## Algorithm Engineering for Large Graphs

## **Fast Route Planning**

Veit Batz, Robert Geisberger, Dennis Luxen,

Peter Sanders, Christian Vetter

Universität Karlsruhe (TH)



## **Route Planning**

#### **Goals:**

- exact shortest (i.e. fastest) paths in large road networks
- fast queries (point-to-point, many-to-many)
- fast preprocessing
- low space consumption
- fast update operations

# nany)

## **Applications:**

- route planning systems in the internet, car navigation systems,
- ride sharing, traffic simulation, logistics optimisation

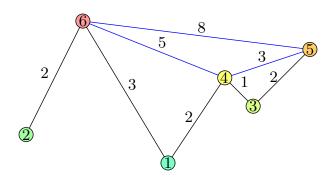


## Overview

| Exact Contraction Hierarchies – a very simple approach |
|--------------------------------------------------------|
| ☐ Transit Node Routing – getting really fast           |
| ■ Mobile Contraction Hierarchies                       |
| Many-to-many Routing                                   |
| ☐ Ride Sharing                                         |
| Dynamic Scenario                                       |
| ☐ Time-dependent Contraction Hierarchies               |
| Future Work                                            |



#### **Contraction Hierarchies (CH)**



#### Main Idea



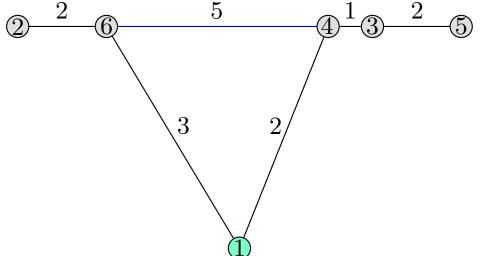
#### **Contraction Hierarchies (CH)**

contract only one node at a time
 local and cache-efficient operation

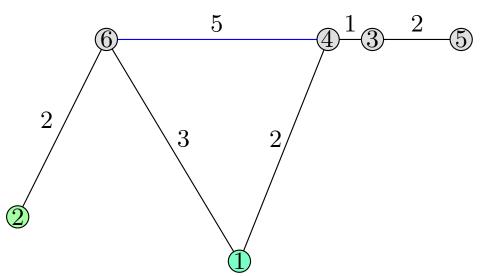
#### in more detail:

- ▶ order nodes by "importance",  $V = \{1, 2, ..., n\}$
- contract nodes in this order, node v is contracted by
  foreach pair (u, v) and (v, w) of edges do
   if (u, v, w) is a unique shortest path then
   add shortcut (u, w) with weight w((u, v, w))
- query relaxes only edges to more "important" nodes
   valid due to shortcuts

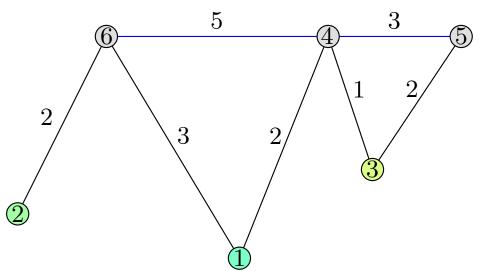
2 - 6 - 3 - 1 - 4 - 3 - 5



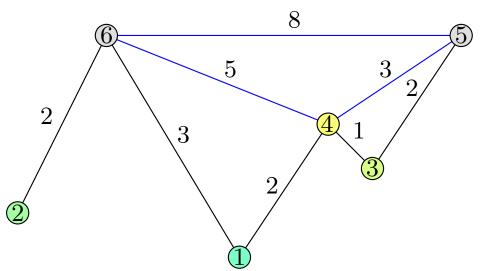




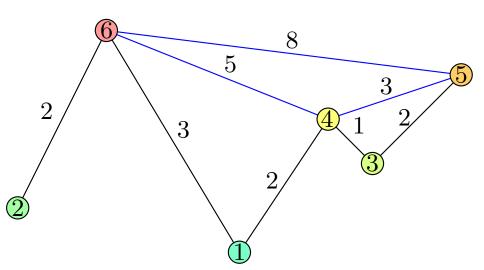










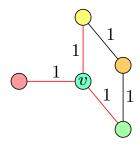


#### Construction



#### to identify necessary shortcuts

- ▶ local searches from all nodes u with incoming edge (u, v)
- ▶ ignore node v at search
- ▶ add shortcut (u, w) iff found distance d(u, w) > w(u, v) + w(v, w)

