
Algorithm Engineering for Large Graphs

Fast Route Planning

Veit Batz, Robert Geisberger, Dennis Luxen,

Peter Sanders, Christian Vetter

Universität Karlsruhe (TH)

Zurich, October 22, 2008

Sanders et al.: Route Planning 2

Route Planning

?

Goals:

¤ exact shortest (i.e. fastest) paths in large road networks

¤ fast queries (point-to-point, many-to-many)

¤ fast preprocessing

¤ low space consumption

¤ fast update operations

Applications:

¤ route planning systems in the internet, car navigation systems,

¤ ride sharing, traffic simulation, logistics optimisation

Sanders et al.: Route Planning 3

Overview

¤ Exact Contraction Hierarchies – a very simple approach

¤ Transit Node Routing – getting really fast

¤ Mobile Contraction Hierarchies

¤ Many-to-many Routing

¤ Ride Sharing

¤ Dynamic Scenario

¤ Time-dependent Contraction Hierarchies

¤ Future Work

Sanders et al.: Route Planning 4

Contraction Hierarchies (CH)

2
1 2

2

6

1

4

3

5

3

3
5

8

2

Sanders et al.: Route Planning 5

Main Idea

Contraction Hierarchies (CH)
I contract only one node at a time
⇒ local and cache-efficient operation

in more detail:
I order nodes by “importance”, V = {1, 2, . . . , n}
I contract nodes in this order, node v is contracted by

foreach pair (u, v) and (v , w) of edges do
if 〈u, v , w〉 is a unique shortest path then

add shortcut (u, w) with weight w(〈u, v , w〉)

I query relaxes only edges to more “important” nodes
⇒ valid due to shortcuts

Sanders et al.: Route Planning 6

Example: Construction

2 3 2 1 2
2 6 1 3 54

Sanders et al.: Route Planning 7

Example: Construction

2

3 2

1 2
2 6

1

4 3 5
5

Sanders et al.: Route Planning 8

Example: Construction

2

1 2

2

6

1

4 3 5
5

3 2

Sanders et al.: Route Planning 9

Example: Construction

2
1 2

2

6

1

4

3

5
5

3 2

3

Sanders et al.: Route Planning 10

Example: Construction

2
2

2

6

1

4

3

5

3

2

3

8

1

5

Sanders et al.: Route Planning 11

Example: Construction

2
1 2

2

6

1

4

3

5

3

3
5

8

2

Sanders et al.: Route Planning 12

Construction

to identify necessary shortcuts
I local searches from all nodes u with incoming edge (u, v)

I ignore node v at search
I add shortcut (u, w) iff found distance

d(u, w) > w(u, v) + w(v , w)

1

1

1
1

1
v

Sanders et al.: Route Planning 13

Construction

to identify necessary shortcuts
I local searches from all nodes u with incoming edge (u, v)

I ignore node v at search
I add shortcut (u, w) iff found distance

d(u, w) > w(u, v) + w(v , w)

2

2

1

1

1
1

1
v

Sanders et al.: Route Planning 14

Node Order

use priority queue of nodes, node v is weighted with a linear
combination of:

I edge difference #shortcuts – #edges incident to v
I uniformity e.g. #deleted neighbors
I . . .

2

2

1

1

1
1

1
v

2 − 3 = −1

integrated construction and ordering:
1. remove node v on top of the priority queue
2. contract node v
3. update weights of remaining nodes

Sanders et al.: Route Planning 15

Query

I modified bidirectional Dijkstra algorithm
I upward graph G↑:= (V , E↑) with E↑:= {(u, v) ∈ E : u < v}

downward graph G↓:= (V , E↓) with E↓:= {(u, v) ∈ E : u > v}
I forward search in G↑ and backward search in G↓

2
1 2

2

6

1

4

3

5

3

3
5

8

s

t

n
o
d
e

o
rd

e
r

2

Sanders et al.: Route Planning 16

Query

I modified bidirectional Dijkstra algorithm
I upward graph G↑:= (V , E↑) with E↑:= {(u, v) ∈ E : u < v}

downward graph G↓:= (V , E↓) with E↓:= {(u, v) ∈ E : u > v}
I forward search in G↑ and backward search in G↓

2
1 2

2

6

1

4

3

5

3

3
5

8

s

t

n
o
d
e

o
rd

e
r

2

Sanders et al.: Route Planning 17

Query

I modified bidirectional Dijkstra algorithm
I upward graph G↑:= (V , E↑) with E↑:= {(u, v) ∈ E : u < v}

downward graph G↓:= (V , E↓) with E↓:= {(u, v) ∈ E : u > v}
I forward search in G↑ and backward search in G↓

