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Route Planning

?

Goals:

¤ exact shortest (i.e. fastest) paths in large road networks

¤ fast queries (point-to-point, many-to-many)

¤ fast preprocessing

¤ low space consumption

¤ fast update operations

Applications:

¤ route planning systems in the internet, car navigation systems,

¤ ride sharing, traffic simulation, logistics optimisation
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Overview

¤ Exact Contraction Hierarchies – a very simple approach

¤ Transit Node Routing – getting really fast

¤ Mobile Contraction Hierarchies

¤ Many-to-many Routing

¤ Ride Sharing

¤ Dynamic Scenario

¤ Time-dependent Contraction Hierarchies

¤ Future Work
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Contraction Hierarchies (CH)
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Main Idea

Contraction Hierarchies (CH)
I contract only one node at a time
⇒ local and cache-efficient operation

in more detail:
I order nodes by “importance”, V = {1, 2, . . . , n}
I contract nodes in this order, node v is contracted by

foreach pair (u, v) and (v , w) of edges do
if 〈u, v , w〉 is a unique shortest path then

add shortcut (u, w) with weight w(〈u, v , w〉)

I query relaxes only edges to more “important” nodes
⇒ valid due to shortcuts
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Example: Construction
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Construction

to identify necessary shortcuts
I local searches from all nodes u with incoming edge (u, v)

I ignore node v at search
I add shortcut (u, w) iff found distance

d(u, w) > w(u, v) + w(v , w)
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Node Order

use priority queue of nodes, node v is weighted with a linear
combination of:

I edge difference #shortcuts – #edges incident to v
I uniformity e.g. #deleted neighbors
I . . .
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2 − 3 = −1

integrated construction and ordering:
1. remove node v on top of the priority queue
2. contract node v
3. update weights of remaining nodes
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Query

I modified bidirectional Dijkstra algorithm
I upward graph G↑:= (V , E↑) with E↑:= {(u, v) ∈ E : u < v}

downward graph G↓:= (V , E↓) with E↓:= {(u, v) ∈ E : u > v}
I forward search in G↑ and backward search in G↓
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Outputting Paths

I for a shortcut (u, w) of a path 〈u, v , w〉,
store middle node v with the edge

I expand path by recursively replacing a
shortcut with its originating edges
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Stall-on-Demand

I v can be “stalled” by u (if d(u) + w(u, v) < d(v))
I stalling can propagate to adjacent nodes
I search is not continued from stalled nodes
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I does not invalidate correctness (only suboptimal paths are
stalled)
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Experiments

environment
I AMD Opteron Processor 270 at 2.0 GHz
I 8 GB main memory
I GNU C++ compiler 4.2.1

test instance
I road network of Western Europe (PTV)
I 18 029 721 nodes
I 42 199 587 directed edges
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Performance
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Worst Case Costs
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Contraction Hierarchies

¤ foundation for our other methods

¤ conceptually very simple

¤ handles dynamic scenarios

Static scenario:

¤ 7.5 min preprocessing

¤ 0.21 ms to determine the path length

¤ 0.56 ms to determine a complete path description

¤ little space consumption (23 bytes/node)
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Transit-Node Routing

[DIMACS Challenge 06, ALENEX 07, Science 07]

joint work with H. Bast, S. Funke, D. Matijevic

¤ very fast queries

(down to 1.7 µs, 3 000 000 times faster than DIJKSTRA)

¤ winner of the 9th DIMACS Implementation Challenge

¤ more preprocessing time (2:37 h) and space (263 bytes/node) needed

s t SciAm50 Award
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Mobile Contraction Hierarchies
[ESA 08]

¤ preprocess data on a personal computer

¤ highly compressed blocked graph representation 8 bytes/node

¤ compact route reconstruction data structure + 8 bytes/node

experiments on a Nokia N800 at 400 MHz

¤ cold query with empty block cache 56 ms

¤ compute complete path 73 ms

¤ recomputation, e.g. if driver took the wrong exit 14 ms
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Many-to-Many Shortest Paths

joint work with S. Knopp, F. Schulz, D. Wagner

[ALENEX 07]

¤ efficient many-to-many variant of

hierarchical bidirectional algorithms

¤ 10 000 × 10 000 table in 10s

S

T
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Ride Sharing

Current approaches:

¤ match only ride offers with identical start/destination (perfect fit)

¤ sometimes radial search around start/destination

Our approach:

¤ driver picks passenger up and gives him a ride to his destination

¤ find the driver with the minimal detour (reasonable fit)

Efficient algorithm:

¤ adaption of the many-to-many algorithm
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Highway-Node Routing

[WEA 07]
¤ generalization of contraction hierarchies

¤ allow multiple nodes in the same ‘importance’-level

i.e., select node sets S1 ⊇ S2 ⊇ S3 . . .