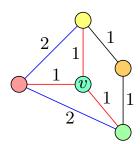


#### Construction



#### to identify necessary shortcuts

- ▶ local searches from all nodes u with incoming edge (u, v)
- ▶ ignore node v at search
- ▶ add shortcut (u, w) iff found distance d(u, w) > w(u, v) + w(v, w)

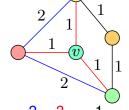


#### Node Order



use priority queue of nodes, node v is weighted with a linear combination of:

- ▶ edge difference #shortcuts #edges incident to v
- uniformity e.g. #deleted neighbors
- **...**



integrated construction and ordering:

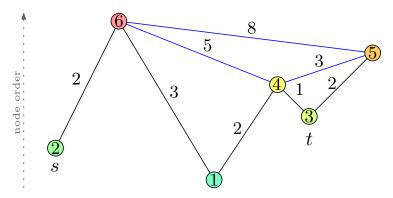
- 1. remove node *v* on top of the priority queue
- 2. contract node v
- 3. update weights of remaining nodes







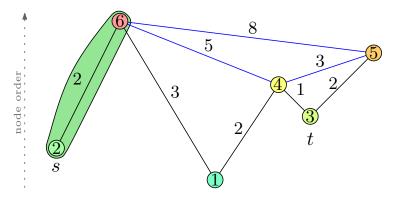
- modified bidirectional Dijkstra algorithm
- ▶ upward graph  $G_{\uparrow} := (V, E_{\uparrow})$  with  $E_{\uparrow} := \{(u, v) \in E : u < v\}$  downward graph  $G_{\downarrow} := (V, E_{\downarrow})$  with  $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- ▶ forward search in G<sup>↑</sup> and backward search in G<sup>↓</sup>



#### Query



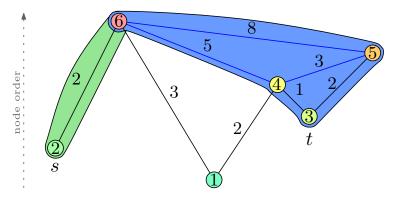
- modified bidirectional Dijkstra algorithm
- ▶ upward graph  $G_{\uparrow} := (V, E_{\uparrow})$  with  $E_{\uparrow} := \{(u, v) \in E : u < v\}$  downward graph  $G_{\downarrow} := (V, E_{\downarrow})$  with  $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- ▶ forward search in G<sup>↑</sup> and backward search in G<sup>↓</sup>







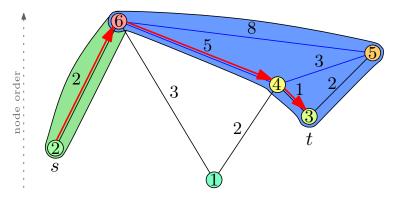
- modified bidirectional Dijkstra algorithm
- ▶ upward graph  $G_{\uparrow} := (V, E_{\uparrow})$  with  $E_{\uparrow} := \{(u, v) \in E : u < v\}$  downward graph  $G_{\downarrow} := (V, E_{\downarrow})$  with  $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- ▶ forward search in G<sup>↑</sup> and backward search in G<sup>↓</sup>





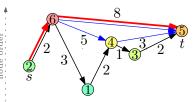


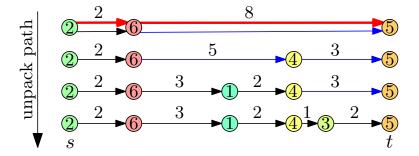
- modified bidirectional Dijkstra algorithm
- ▶ upward graph  $G_{\uparrow} := (V, E_{\uparrow})$  with  $E_{\uparrow} := \{(u, v) \in E : u < v\}$  downward graph  $G_{\downarrow} := (V, E_{\downarrow})$  with  $E_{\downarrow} := \{(u, v) \in E : u > v\}$
- ▶ forward search in G<sup>↑</sup> and backward search in G<sup>↓</sup>



