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Route Planningl

[ ] exact shortest (i.e. fastest) paths in large road networks

Goals:

[] fast queries (point-to-point, many-to-many)
[ ] fast preprocessing
L] low space consumption

[ ] fast update operations

Applications:
[ ] route planning systems in the internet, car navigation systems,

L] ride sharing, traffic simulation, logistics optimisation
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Overview I

[ ] Exact Contraction Hierarchies — a very simple approach
[ ] Transit Node Routing — getting really fast

[ ] Mobile Contraction Hierarchies

[ ] Many-to-many Routing

[ ] Ride Sharing

[ ] Dynamic Scenario

[ ] Time-dependent Contraction Hierarchies

[ ] Future Work
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Contraction Hierarchies (CH)
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Contraction Hierarchies (CH)

» contract only one node at a time
= local and cache-efficient operation

in more detalil:
» order nodes by “importance”, V = {1,2,...,n}
» contract nodes in this order, node v is contracted by
foreach pair (u, v) and (v, w) of edges do

if (u, v, w) is a unique shortest path then
| add shortcut (u, w) with weight w({u, v, w))

» query relaxes only edges to more “important” nodes
= valid due to shortcuts

D 5
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Example: Construction'
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Construction I

to identify necessary shortcuts
» local searches from all nodes u with incoming edge (u, v)
» ignore node v at search

» add shortcut (u, w) iff found distance
d(u,w) > w(u,v)+ w(v,w)




Sanders et al.: Route Planning D 13
Construction I

to identify necessary shortcuts
» local searches from all nodes u with incoming edge (u, v)
» ignore node v at search

» add shortcut (u, w) iff found distance
d(u,w) > w(u,v)+ w(v,w)




Sanders et al.: Route Planning D 14
Node Order I

use priority queue of nodes, node v is weighted with a linear
combination of:

» edge difference #shortcuts — #edges incident to v
» uniformity e.g. #deleted neighbors
> ...

integrated construction and ordering:
1. remove node v on top of the priority queue 2 _3=_1
2. contract node v
3. update weights of remaining nodes
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Query

» modified bidirectional Dijkstra algorithm

» upward graph  Gy:=(V, E;) with E;:= {(u,v) e E:u< v}
downward graph Gy:=(V, E|) with E;:= {(u,v) € E:u > v}

» forward search in G; and backward search in G|

node order




Sanders et al.: Route Planning O 16
Query

» modified bidirectional Dijkstra algorithm

» upward graph  Gy:=(V, E;) with E;:= {(u,v) e E:u< v}
downward graph Gy:=(V, E|) with E;:= {(u,v) € E:u > v}

» forward search in G; and backward search in G|

node order




Sanders et al.: Route Planning o 17
Query

» modified bidirectional Dijkstra algorithm

» upward graph  Gy:=(V, E;) with E;:= {(u,v) e E:u< v}
downward graph Gy:=(V, E|) with E;:= {(u,v) € E:u > v}

» forward search in G; and backward search in G|

node order

u]
o)
I
ul
it




Sanders et al.: Route Planning o 18
Query

» modified bidirectional Dijkstra algorithm

» upward graph  Gy:=(V, E;) with E;:= {(u,v) e E:u< v}
downward graph Gy:=(V, E|) with E;:= {(u,v) € E:u > v}

» forward search in G; and backward search in G|

node order

u]
o)
I
ul
it



Sanders et al.: Route Planning O 19
Outputting Paths I

» for a shortcut (u, w) of a path (u,v,w), *

store middle node v with the edge

» expand path by recursively replacing a
shortcut with its originating edges
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Stall-on-Demand I

» v can be “stalled” by u (if d(u) + w(u,v) < d(v))
» stalling can propagate to adjacent nodes
» search is not continued from stalled nodes

node order

» does not invalidate correctness (only suboptimal paths are
stalled)
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Experiments I

environment
» AMD Opteron Processor 270 at 2.0 GHz
» 8 GB main memory
» GNU C++ compiler 4.2.1

test instance
» road network of Western Europe (PTV)
» 18029721 nodes
» 42199587 directed edges
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Performance I
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% of searches
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Contraction Hierarchies.

[ | foundation for our other methods
[ ] conceptually very simple

[ ] handles dynamic scenarios

Static scenario:

[ ] 7.5 min preprocessing
[ ] 0.21 ms to determine the path length
[ ] 0.56 ms to determine a complete path description

L] little space consumption (23 bytes/node)
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Transit-Node Routing'

[DIMACS Challenge 06, ALENEX 07, Science 07]

joint work with H. Bast, S. Funke, D. Matijevic

[ very fast queries
(down to 1.7 US 3 000 000 times faster than DIJKSTRA)

L] winner of the 9th DIMACS Implementation Challenge

[ ] more preprocessing time (2:37 h) and space (263 bytes/node) needed
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Mobile Contraction Hierarchies I

[ ] preprocess data on a personal computer

[ESA 08]

