Algorithm Engineering for Large Graphs

Fast Route Planning

Veit Batz, Robert Geisberger Dennis Luxen,

Peter Sanders, Christian Vetter

Universitat Karlsruhe (TH)

Zurich, October 22, 2008

Sanders et al.: Route Planning D 2
Route Planningl

[] exact shortest (i.e. fastest) paths in large road networks

Goals:

[] fast queries (point-to-point, many-to-many)
[] fast preprocessing
L] low space consumption

[] fast update operations

Applications:
[] route planning systems in the internet, car navigation systems,

L] ride sharing, traffic simulation, logistics optimisation

Sanders et al.: Route Planning D 3
Overview I

[] Exact Contraction Hierarchies — a very simple approach
[] Transit Node Routing — getting really fast

[] Mobile Contraction Hierarchies

[] Many-to-many Routing

[] Ride Sharing

[] Dynamic Scenario

[] Time-dependent Contraction Hierarchies

[] Future Work

Sanders et al.: Route Planning D 4

Contraction Hierarchies (CH)

Sanders et al.: Route Planning

Contraction Hierarchies (CH)

» contract only one node at a time
= local and cache-efficient operation

in more detalil:
» order nodes by “importance”, V = {1,2,...,n}
» contract nodes in this order, node v is contracted by
foreach pair (u, v) and (v, w) of edges do

if (u, v, w) is a unique shortest path then
| add shortcut (u, w) with weight w({u, v, w))

» query relaxes only edges to more “important” nodes
= valid due to shortcuts

D 5

Sanders et al.: Route Planning D 6
Example: Construction'

2 2 1 . 2
ot o D@06

Sanders et al.: Route Planning

Example: Construction'

D

Sanders et al.: Route Planning D 8
Example: Construction'

Sanders et al.: Route Planning D 9
Example: Construction'

Sanders et al.: Route Planning D 10
Example: Construction'

Sanders et al.: Route Planning D 11
Example: Construction'

Sanders et al.: Route Planning D 12
Construction I

to identify necessary shortcuts
» local searches from all nodes u with incoming edge (u, v)
» ignore node v at search

» add shortcut (u, w) iff found distance
d(u,w) > w(u,v)+ w(v,w)

Sanders et al.: Route Planning D 13
Construction I

to identify necessary shortcuts
» local searches from all nodes u with incoming edge (u, v)
» ignore node v at search

» add shortcut (u, w) iff found distance
d(u,w) > w(u,v)+ w(v,w)

Sanders et al.: Route Planning D 14
Node Order I

use priority queue of nodes, node v is weighted with a linear
combination of:

» edge difference #shortcuts — #edges incident to v
» uniformity e.g. #deleted neighbors
> ...

integrated construction and ordering:
1. remove node v on top of the priority queue 2 _3=_1
2. contract node v
3. update weights of remaining nodes

Sanders et al.: Route Planning O 15
Query

» modified bidirectional Dijkstra algorithm

» upward graph Gy:=(V, E;) with E;:= {(u,v) e E:u< v}
downward graph Gy:=(V, E|) with E;:= {(u,v) € E:u > v}

» forward search in G; and backward search in G|

node order

Sanders et al.: Route Planning O 16
Query

» modified bidirectional Dijkstra algorithm

» upward graph Gy:=(V, E;) with E;:= {(u,v) e E:u< v}
downward graph Gy:=(V, E|) with E;:= {(u,v) € E:u > v}

» forward search in G; and backward search in G|

node order

Sanders et al.: Route Planning o 17
Query

» modified bidirectional Dijkstra algorithm

» upward graph Gy:=(V, E;) with E;:= {(u,v) e E:u< v}
downward graph Gy:=(V, E|) with E;:= {(u,v) € E:u > v}

» forward search in G; and backward search in G|

node order

u]
o)
I
ul
it

Sanders et al.: Route Planning o 18
Query

» modified bidirectional Dijkstra algorithm

» upward graph Gy:=(V, E;) with E;:= {(u,v) e E:u< v}
downward graph Gy:=(V, E|) with E;:= {(u,v) € E:u > v}