#### **Outputting Paths**

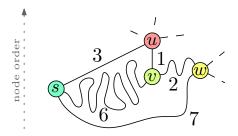
- ▶ for a shortcut (u, w) of a path  $\langle u, v, w \rangle$ , store middle node v with the edge
- expand path by recursively replacing a shortcut with its originating edges





#### **Stall-on-Demand**

- ightharpoonup v can be "stalled" by u (if d(u) + w(u, v) < d(v))
- stalling can propagate to adjacent nodes
- search is not continued from stalled nodes



 does not invalidate correctness (only suboptimal paths are stalled)

#### **Experiments**



#### environment

- AMD Opteron Processor 270 at 2.0 GHz
- 8 GB main memory
- ► GNU C++ compiler 4.2.1

#### test instance

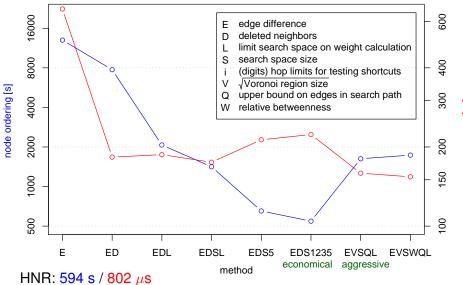
- road network of Western Europe (PTV)
- ▶ 18 029 721 nodes
- 42 199 587 directed edges



# nery [µs]

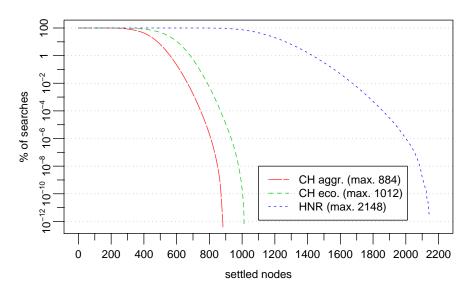
#### Performance





#### **Worst Case Costs**





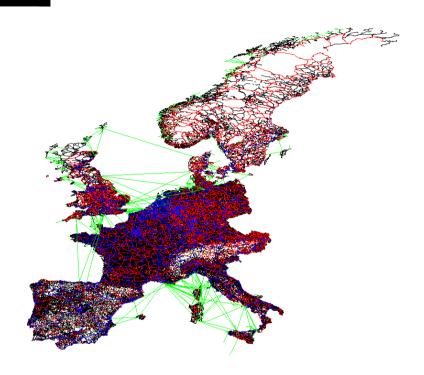


## **Contraction Hierarchies**

- foundation for our other methods
- conceptually very simple
- handles dynamic scenarios

#### Static scenario:

- ☐ 7.5 min preprocessing
- 0.21 ms to determine the path length
- 0.56 ms to determine a complete path description
- ☐ little space consumption (23 bytes/node)



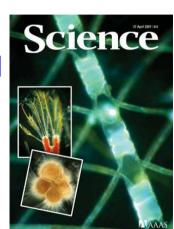


## **Transit-Node Routing**

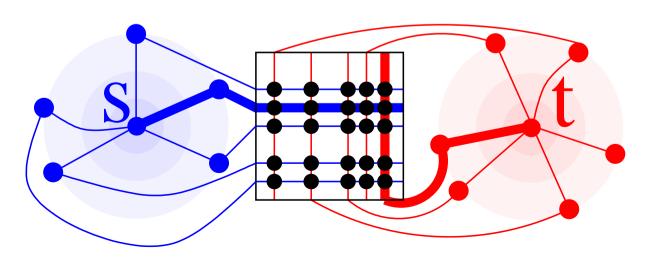
[DIMACS Challenge 06, ALENEX 07, Science 07]

joint work with H. Bast, S. Funke, D. Matijevic

 $\Box$  very fast queries (down to 1.7 μs, 3 000 000 times faster than DIJKSTRA)



