challenge

¤ more preprocessing time (2:37 h) and space (263 bytes/node) needed

s t SciAm50 Award

Sanders et al.: Route Planning 10

Many-to-Many Shortest Paths

joint work with S. Knopp, F. Schulz, D. Wagner

[ALENEX 07]

¤ efficient many-to-many variant of

hierarchical bidirectional algorithms

¤ 10 000× 10 000 table in 10s

S

T

Sanders et al.: Route Planning 11

Many-to-Many Shortest Paths

¤ input: sources S = {s1, . . . ,sn} and targets T = {t1, . . . , tm}
¤ naive algorithm a: perform min(n,m) Dijkstra one-to-many

searches

n = m = 10000: 10000 ·5s≈ 13.9h

¤ naive algorithm b: perform n ·m TNR-queries

n = m = 10000: 10000 ·10000 ·1.7µs = 170s

¤ better algorithm: exploit hierarchical nature of CH

S

T

Sanders et al.: Route Planning 12

Many-to-Many Shortest Paths

¤ perform n forward-upward searches from each si

¤ store the distance d = δ(si,v) of each reached node v in buckets

¤ then perform m backward-upward searches from each t j

¤ scan buckets at each reached node

¤ correctness of CH ensures that

d(si, t j) = min
v reached

(δ(si,v)+δ(v, t j))

si tj
si, d

d

. . .

v

Sanders et al.: Route Planning 13

Ride Sharing

Current approaches:

¤ match only ride offers with identical start/destination (perfect fit)

¤ sometimes radial search around start/destination

Our approach:

¤ driver picks passenger up and gives him a ride to his destination

¤ find the driver with the minimal detour (reasonable fit)

Efficient algorithm:

¤ adaption of the many-to-many algorithm

⇒ matches a request to 100 000 offers in≈ 25 ms

Sanders et al.: Route Planning 14

Turn Penalties

¤ convert node-based graph to edge-based graph

¤ apply speedup technique, e.g. CH

¤ Germany: 1.8→ 12 min preprocessing, 200→ 422 µs query

e1 e3

e4e2

e5 e6

e7

v1 v2 v3

v4

v1

e1

v3

e7

e2

e3

v2

e4

e5 e6

v4

node-based graph edge-based graph

Sanders et al.: Route Planning 15

Dynamic Scenarios

¤ change entire cost function

(e.g., use different speed profile)

¤ change a few edge weights

(e.g., due to a traffic jam)

Sanders et al.: Route Planning 16

Dynamic Scenarios

change a few edge weights

¤ server scenario: if something changes,

– update the preprocessed data structures

– answer many subsequent queries very fast

¤ mobile scenario: if something changes,

– it does not pay to update the data structures

– perform single ‘prudent’ query that

takes changed situation into account

Sanders et al.: Route Planning 17

Mobile Contraction Hierarchies
[ESA 08]

¤ preprocess data on a personal computer

¤ highly compressed blocked graph representation 8 bytes/node

¤ compact route reconstruction data structure + 8 bytes/node

experiments on a Nokia N800 at 400 MHz

¤ cold query with empty block cache 56 ms

¤ compute complete path 73 ms

¤ recomputation, e.g. if driver took the wrong exit 14 ms

¤ query after 1 000 edge-weight changes, e.g. traffic jams 699 ms

Sanders et al.: Route Planning 18

Time-Dependent Route Planning

¤ edge weights are travel time functions:

- {time of day 7→ travel time}

- piecewise linear

- FIFO-property⇒ waiting does not help

¤ query (s, t,τ0) — start, target, departure time

¤ looking for:

a fastest route from s to t depending on τ0

⇒ Earliest Arrival Problem

Sanders et al.: Route Planning 19

Travel Time Functions

we need three operations

¤ evaluation: f (τ) “O(1)” time

¤ merging: min(f ,g) O(| f |+ |g|) time

¤ chaining: f ∗g (f “after” g) O(| f |+ |g|) time

note: min(f ,g) and f ∗g have O(| f |+ |g|) points each.

⇒ increase of complexity

τ
g f

f * g

Sanders et al.: Route Planning 20

Time-Dependent Dijkstra

Only one difference to standard Dijkstra:

¤ Cost of relaxed edge (u,v) depends...

¤ ...on shortest path to u.

s

v

u

2τ1τ

Sanders et al.: Route Planning 21

Profile Search

Modified Dijkstra:

¤ Node labels are travel time functions

¤ Edge relaxation: fnew := min(fold, fu,v ∗ fu)

¤ PQ key is min fu

⇒ A label correcting algorithm

f
u,v

f
u

f
old

s

v

u

Sanders et al.: Route Planning 22

Min-Max-Label Search

Approximate version of profile search:

¤ Computes upper and lower bounds

¤ Node labels are pairs mmu := (min fu,max fu)

¤ Edge relaxation:

mmnew := min(mmold,mmu +(min fu,v,max fu,v))

¤ PQ key is the lower bound

⇒ A label correcting algorithm

) =min(,

f
u,v

s

v

u

mm

mm

u

old

Sanders et al.: Route Planning 23

Time-Dependent Contraction Hierarchies

two major challenges:

1. contraction during precomputation

witnesses can be found by profile search

...which is straightforward

...but incredibly slow!