2
1 2

2

6

1

4

3

5

3

3
5

8

s

t

n
o
d
e

o
rd

e
r

2

Sanders et al.: Route Planning 18

Query

I modified bidirectional Dijkstra algorithm
I upward graph G↑:= (V , E↑) with E↑:= {(u, v) ∈ E : u < v}

downward graph G↓:= (V , E↓) with E↓:= {(u, v) ∈ E : u > v}
I forward search in G↑ and backward search in G↓

2
1 2

2

6

1

4

3

5

3

3
5

8

s

t

n
o
d
e

o
rd

e
r

2

Sanders et al.: Route Planning 19

Outputting Paths

I for a shortcut (u, w) of a path 〈u, v , w〉,
store middle node v with the edge

I expand path by recursively replacing a
shortcut with its originating edges

2
3

2

5
1 23

8

n
o
d
e

o
rd

e
r

2

5

s

t

6

1

4
3

s t

u
n
p
a
ck

p
a
th

2 8

2

2

2

5 3

3

3

2

2 1 2

3

2 6 1 3 54

2 6 1 54

2 6 54

2 6 5

Sanders et al.: Route Planning 20

Stall-on-Demand

I v can be “stalled” by u (if d(u) + w(u, v) < d(v))
I stalling can propagate to adjacent nodes
I search is not continued from stalled nodes

3

6

1
s

n
o
d
e

o
rd

e
r

v 2

u

w

7

I does not invalidate correctness (only suboptimal paths are
stalled)

Sanders et al.: Route Planning 21

Experiments

environment
I AMD Opteron Processor 270 at 2.0 GHz
I 8 GB main memory
I GNU C++ compiler 4.2.1

test instance
I road network of Western Europe (PTV)
I 18 029 721 nodes
I 42 199 587 directed edges

Sanders et al.: Route Planning 22

Performance

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●
●

E ED EDL EDSL EDS5 EDS1235 EVSQL EVSWQL
economical aggressive

50
0

10
00

20
00

40
00

80
00

16
00

0

10
0

15
0

20
0

30
0

40
0

60
0

no
de

 o
rd

er
in

g
[s

]

qu
er

y
[µµ

s]

method

E
D
L
S
i
V
Q
W

edge difference
deleted neighbors
limit search space on weight calculation
search space size
(digits) hop limits for testing shortcuts
Voronoi region size

upper bound on edges in search path
relative betweenness

HNR: 594 s / 802 µs

Sanders et al.: Route Planning 23

Worst Case Costs
1

10
0

10
−

12
10

−
10

10
−

8
10

−
6

10
−

4
10

−
2

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200

settled nodes

%
 o

f s
ea

rc
he

s

CH aggr. (max. 884)
CH eco. (max. 1012)
HNR (max. 2148)

Sanders et al.: Route Planning 24

Contraction Hierarchies

¤ foundation for our other methods

¤ conceptually very simple

¤ handles dynamic scenarios

Static scenario:

¤ 7.5 min preprocessing

¤ 0.21 ms to determine the path length

¤ 0.56 ms to determine a complete path description

¤ little space consumption (23 bytes/node)

Sanders et al.: Route Planning 25

Transit-Node Routing

[DIMACS Challenge 06, ALENEX 07, Science 07]

joint work with H. Bast, S. Funke, D. Matijevic

¤ very fast queries

(down to 1.7 µs, 3 000 000 times faster than DIJKSTRA)

¤ winner of the 9th DIMACS Implementation Challenge

¤ more preprocessing time (2:37 h) and space (263 bytes/node) needed

s t SciAm50 Award

Sanders et al.: Route Planning 26

Mobile Contraction Hierarchies
[ESA 08]

¤ preprocess data on a personal computer

¤ highly compressed blocked graph representation 8 bytes/node

¤ compact route reconstruction data structure + 8 bytes/node

experiments on a Nokia N800 at 400 MHz

¤ cold query with empty block cache 56 ms

¤ compute complete path 73 ms

¤ recomputation, e.g. if driver took the wrong exit 14 ms

Sanders et al.: Route Planning 27

Many-to-Many Shortest Paths

joint work with S. Knopp, F. Schulz, D. Wagner

[ALENEX 07]

¤ efficient many-to-many variant of

hierarchical bidirectional algorithms

¤ 10 000 × 10 000 table in 10s

S

T

Sanders et al.: Route Planning 28

Ride Sharing

Current approaches:

¤ match only ride offers with identical start/destination (perfect fit)

¤ sometimes radial search around start/destination

Our approach:

¤ driver picks passenger up and gives him a ride to his destination

¤ find the driver with the minimal detour (reasonable fit)

Efficient algorithm:

¤ adaption of the many-to-many algorithm

Sanders et al.: Route Planning 29

Highway-Node Routing

[WEA 07]
¤ generalization of contraction hierarchies

¤ allow multiple nodes in the same ‘importance’-level

i.e., select node sets S1 ⊇ S2 ⊇ S3 . . .