- winner of the 9th DIMACS Implementation Challenge
- more preprocessing time (2:37 h) and space (263 bytes/node) needed



SciAm50 Award

## **Mobile Contraction Hierarchies**



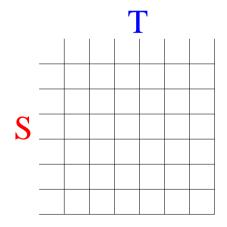
[ESA 08]

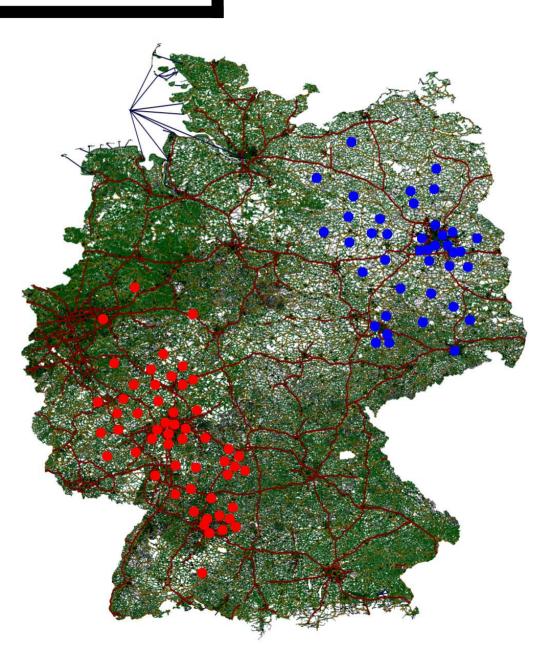
| preprocess data on a personal computer            |                |
|---------------------------------------------------|----------------|
| ☐ highly compressed blocked graph representation  | 8 bytes/node   |
| compact route reconstruction data structure       | + 8 bytes/node |
| experiments on a Nokia N800 at 400 MHz            |                |
| cold query with empty block cache                 | 56 ms          |
| compute complete path                             | 73 ms          |
| recomputation, e.g. if driver took the wrong exit | 14 ms          |

## **Many-to-Many Shortest Paths**

joint work with S. Knopp, F. Schulz, D. Wagner [ALENEX 07]

- efficient many-to-many variant of hierarchical bidirectional algorithms
- $\Box$  10 000  $\times$  10 000 table in 10s







## **Ride Sharing**

| Current | approac | ches: |
|---------|---------|-------|
|---------|---------|-------|

- match only ride offers with identical start/destination (perfect fit)
- sometimes radial search around start/destination

#### Our approach:

- driver picks passenger up and gives him a ride to his destination
- find the driver with the minimal detour (reasonable fit)

#### **Efficient algorithm:**

adaption of the many-to-many algorithm

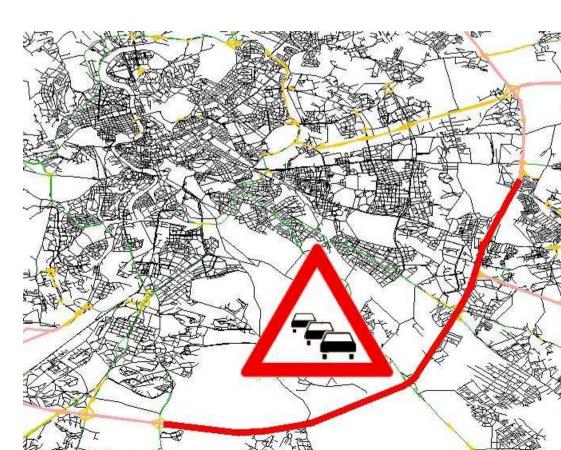
## **Highway-Node Routing**

[WEA 07]

- generalization of contraction hierarchies
- allow multiple nodes in the same 'importance'-level i.e., select node sets  $S_1 \supseteq S_2 \supseteq S_3 \dots$

- construct multi-level overlay graph
- perform multi-level query
- designed for dynamic scenarios



