
Contraction of Timetable Networks with
Realistic Transfers?

Robert Geisberger

Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany

geisberger@kit.edu

Abstract. We contribute a fast routing algorithm for timetable net-
works with realistic transfer times. In this setting, our algorithm is the
first one that successfully applies precomputation based on node contrac-
tion: gradually removing nodes from the graph and adding shortcuts to
preserve shortest paths. This reduces query times to 0.5 ms with prepro-
cessing times below 4 minutes on all tested instances, even on continental
networks with 30 000 stations. We achieve this by an improved contrac-
tion algorithm and by using a station graph model. Every node in our
graph has a one-to-one correspondence to a station and every edge has
an assigned collection of connections. Also, our graph model does not
require parallel edges.

Key words: route planning; public transit; algorithm engineering

1 Introduction

Route planning is one of the showpieces of algorithm engineering. Many hierar-
chical route planning algorithms have been developed over the past years and are
very successful on static road networks (overview in [1]). Recently, Contraction
Hierarchies (CH) [2] provided a particularly simple approach with fast prepro-
cessing and query times. CH is solely based on the concept of node contraction:
removing “unimportant” nodes and adding shortcuts to preserve shortest path
distances. One year later, time-dependent CH (TCH) [3] was published and works
well for time-dependent road networks, but completely fails for timetable net-
works of public transportation systems. In this paper, we show how to adapt CH
successfully to timetable networks with realistic transfers, i. e. minimum trans-
fer times. The positive outcome is partly due to our station graph model, where
each station is a single node and no parallel edges between stations are neces-
sary. Additionally, we change the contraction algorithm significantly and deal
with special cases of timetable networks, e. g. loops.

? Partially supported by DFG grant SA 933/5-1, and the ‘Concept for the Future’ of
Karlsruhe Institute of Technology within the framework of the German Excellence
Initiative.

mailto:geisberger@kit.edu

Related Work

Public transportation networks have always been time-dependent, i. e. travel
times depend on the availability of trains, buses or other vehicles. That makes
them naturally harder than road networks, where simple models can be indepen-
dent of the travel time and still achieve good results. There are two intensively
studied models for modeling timetable information: the time-expanded [4,5,6],
and the so-called time-dependent model1 [7,8,9,10]. Both models answer queries
by applying some shortest-path algorithm to a suitably constructed graph. In
the time-expanded model, each node corresponds to a specific time event (depar-
ture or arrival), and each edge has a constant travel time. In the time-dependent
model, each node corresponds to a station, and the costs on an edge are as-
signed depending on the time in which the particular edge will be used by the
shortest-path algorithm.

To model more realistic transfers in the time-dependent model, [7] propose
to model each platform as a separate station and add walking links between
them. [11] propose a similar extension for constant and variable transfer and
describe it in more detail. Basically, the stations are expanded to a train-route
graph where no one-to-one correspondence between nodes and stations exists
anymore. A train route is the maximal subset of trains that follow the exact
same route, at possibly different times and do not overtake each other. Each
train route has its own node at each station. Those are interconnected within a
station with the given transfer times. This results in a significant blowup in the
number of nodes and creates a lot of redundancy information that is collected
during a query. Recently, [12,13] independently proposed a model that is similar
to ours. They call it the station graph model and mainly use it to compute all
Pareto-optimal paths in a fully realistic scenario. For unification, we will give
our model the same name although there are some important differences in the
details. The most significant differences are that (1) they require parallel edges,
one for each train route and (2) their query algorithm computes connections per
incoming edge instead per node. Their improvement over the time-dependent
model was mainly that they compare all connections at a station and remove
dominated ones.

Speed-up techniques are very successful when it comes to routing in time-
dependent road networks, see [14] for an overview. However, timetable net-
works are very different from road networks [15] and there is only little work
on speed-up techniques for them. Goal-directed search (A*) brings basic speed-
up [16,17,11,18]. Time-dependent SHARC [19] brings better speed-up by using
arc flags in the same scenario as we do and achieves query times of 2 ms but with
preprocessing times of more than 5 hours2. Based on the station graph model,
[13] also applied some speed-up techniques, namely arc flags that are valid on

1 Note that the time-dependent model is a special technique to model the time-
dependent information rather than an umbrella term for all these models.