» forward search in G; and backward search in G|

node order

u]
o)
I
ul
it

Sanders et al.: Route Planning O 19
Outputting Paths I

» for a shortcut (u, w) of a path (u,v,w), *

store middle node v with the edge

» expand path by recursively replacing a
shortcut with its originating edges

2 8
f;@@_::@ﬁ
j@2’@ 5%
2 2 3 2
= 22’@ 3>®2

Sanders et al.: Route Planning D 20
Stall-on-Demand I

» v can be “stalled” by u (if d(u) + w(u,v) < d(v))
» stalling can propagate to adjacent nodes
» search is not continued from stalled nodes

node order

» does not invalidate correctness (only suboptimal paths are
stalled)

Sanders et al.: Route Planning D 21
Experiments I

environment
» AMD Opteron Processor 270 at 2.0 GHz
» 8 GB main memory
» GNU C++ compiler 4.2.1

test instance
» road network of Western Europe (PTV)
» 18029721 nodes
» 42199587 directed edges

node ordering [s]

Sanders et al.: Route Planning

Performance I

2000 4000 8000 16000
| |

1000
|

500
|

N

o

edge difference

deleted neighbors

limit search space on weight calculation
search space size

(digits) hop limits for testing shortcuts
y/Voronoi region size

upper bound on edges in search path
relative betweenness

I
/
D\

o

SO<-—-wmrom

HNR:

T T
E ED

594 s /802 us

T
EDL

EDSL EDS5 EDS1235 EVSQL EVSWQL

economical aggressive
method 99

600

400

300

200

150

100

22

query [ps]

Sanders et al.: Route Planning

% of searches

23
Worst Case Costs' O

100
I

— —

1072
[N A

10*210™° 10°® 107° 10™

! —= CH aggr. (max. 884) | "
CH eco. (max. 1012) .
|| ---- HNR (max. 2148) '

I
0

rtrrrerer Tt
200 400 600 800 1000 1200 1400 1600 1800 2000 2200

settled nodes

Sanders et al.: Route Planning D 24
Contraction Hierarchies.

[| foundation for our other methods
[] conceptually very simple

[] handles dynamic scenarios

Static scenario:

[] 7.5 min preprocessing
[] 0.21 ms to determine the path length
[] 0.56 ms to determine a complete path description

L] little space consumption (23 bytes/node)

Sanders et al.: Route Planning

Transit-Node Routing'

[DIMACS Challenge 06, ALENEX 07, Science 07]

joint work with H. Bast, S. Funke, D. Matijevic

[very fast queries
(down to 1.7 US 3 000 000 times faster than DIJKSTRA)

L] winner of the 9th DIMACS Implementation Challenge

[] more preprocessing time (2:37 h) and space (263 bytes/node) needed

== 0 g
e

.t SciAm50 Award

Sanders et al.: Route Planning D 26
Mobile Contraction Hierarchies I

[] preprocess data on a personal computer

[ESA 08]

[] highly compressed blocked graph representation 8 bytes/node

[] compact route reconstruction data structure + 8 bytes/node

experiments on a Nokia N800 at 400 MHz

[] cold query with empty block cache 56 ms
[] compute complete path 73ms

L] recomputation, e.qg. if driver took the wrong exit 14 ms

Sanders et al.: Route Planning 27

joint work with S. Knopp, F. Schulz, D. Wagner
[ALENEX 07]

[] efficient many-to-many variant of

hierarchical bidirectional algorithms

[] 10000 x 10000 table in 10s

T

Sanders et al.: Route Planning D 28
Ride Sharing'

Current approaches:

[] match only ride offers with identical start/destination (perfect fit)
[] sometimes radial search around start/destination

Our approach:

L] driver picks passenger up and gives him a ride to his destination
[find the driver with the minimal detour (reasonable fit)

Efficient algorithm:

[] adaption of the many-to-many algorithm

Sanders et al.: Route Planning 29

Highway-Node Routing

[WEA 07]

[] generalization of contraction hierarchies

[] allow multiple nodes in the same ‘importance’-level
i.e., selectnodesets S5 0 SH DO S3...

[] construct multi-level overlay graph
L] perform multi-level query

[] designed for dynamic scenarios

Sanders et al.: Route Planning o 30
Overlay Graph I

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]

[1 graph G = (V,E) is given

[] select node subset SCV

Sanders et al.: Route Planning o 31
Overlay Graph I

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]

[1 graph G = (V, E) is given

[] select node subset SCV

[J overlay graph G' := (S, E’) where

E’:= {(s,t) € Sx S| no inner node of the shortest St-path belongs to S}

Sanders et al.: Route Planning 32

Dynamic Scenario

[] change a few edge weights

(e.g., due to a traffic jam)

$ i

0
7

e
i
<7
S
1“"‘. -‘-’J

°r

Sanders et al.: Route Planning D 33
Constancy of Structure'

Assumption:

[] structure of road network does not change
(no new roads, road removal = set weight to o)

~~ not a significant restriction

[] classification of nodes by ‘importance’ might be slightly perturbed,
but not completely changed

(e.g., a sports car and a truck both prefer motorways)

~~ performance of our approach relies on that

(not the correctness)

Sanders et al.: Route Planning

Dynamic Highway-Node Routing'

change entirecost function

[] keepthenodesets S O S O S3...