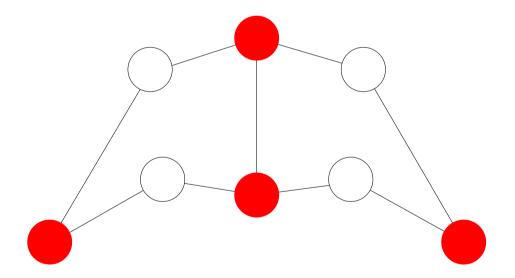




## **Overlay Graph**

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

- $\ \square$  graph G=(V,E) is given
- $\square$  select node subset  $S \subseteq V$

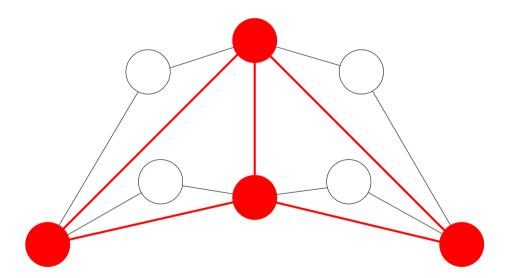




## Overlay Graph

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000–2007]

- $\square$  graph G = (V, E) is given
- $\square$  select node subset  $S \subseteq V$



 $\square$  overlay graph G' := (S, E') where

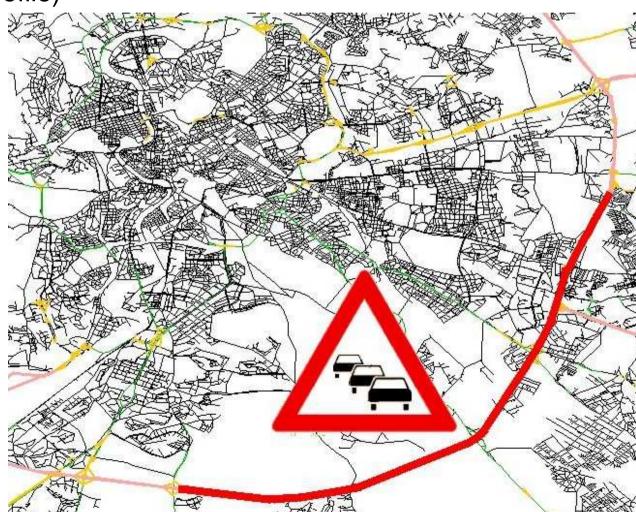
 $E' := \{(s,t) \in S \times S \mid \text{no inner node of the shortest } s\text{-}t\text{-path belongs to } S\}$ 



## **Dynamic Scenarios**

change entire cost function(e.g., use different speed profile)

change a few edge weights(e.g., due to a traffic jam)





## **Constancy of Structure**

#### **Assumption:**

structure of road network does not change

(no new roads, road removal = set weight to  $\infty$ )

- → not a significant restriction
- classification of nodes by 'importance' might be slightly perturbed,
   but not completely changed

(e.g., a sports car and a truck both prefer motorways)

performance of our approach relies on that (not the correctness)



## change entire cost function



- $\square$  keep the node sets  $S_1 \supseteq S_2 \supseteq S_3 \ldots$
- recompute the overlay graphs

| speed profile  | default | fast car | slow car | slow truck | distance |
|----------------|---------|----------|----------|------------|----------|
| constr. [min]  | 1:40    | 1:41     | 1:39     | 1:36       | 3:56     |
| query [ms]     | 1.17    | 1.20     | 1.28     | 1.50       | 35.62    |
| #settled nodes | 1 414   | 1 444    | 1 507    | 1 667      | 7 057    |



## change a few edge weights



- server scenario: if something changes,
  - update the preprocessed data structures
  - answer many subsequent queries very fast
- mobile scenario: if something changes,
  - it does not pay to update the data structures
  - perform single 'prudent' query that takes changed situation into account