⇒ do something more intelligent!

2. bidirectional search

⇒ problem: arrival time not known

...but can be solved

Sanders et al.: Route Planning 24

Restricted Profile Search

phase 1: restricts the search space

¤ min-max-label search

¤ might already find a witness

¤ if not: mark a corridor of nodes:

– initially mark node w

– for each node v′ mark only those two predecessors

corresponding to the upper / lower bound

phase 2: profile search only using marked nodes

u

v

w

Min−Max−Label Search

Profile Search

Sanders et al.: Route Planning 25

Bidirectional Time-Dependent Search

phase 1: two alternating searches:

¤ forward: time-dependent Dijkstra

¤ backward: min-max-label search

¤ meeting points are candidates

phase 2: from all candidates...

...do time-dependent many-to-one forward Dijkstra

...only using visited edges

...using min/max distances to prune search

time = τ0

s t

time = ?

u

Sanders et al.: Route Planning 26

Experimental Comparision

PREPROCESSING QUERIES

time space time speed

input algorithm [h:m] [B/n] [ms] up

Germany TCH timed ord 1:48 + 0:14 743 1.19 1 242

midweek TCH min ord 0:05 + 0:20 1 029 1.22 1 212

Germany TCH timed ord. 0:38 + 0:07 177 1.07 1 321

Sunday TCH min ord. 0:05 + 0:06 248 0.71 1 980

Sanders et al.: Route Planning 27

Parallel Precomputation

contraction:

¤ contract maximum independent sets of nodes, i.e. nodes that are

least important in their 1 hop neighborhood, in parallel

¤ add shortcuts even in case of equality

node order:

¤ use the current priority terms in the priority queue

¤ use 2-3 hop neighborhood for good results

¤ use priority terms that rarely decrease on update

⇒ 6.5x speedup on 8 cores

Sanders et al.: Route Planning 28

Summary

static routing in road networks is easy

Ã applications that require massive amount or routing

Ã instantaneous mobile routing

Ã techniques for advanced models

time-dependent routing is fast

Ã bidirectional time-dependent search

Ã fast queries

Ã fast (parallel) precomputation

Sanders et al.: Route Planning 29

Current / Future Work

¤ Multiple objective functions and restrictions (bridge height,. . .)

¤ Multicriteria optimization (cost, time,. . .)

¤ Integrate individual and public transportation

¤ Other objectives for time-dependent travel

¤ Routing driven traffic simulation

¤ Real-time traffic processing for optimal global routing

Sanders et al.: Route Planning 30

“Ultimate” Routing in Road Networks?

Massive floating car data Ã accurate current situation

Past data + traffic model + real time simulation

Ã Nash euqilibrium predicting near future

time dependent routing in Nashequilibrium

Ã realistic traffic-adaptive routing

Yet another step further

traffic steering towards a social optimum

Sanders et al.: Route Planning 31

Macroscopic Traffic Simulation
Goals:

¤ fast simulation of traffic in large road networks

¤ based on shortest paths

¤ exploit speedup techniques

Status of implementation:
time independent version as student project

time dependent version under development

Basis for equilibria computation

Sanders et al.: Route Planning 32

Nash Equilibria in Road Networks

Computation: Iterative simulation with adapted edge weights

Basic approach (simplified):

¤ Permute set of s− t-pairs

¤ For each s− t-pair (until equilibrium is reached)

- compute path and update weights on its edges

Goals and applications:

¤ Develop model for near future predictions of road traffic

¤ Provide realistic traffic-adaptive routing

¤ Traffic steering towards social optimum

Sanders et al.: Route Planning 33

Multi-Criteria Routing

¤ multiple optimization criterias

e.g. distance, time, costs

¤ flexibility at route calculation time

e.g. individual vehicle speeds

¤ diversity of results

e.g. calculate Pareto-optimal results

¤ roundtrips with scenic value

e.g. for tourists

Sanders et al.: Route Planning 34

Current State

adopt contraction hierarchies to multi-criteria:

¤ modifiy the contraction so the query stays simple

¤ add all necessary shortcuts during contraction

¤ do this by modifying the local search

– linear combination of two: x+ay with a ∈ [l,u]
label is now a function of x (see timedependent CH)

– linear combination of more: a1x1 + · · ·+anxn with ai ∈ [li,ui]

– Pareto-optimal (may add too many shortcuts)

⇒ too many shortcuts needed when done naive

Sanders et al.: Route Planning 35

Challenges

¤ current speedup-techniques largely rely on hierarchy

¤ every optimization criterion has a specific influence on the

hierarchy of a road network

e.g. finding the fastest route contains more hierarchy than finding

the shortest route

¤ however multiple criteria interfere with hierarchy, but the algorithm

should work fast on large graphs

e.g. motorways drop in the hierarchy because of road tolls

⇒ new algorithmic ideas necessary