[ ] highly compressed blocked graph representation 8 bytes/node

[ ] compact route reconstruction data structure + 8 bytes/node

experiments on a Nokia N800 at 400 MHz

[ ] cold query with empty block cache 56 ms
[ ] compute complete path 73ms

L] recomputation, e.qg. if driver took the wrong exit 14 ms
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joint work with S. Knopp, F. Schulz, D. Wagner
[ALENEX 07]

[] efficient many-to-many variant of

hierarchical bidirectional algorithms

[ ] 10000 x 10000 table in 10s

T
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Ride Sharing'

Current approaches:

[ ] match only ride offers with identical start/destination (perfect fit)
[ ] sometimes radial search around start/destination

Our approach:

L] driver picks passenger up and gives him a ride to his destination
[ find the driver with the minimal detour (reasonable fit)

Efficient algorithm:

[ ] adaption of the many-to-many algorithm
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Highway-Node Routing

[WEA 07]

[ ] generalization of contraction hierarchies

[ ] allow multiple nodes in the same ‘importance’-level
i.e., selectnodesets S5 0 SH DO S3...

[ ] construct multi-level overlay graph
L] perform multi-level query

[ ] designed for dynamic scenarios
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Overlay Graph I

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]

[1 graph G = (V,E) is given

[] select node subset SCV
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Overlay Graph I

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]

[1 graph G = (V, E) is given

[] select node subset SCV

[J overlay graph G' := (S, E’) where

E’:= {(s,t) € Sx S| no inner node of the shortest St-path belongs to S}
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Dynamic Scenario

[ ] change a few edge weights

(e.g., due to a traffic jam)
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Constancy of Structure'

Assumption:

[ ] structure of road network does not change
(no new roads, road removal = set weight to o)

~~ not a significant restriction

[] classification of nodes by ‘importance’ might be slightly perturbed,
but not completely changed

(e.g., a sports car and a truck both prefer motorways)

~~ performance of our approach relies on that

(not the correctness)
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Dynamic Highway-Node Routing'

change entirecost function

[] keepthenodesets S O S O S3...

[ ] recompute the overlay graphs

speed profile default fastcar slowcar slowtruck distance
constr. [min] 1:40 1:41 1:39 1:36 3:56
query [ms] 1.17 1.20 1.28 1.50 35.62
#settled nodes 1414 1444 1507 1667 7057
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Dynamic Highway-Node Routing'

change afew edge weights

[] server scenario:if something changes,

— update the preprocessed data structures

— answer many subsequent queries very fast

[] mobile scenario:if something changes,
— it does not pay to update the data structures

— perform single ‘prudent’ query that

takes changed situation into account
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Dynamic Highway-Node Routing'

change afew edge weightsserver scenario

[] keepthenodesets S O S O S3...

[ ] recompute only possibly affected parts of the overlay graphs

— the computation of the level-£ overlay graph consists of

'S/| local searches to determine the respective covering nodes

— if the initial local search from V € & has not touched a now

modified edge (U, X), that local search need not be repeated

— We manage sets Aﬁ — {V €S | V's level-¢ preprocessing
might be affected when an edge (U, X) changes}
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Dynamic Highway-Node Routing'
change afew edge weightsserver scenario
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Dynamic Highway-Node Routing'

change afew edge weightsmobile scenario

1. keepthenodesets S| O S O S3...
2. keep the overlay graphs
3. C:=all changed edges

4. use the sets A‘f, (considering edges in C) to determine for each
node V a reliable level I (V)

5. during a query, at node V
[J do not use edges that have been created in some level > I(V)

[ instead, downgrade the search to level I' (V)  (forward search only)
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Dynamic Highway-Node Routing'

change afew edge weightsmobile scenario
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Level O
Level 1
= Level 2
i Level 3
Level 4
Level 5
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Dynamic Highway-Node Routing'

change afew edge weightsmobile scenario

iterative variant (provided that only edge weight increases allowed)
1. keep everything (as before)
2.C=0

3. use the sets Af, (considering edges in C) to determine for each

node V a reliable level I (V) (as before)
4. ‘prudent’ query (as before)
5. if shortest path P does not contain a changed edge, we are done

6. otherwise: add changed edges on P to C, repeatfrom 3.



Sanders et al.: Route Planning

Dynamic Highway-Node Routing'
change afew edge weightsmobile scenario

single pass iterative

lchange set| | affected | query time | query time | #iterations

(motorway edges) | queries [mS] [ms] | avg max
1 0.4% 2.3 1.5 | 1.0 2

10 5.8% 8.5 1.7 | 1.1 3

100 40.0% 47.1 3.6 | 14 5

1000 | 83.7% 246.3 25.3 | 2.7 9




Sanders et al.: Route Planning D 43
Summary'

static routing in road networks is easy

~~ applications that require massive amount or routing
~~ Instantaneous mobile routing

~~ techniques for advanced models

~~ updating a few edge weights is OK
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Current / Future Work I

[ ] Time-dependent edge weights

challenge: backward search impossible (?)
[ ] Multiple objective functions and restrictions (bridge height,. . .)
[ ] Multicriteria optimization (cost, time,...)
[] Integrate individual and public transportation
[ ] Other objectives for time-dependent travel

[ ] Routing driven traffic simulation