2 We scaled timings by a factor of 0.42 compared to [14] based on plain Dijkstra
timings.

time periods and route contraction. They could not use node contraction be-
cause there were too many parallel edges between stations. Their preprocessing
time is over 33 CPU hours resulting in a full day profile query time of more
than 1 second (speed-up factor 5.2). These times are 2-3 orders of magnitude
slower than ours but a comparison is not possible since they use a fully realistic
bi-criteria scenario with footpaths, traffic days and graphs that are not available
to us.

2 Preliminaries

We propose a model that is similar to the realistic time-dependent model intro-
duced in [11], but we keep a one-to-one mapping between nodes in the graph
and real stations.

A timetable consists of data concerning: stations (or bus stops, ports, etc),
trains (or buses, ferries, etc), connecting stations, departure and arrival times of
trains at stations, and traffic days. More formally, we are given a set of stations B,
a set of stop events ZS per station S ∈ B, and a set of elementary connections
C, whose elements c are 6-tuples of the form c = (Z1, Z2, S1, S2, td, ta). Such
a tuple (elementary connection) is interpreted as train that leaves station S1

at time td after stop Z1 and the immediately next stop is Z2 at station S2

at time ta. If x denotes a tuple’s field, then the notation of x(c) specifies the
value of x in the elementary connection c. A stop even is the consecutive arrival
and departure of a train at a station, where no transfer is required. For the
corresponding arriving elementary connection c1 and the departing one c2 holds
Z2(c1) = Z1(c2). If a transfer between some elementary connections c′1 and c′2
at station S2(c′1) = S1(c′2) is required, Z2(c′1) 6= Z1(c′2) must hold. We introduce
additional stop events for the begin (no arrival) and the end (no departure) of
a train.

The departure and arrival times td(c) and ta(c) of an elementary connection
c ∈ C within a day are integers in the interval [0, 1439] representing time in
minutes after midnight. Given two time values t and t′, t ≤ t′, the cyclediffer-
ence(t, t′) is the smallest nonnegative integer ` such that ` ≡ t′ − t (mod 1440).
The length of an elementary connection c, denoted by length(c), is cyclediffer-
ence(td(c), ta(c)). We generally assume that trains operate daily but our model
can be extended to work with traffic days. At a station S ∈ B, it is possible
to transfer from one train to another, if the time between the arrival and the
departure at the station S is larger than or equal to a given, station-specific,
minimum transfer time, denoted by transfer(S).

Let P = (c1, . . . , ck) be a sequence of elementary connections together with
departure times depi(P) and arrival times arri(P) for each elementary connec-
tion ci, 1 ≤ i ≤ k. We assume that the times depi(P) and arri(P) also include
day information to model trips that last longer than a day. Define S1(P) :=
S1(c1), S2(P) := S2(ck), Z1(P) := Z1(c1), Z2(P) := Z2(ck), dep(P) := dep1(P),
and arr(P) := arrk(P). Such a sequence P is called a consistent connection
from station S1(P) to S2(P) if it fulfills the following two consistency condi-

tions: (1) the departure station of ci+1 is the arrival station of ci; (2) the time
values depi(P) and arri(P) correspond to the time values td and ta, resp., of the
elementary connections (modulo 1440) and respect the transfer times at stations.

Given a timetable, we want to solve the earliest arrival problem (EAP), i.e.
to compute the earliest arriving consistent connection between given stations A
and B departing not earlier than a specified time t0. We refer to the algorithm
that solves the EAP as time query. In contrast, a profile query computes an
optimal set of all consistent connections independent of the departure time.

3 Station Graph Model

We introduce a model that represents a timetable as a directed graph G = (B, E)
with exactly one node per station. For a simplified model without transfer times,
this is like the time-dependent model. The novelty is that even with positive
transfer times, we keep one node per station and require no parallel edges. The
attribute of an edge e = (A,B) ∈ E is a set of consistent connections fn(e)
that depart at A and arrive at B, usually all elementary connections. Here and
in the following we assume that all connections are consistent. Previous models
required that all connections of a single edge fulfill the FIFO-property, i. e. they
do not overtake each other. In contrast, we do not require this property. So we
can avoid parallel edges, as this is important for CH preprocessing. However,
even for time queries, we need to consider multiple dominant arrival events per
station.