¤ construct multi-level overlay graph

¤ perform multi-level query

¤ designed for dynamic scenarios
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Overlay Graph

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

¤ graph G = (V,E) is given

¤ select node subset S⊆V
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Overlay Graph

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

¤ graph G = (V,E) is given

¤ select node subset S⊆V

¤ overlay graph G′ := (S,E′) where

E′ := {(s, t) ∈ S×S| no inner node of the shortest s-t-path belongs to S}
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Dynamic Scenarios

¤ change entire cost function

(e.g., use different speed profile)

¤ change a few edge weights

(e.g., due to a traffic jam)



Sanders et al.: Route Planning 33

Constancy of Structure

Assumption:

¤ structure of road network does not change

(no new roads, road removal = set weight to ∞)

Ã not a significant restriction

¤ classification of nodes by ‘importance’ might be slightly perturbed,

but not completely changed

(e.g., a sports car and a truck both prefer motorways)

Ã performance of our approach relies on that

(not the correctness)
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Dynamic Highway-Node Routing

change entirecost function

¤ keep the node sets S1 ⊇ S2 ⊇ S3 . . .

¤ recompute the overlay graphs

speed profile default fast car slow car slow truck distance

constr. [min] 1:40 1:41 1:39 1:36 3:56

query [ms] 1.17 1.20 1.28 1.50 35.62

#settled nodes 1 414 1 444 1 507 1 667 7 057
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Dynamic Highway-Node Routing

change afew edge weights

¤ server scenario:if something changes,

– update the preprocessed data structures

– answer many subsequent queries very fast

¤ mobile scenario:if something changes,

– it does not pay to update the data structures

– perform single ‘prudent’ query that

takes changed situation into account
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Dynamic Highway-Node Routing

change afew edge weights, server scenario

¤ keep the node sets S1 ⊇ S2 ⊇ S3 . . .

¤ recompute only possibly affected parts of the overlay graphs

– the computation of the level-ℓ overlay graph consists of

|Sℓ| local searches to determine the respective covering nodes

– if the initial local search from v∈ Sℓ has not touched a now

modified edge (u,x), that local search need not be repeated

– we manage sets Aℓ
u = {v∈ Sℓ | v’s level-ℓ preprocessing

might be affected when an edge (u,x) changes}
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Dynamic Highway-Node Routing

change afew edge weights, server scenario
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Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

1. keep the node sets S1 ⊇ S2 ⊇ S3 . . .

2. keep the overlay graphs

3. C := all changed edges

4. use the sets Aℓ
u (considering edges in C ) to determine for each

node v a reliable level r(v)

5. during a query, at node v

¤ do not use edges that have been created in some level > r(v)

¤ instead, downgrade the search to level r(v) (forward search only)
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Dynamic Highway-Node Routing

change afew edge weights, mobile scenario
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Level 0
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Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

iterative variant (provided that only edge weight increases allowed)

1. keep everything (as before)

2. C := /0

3. use the sets Aℓ
u (considering edges in C ) to determine for each

node v a reliable level r(v) (as before)

4. ‘prudent’ query (as before)

5. if shortest path P does not contain a changed edge, we are done

6. otherwise: add changed edges on P to C, repeat from 3.
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Dynamic Highway-Node Routing

change afew edge weights, mobile scenario

single pass iterative

|change set| affected query time query time #iterations

(motorway edges) queries [ms] [ms] avg max

1 0.4 % 2.3 1.5 1.0 2

10 5.8 % 8.5 1.7 1.1 3

100 40.0 % 47.1 3.6 1.4 5

1 000 83.7 % 246.3 25.3 2.7 9
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Summary

static routing in road networks is easy

Ã applications that require massive amount or routing

Ã instantaneous mobile routing

Ã techniques for advanced models

Ã updating a few edge weights is OK
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Current / Future Work

¤ Time-dependent edge weights

challenge: backward search impossible (?)

¤ Multiple objective functions and restrictions (bridge height,. . . )

¤ Multicriteria optimization (cost, time,. . . )

¤ Integrate individual and public transportation

¤ Other objectives for time-dependent travel

¤ Routing driven traffic simulation