¤ construct multi-level overlay graph

¤ perform multi-level query

¤ designed for dynamic scenarios

Sanders et al.: Route Planning 30

Overlay Graph

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

¤ graph G = (V,E) is given

¤ select node subset S⊆V

Sanders et al.: Route Planning 31

Overlay Graph

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

¤ graph G = (V,E) is given

¤ select node subset S⊆V

¤ overlay graph G′ := (S,E′) where

E′ := {(s, t) ∈ S×S| no inner node of the shortest s-t-path belongs to S}

Sanders et al.: Route Planning 32

Dynamic Scenarios

¤ change entire cost function

(e.g., use different speed profile)

¤ change a few edge weights

(e.g., due to a traffic jam)

Sanders et al.: Route Planning 33

Constancy of Structure

Assumption:

¤ structure of road network does not change

(no new roads, road removal = set weight to ∞)

Ã not a significant restriction

¤ classification of nodes by ‘importance’ might be slightly perturbed,

but not completely changed

(e.g., a sports car and a truck both prefer motorways)

Ã performance of our approach relies on that

(not the correctness)

Sanders et al.: Route Planning 34

Dynamic Highway-Node Routing

change entirecost function

¤ keep the node sets S1 ⊇ S2 ⊇ S3 . . .

¤ recompute the overlay graphs

speed profile default fast car slow car slow truck distance

constr. [min] 1:40 1:41 1:39 1:36 3:56

query [ms] 1.17 1.20 1.28 1.50 35.62

#settled nodes 1 414 1 444 1 507 1 667 7 057

Sanders et al.: Route Planning 35

Dynamic Highway-Node Routing

change afew edge weights

¤ server scenario:if something changes,

– update the preprocessed data structures

– answer many subsequent queries very fast

¤ mobile scenario:if something changes,

– it does not pay to update the data structures

– perform single ‘prudent’ query that

takes changed situation into account

Sanders et al.: Route Planning 36

Dynamic Highway-Node Routing

change afew edge weights, server scenario

¤ keep the node sets S1 ⊇ S2 ⊇ S3 . . .

¤ recompute only possibly affected parts of the overlay graphs

– the computation of the level-ℓ overlay graph consists of

|Sℓ| local searches to determine the respective covering nodes

– if the initial local search from v∈ Sℓ has not touched a now

modified edge (u,x), that local search need not be repeated

– we manage sets Aℓ
u = {v∈ Sℓ | v’s level-ℓ preprocessing

might be affected when an edge (u,x) changes}

Sanders et al.: Route Planning 37

Dynamic Highway-Node Routing

change afew edge weights, server scenario

Road Type

U
pd

at
e

T
im

e
[m

s]

0.
1

1
10

10
0

0.
1

1
10

10
0

any motorway national regional urban

add traffic jam
cancel traffic jam
block road

Sanders et al.: Route Planning 38

Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

1. keep the node sets S1 ⊇ S2 ⊇ S3 . . .

2. keep the overlay graphs

3. C := all changed edges

4. use the sets Aℓ
u (considering edges in C) to determine for each

node v a reliable level r(v)

5. during a query, at node v

¤ do not use edges that have been created in some level > r(v)

¤ instead, downgrade the search to level r(v) (forward search only)

Sanders et al.: Route Planning 39

Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

∈
−→
G ∈

←−
G

s t

Level 1

Level 2

Level 0x

x

s1 s2 t2 t1

s1 t1

s2 t2

s2 t2

reliable levels: r(x) = 0, r(s2) = r(t2) = 1

Sanders et al.: Route Planning 40

Level 0
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7

Sanders et al.: Route Planning 41

Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

iterative variant (provided that only edge weight increases allowed)

1. keep everything (as before)

2. C := /0

3. use the sets Aℓ
u (considering edges in C) to determine for each

node v a reliable level r(v) (as before)

4. ‘prudent’ query (as before)

5. if shortest path P does not contain a changed edge, we are done

6. otherwise: add changed edges on P to C, repeat from 3.

Sanders et al.: Route Planning 42

Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

single pass iterative

|change set| affected query time query time #iterations

(motorway edges) queries [ms] [ms] avg max

1 0.4 % 2.3 1.5 1.0 2

10 5.8 % 8.5 1.7 1.1 3

100 40.0 % 47.1 3.6 1.4 5

1 000 83.7 % 246.3 25.3 2.7 9

Sanders et al.: Route Planning 43

Summary

static routing in road networks is easy

Ã applications that require massive amount or routing

Ã instantaneous mobile routing

Ã techniques for advanced models

Ã updating a few edge weights is OK

Sanders et al.: Route Planning 44

Current / Future Work

¤ Time-dependent edge weights

challenge: backward search impossible (?)

¤ Multiple objective functions and restrictions (bridge height,. . .)

¤ Multicriteria optimization (cost, time,. . .)

¤ Integrate individual and public transportation

¤ Other objectives for time-dependent travel

¤ Routing driven traffic simulation