We say that a connection P dominates a connection Q if we can replace
Q by P (Lemma 1). More formally, let Q be a connection. Define parr(Q) as
the (previous) arrival arrival time of the train at station S1(Q) before it de-
parts at time dep(Q), or ⊥ if this train begins there. If parr(Q) 6=⊥ then we
call resd(Q) := dep(Q) − parr(Q) the residence time at departure. We call Q
a critical departure when parr(Q) 6=⊥ and resd(Q) < transfer(S1(Q)). Sym-
metrically, we define ndep(Q) as the (next) departure time of the train at
station S2(Q), or ⊥ if the train ends there. When ndep(Q) 6=⊥ then we call
resa(Q) := ndep(Q)− arr(Q) the residence time at arrival. And Q is a critical
arrival when ndep(Q) 6=⊥ and resa(Q) < transfer(S2(Q)).

A connection P dominates Q iff all of the following conditions are fulfilled:
(1) S1(P) = S1(Q) and S2(P) = S2(Q)
(2) dep(Q) ≤ dep(P) and arr(P) ≤ arr(Q)
(3) Z1(P) = Z1(Q), or Q is not a critical departure, or dep(P) − parr(Q) ≥
transfer(S1(P))
(4) Z2(P) = Z2(Q), or Q is not a critical arrival, or ndep(Q) − arr(P) ≥
transfer(S2(P))

Conditions (1),(2) are elementary conditions. Conditions (3),(4) are necessary
to respect the minimum transfer times, when Q is a subconnection of a larger
connection.

Given connection R = (c1, . . . , ck), we call a connection (ci, . . . , cj) with
1 ≤ i ≤ j ≤ k a subconnection of R, we call it prefix iff i = 1 and suffix iff j = k.

Lemma 1. A consistent connection P dominates a consistent connection Q iff
for all consistent connections R with subconnection Q, we can replace Q by P
to get a consistent connection R′ with dep(R) ≤ dep(R′) ≤ arr(R′) ≤ arr(R).

3.1 Time Query

In this section we describe our baseline algorithm to answer a time query (A,B, t0).
We use a Dijkstra-like algorithm on our station graph that stores labels with each
station and incrementally corrects them. A label is a connection P stored as a
tuple (Z2, arr)

3, where Z2 is the arrival stop event and arr is the arrival time
including days. The source station is always A, the target station S2(P) is im-
plicitly given by the station that stores this label. Furthermore, we only consider
connections departing not earlier than t0 at A and want to minimize the arrival
time. As we do not further care about the actual departure time at A, we call
such a connection arrival connection. We say that an arrival connection P dom-
inates Q iff all of the following conditions are fulfilled:
(1) S2(P) = S2(Q)
(2) arr(P) ≤ arr(Q)
(3) Z2(P) = Z2(Q), or Q is not a critical arrival, or ndep(Q) − arr(P) ≥
transfer(S2(P))

Lemma 2 shows that dominant arrival connections are sufficient for a time
query.

Lemma 2. Let (A,B, t0) be a time query. A consistent arrival connection P
dominates a consistent arrival connection Q iff for all consistent arrival con-
nections R with prefix Q, we can replace Q by P to get a consistent arrival
connection R′ with arr(R′) ≤ arr(R).

Our algorithm manages a set of dominant arrival connections ac(S) for each
station S. The initialization of ac(A) at the departure station A is a special
case since we have no real connection to station A. That is why we introduce a
special stop event ⊥ and we start with the set {(⊥, t0)} at station A. Our query
algorithm then knows that we are able to board all trains that depart not earlier
than t0. We perform a label correcting query that uses the minimum arrival
time of the (new) connections as key of a priority queue. This algorithm needs
two elementary operations: (1) link : We need to traverse an edge e = (S, T) by
linking a given set of arrival connections ac(S) with the connections fn(e) to get
a new set of arrival connections to station T . (2) minimum: We need to combine
the already existing arrival connections at T with the new ones to a dominant
set. We found a solution to the EAP once we extract a label of station B from
the priority queue, as Theorem 1 proves.

Theorem 1. The time query in the station graph model solves the EAP.

