Algorithm Engineering for Large Graphs

Fast Route Planning

Veit Batz, Robert Geisberger, Dennis Luxen,

Peter Sanders, Christian Vetter

Universität Karlsruhe (TH)

Route Planning

Goals:

- exact shortest (i.e. fastest) paths in large road networks
- fast queries (point-to-point, many-to-many)
- fast preprocessing
- low space consumption
- fast update operations

Applications:

- route planning systems in the internet, car navigation systems,
- ride sharing, traffic simulation, logistics optimisation

Contraction Hierarchies

- [WEA 08]

- order nodes by "importance", $V = \{1, 2, \dots, n\}$
- contract nodes in this order, node v is contracted by **foreach** pair (u, v) and (v, w) of edges **do if** $\langle u, v, w \rangle$ is a unique shortest path **then**

add shortcut (u, w) with weight $w(\langle u, v, w \rangle)$

query relaxes only edges to more "important" nodes \Rightarrow valid due to shortcuts

Contraction Hierarchies

- foundation for our other methods
- conceptually very simple
- handles dynamic scenarios

Static scenario:

- ☐ 7.5 min preprocessing
- 0.21 ms to determine the path length
- 0.56 ms to determine a complete path description
- ☐ little space consumption (23 bytes/node)

Transit-Node Routing

[DIMACS Challenge 06, ALENEX 07, Science 07]

joint work with H. Bast, S. Funke, D. Matijevic

 \Box very fast queries (down to 1.7 μs, 3 000 000 times faster than DIJKSTRA)

- winner of the 9th DIMACS Implementation Challenge
- more preprocessing time (2:37 h) and space (263 bytes/node) needed

SciAm50 Award

Mobile Contraction Hierarchies

[ESA 08]

preprocess data on a personal computer	
☐ highly compressed blocked graph representation	8 bytes/node
compact route reconstruction data structure	+ 8 bytes/node
experiments on a Nokia N800 at 400 MHz	
cold query with empty block cache	56 ms
compute complete path	73 ms
recomputation, e.g. if driver took the wrong exit	14 ms

Many-to-Many Shortest Paths

joint work with S. Knopp, F. Schulz, D. Wagner [ALENEX 07]

- efficient many-to-many variant of hierarchical bidirectional algorithms
- \Box 10 000 × 10 000 table in 10s

Ride Sharing

Current	apj	proac	ches:
----------------	-----	-------	-------

- match only ride offers with identical start/destination (perfect fit)
- sometimes radial search around start/destination

Our approach:

- driver picks passenger up and gives him a ride to his destination
- find the driver with the minimal detour (reasonable fit)

Efficient algorithm:

adaption of the many-to-many algorithm

Dynamic Scenarios

change entire cost function(e.g., use different speed profile)

change a few edge weights(e.g., due to a traffic jam)

Summary

static routing in road networks is easy

- → applications that require massive amount or routing
- → instantaneous mobile routing
- ★ techniques for advanced models
- □ updating a few edge weights is OK

Current / Future Work

Time-dependent edge weights
challenge: backward search impossible (?)
Multiple objective functions and restrictions (bridge height,)
Multicriteria optimization (cost, time,)
Integrate individual and public transportation
Other objectives for time-dependent travel
Routing driven traffic simulation