[] recompute the overlay graphs

speed profile default fastcar slowcar slowtruck distance
constr. [min] 1:40 1:41 1:39 1:36 3:56
query [ms] 1.17 1.20 1.28 1.50 35.62
#settled nodes 1414 1444 1507 1667 7057

Sanders et al.: Route Planning o 35
Dynamic Highway-Node Routing'

change afew edge weights

[] server scenario:if something changes,

— update the preprocessed data structures

— answer many subsequent queries very fast

[] mobile scenario:if something changes,
— it does not pay to update the data structures

— perform single ‘prudent’ query that

takes changed situation into account

Sanders et al.: Route Planning 36

Dynamic Highway-Node Routing'

change afew edge weightsserver scenario

[] keepthenodesets S O S O S3...

[] recompute only possibly affected parts of the overlay graphs

— the computation of the level-£ overlay graph consists of

'S/| local searches to determine the respective covering nodes

— if the initial local search from V € & has not touched a now

modified edge (U, X), that local search need not be repeated

— We manage sets Aﬁ — {V €S | V's level-¢ preprocessing
might be affected when an edge (U, X) changes}

Sanders et al.: Route Planning

Dynamic Highway-Node Routing'
change afew edge weightsserver scenario

o
S — l 8 @ !
- - ! e e ' ': C
—] Q9 o B : —
2 =< 111 HIH 11l -
® I A B
£ 1 rewre SIS
|_
% T e O add traff|CJam . mit iR
] — B cancel trafficjam | | T
) O block road
‘_!_ N N J T 1 _;_ o _H
© 3 N o : o
| | | | |
any motorway national regional urban

Road Type

Sanders et al.: Route Planning

Dynamic Highway-Node Routing'

change afew edge weightsmobile scenario

1. keepthenodesets S| O S O S3...
2. keep the overlay graphs
3. C:=all changed edges

4. use the sets A‘f, (considering edges in C) to determine for each
node V a reliable level I (V)

5. during a query, at node V
[J do not use edges that have been created in some level > I(V)

[instead, downgrade the search to level I' (V) (forward search only)

Sanders et al.: Route Planning

Dynamic Highway-Node Routing'

change afew edge weightsmobile scenario
—

€ g

cg &—®

Sanders et al.: Route Planning

Level O
Level 1
= Level 2
i Level 3
Level 4
Level 5

40

Sanders et al.: Route Planning

Dynamic Highway-Node Routing'

change afew edge weightsmobile scenario

iterative variant (provided that only edge weight increases allowed)
1. keep everything (as before)
2.C=0

3. use the sets Af, (considering edges in C) to determine for each

node V a reliable level I (V) (as before)
4. ‘prudent’ query (as before)
5. if shortest path P does not contain a changed edge, we are done

6. otherwise: add changed edges on P to C, repeatfrom 3.

Sanders et al.: Route Planning

Dynamic Highway-Node Routing'
change afew edge weightsmobile scenario

single pass iterative

lchange set| | affected | query time | query time | #iterations

(motorway edges) | queries [mS] [ms] | avg max
1 0.4% 2.3 1.5 | 1.0 2

10 5.8% 8.5 1.7 | 1.1 3

100 40.0% 47.1 3.6 | 14 5

1000 | 83.7% 246.3 25.3 | 2.7 9

Sanders et al.: Route Planning D 43
Summary'

static routing in road networks is easy

~~ applications that require massive amount or routing
~~ Instantaneous mobile routing

~~ techniques for advanced models

~~ updating a few edge weights is OK

Sanders et al.: Route Planning D 44
Current / Future Work I

[] Time-dependent edge weights

challenge: backward search impossible (?)
[] Multiple objective functions and restrictions (bridge height,. . .)
[] Multicriteria optimization (cost, time,...)
[] Integrate individual and public transportation
[] Other objectives for time-dependent travel

[] Routing driven traffic simulation