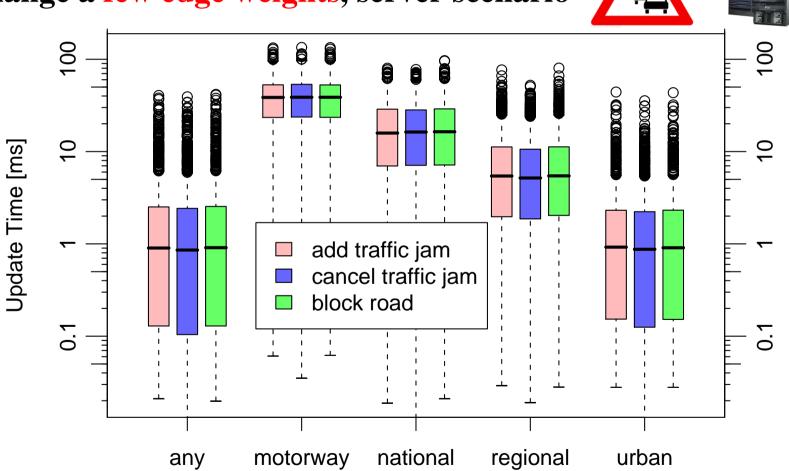
## change a few edge weights, server scenario





- $\square$  keep the node sets  $S_1 \supseteq S_2 \supseteq S_3 \ldots$
- recompute only possibly affected parts of the overlay graphs
  - the computation of the level- $\ell$  overlay graph consists of  $|S_{\ell}|$  local searches to determine the respective covering nodes
  - if the initial local search from  $v \in S_\ell$  has not touched a now modified edge (u,x), that local search need not be repeated
  - we manage sets  $A_{\nu}^{\ell} = \{ v \in S_{\ell} \mid v$ 's level- $\ell$  preprocessing might be affected when an edge (u,x) changes





Road Type



# Control ICC | C

## change a few edge weights, mobile scenario



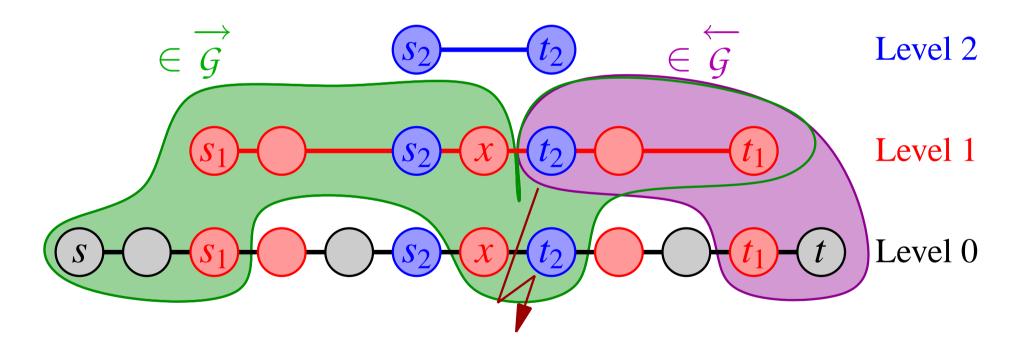
- 1. keep the node sets  $S_1 \supseteq S_2 \supseteq S_3 \dots$
- 2. keep the overlay graphs
- 3. C :=all changed edges
- 4. use the sets  $A_u^\ell$  (considering edges in C) to determine for each node v a reliable level r(v)
- 5. during a query, at node v
  - $\square$  do not use edges that have been created in some level > r(v)
  - $\square$  instead, downgrade the search to level r(v) (forward search only)



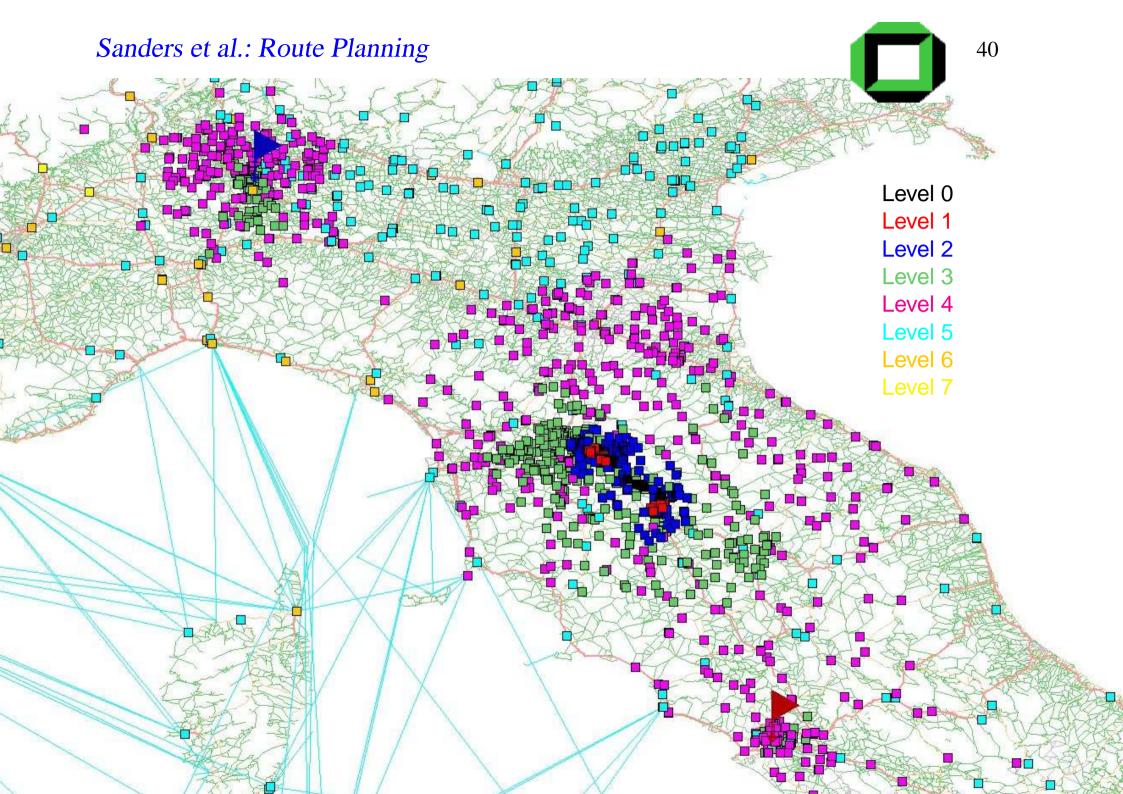
# change a few edge weights, mobile scenario







reliable levels: r(x) = 0,  $r(s_2) = r(t_2) = 1$ 





# change a few edge weights, mobile scenario





iterative variant (provided that only edge weight increases allowed)

- 1. keep everything (as before)
- 2. C := 0
- 3. use the sets  $A_u^{\ell}$  (considering edges in C) to determine for each node v a reliable level r(v) (as before)
- 4. 'prudent' query (as before)
- 5. if shortest path P does not contain a changed edge, we are done
- 6. otherwise: add changed edges on *P* to *C*, repeat from 3.



# change a few edge weights, mobile scenario





|                  |          | single pass | iterative  |        |        |
|------------------|----------|-------------|------------|--------|--------|
| change set       | affected | query time  | query time | #itera | ations |
| (motorway edges) | queries  | [ms]        | [ms]       | avg    | max    |
| 1                | 0.4 %    | 2.3         | 1.5        | 1.0    | 2      |
| 10               | 5.8 %    | 8.5         | 1.7        | 1.1    | 3      |
| 100              | 40.0 %   | 47.1        | 3.6        | 1.4    | 5      |
| 1 000            | 83.7 %   | 246.3       | 25.3       | 2.7    | 9      |



## Summary

#### static routing in road networks is easy

- → applications that require massive amount or routing
- → instantaneous mobile routing
- → techniques for advanced models
- → updating a few edge weights is OK



## **Current / Future Work**

| Time-dependent edge weights                                    |
|----------------------------------------------------------------|
| challenge: backward search impossible (?)                      |
| Multiple objective functions and restrictions (bridge height,) |
| Multicriteria optimization (cost, time,)                       |
| Integrate individual and public transportation                 |
| Other objectives for time-dependent travel                     |
| Routing driven traffic simulation                              |