3 Such a label does not uniquely describe a connection but stores all relevant infor-
mation for a time query.

Proof. The query algorithm only creates consistent connections because link
and minimum do so. Lemma 2 ensures that there is never a connection with
earlier arrival time. The connections depart from station A not before t0 by
initialization. Since the length of any connection is non-negative, and by the
order in the priority queue, the first label of B extracted from the priority queue
represents a solution to the EAP.

The link and minimum operation dominate the runtime of the query algo-
rithm. The most important part is a suitable order of the connections, primarily
ordered by arrival time. The minimum operation is then mainly a linear merge
operation, and the link operation uses precomputed intervals to look only at a
small relevant subset of fn(e). We gain additional speed-up by combining the
link and minimum operation.

3.2 Profile Query

A profile query (A,B) is similar to a time query. However, we compute dominant
connections con(S) instead of dominant arrival connections. Also we cannot just
stop the search when we remove a label of B from the priority queue for the
first time. We are only allowed to stop the search when we know that we have a
dominant set of all consistent connections between A and B. For daily operating
trains, we can compute a maximum length for a set of connections and can use
it to prune the search. The efficient implementations of the minimum and link
operation are also more complex. Similar to a time query, we use a suitable order
of the connections, primarily ordered by departure time. The minimum operation
is an almost linear merge: we merge the connections in descending order and
remove dominated ones. This is done with a sweep buffer that keeps all previous
dominant connections that are relevant for the current departure time. The link
operation, which links connections from station A to S with connections from
station S to T , is more complex: in a nutshell, we process the sorted connections
from A to S one by one, compute a relevant interval of connections from S to T
as for the time query, and remove dominated connections using a sweep buffer
like for the minimum operation.

4 Contraction Hierarchies (CH)

CH performs preprocessing based on node contraction to accelerate queries. Con-
tracting a node (= station) v in the station graph removes v and all its adjacent
edges from the graph and adds shortcut edges to preserve dominant connections
between the remaining nodes. A shortcut edge bypasses node v and represents
a set of whole connections. Practically, we contract one node at a time until
the graph is empty. All original edges together with the shortcut edges form the
result of the preprocessing, a CH.

4.1 Preprocessing

The most time consuming part of the contraction is the witness search: given a
node v and an incoming edge (u, v) and an outgoing edge (v, w), is a shortcut
between u and w necessary when we contract v? We answer this question usually
by a one-to-many profile search from u omitting v (witness search). If we find
for every connection of the path 〈u, v, w〉 a dominating connection (witness),
we can omit a shortcut, otherwise we add a shortcut with all the connections
that have not been dominated. To keep the number of profile searches small,
we maintain a set of necessary shortcuts for each node v. They do not take
a lot of space since timetable networks are much smaller than road networks.
Then, the contraction of node v is reduced to just adding the stored shortcuts.
Initially, we perform a one-to-many profile search from each node u and store
with each neighbor v the necessary shortcuts (u,w) that bypass v. The search
can be limited by the length of the longest potential shortcut connection from u.
After the contraction, we need to update the stored shortcuts of the remaining
nodes. The newly added shortcuts (u,w) may induce other shortcuts for the
neighbors u and w. So we perform one forward profile search from u and add to
w the necessary shortcuts (u, x) bypassing w. A backward profile search from w
updates node u. To omit the case that two connections witness each other, we
add a shortcut when the witness has the same length and is not faster. So at
most two profile searches from each neighbor of v are necessary. When we add
a new shortcut (u,w), but there is already an edge (u,w), we merge both edges
using the minimum operation, so there are never parallel edges. Avoiding these
parallel edges is important for the contraction, which performs worse on dense
graphs. Thereby, we also ensure that we can uniquely identify an edge with its
endpoints.

We also limit the number of hops and the number of transfers of a witness
search. As observed in [2], this accelerates the witness search at the cost of
potentially more shortcuts.

We could omit loops in static and time-dependent road networks. But for
station graph timetable networks, loops are sometimes necessary when transfer
times differ between stations. For example, assume there is a train T1: (station
sequence) A → B → C and another train T2: C → B → D. A large minimum
transfer time at B and a small one at C can forbid the transfer from T1 to T2 at
B but make it possible at C. Contracting station C requires a loop at station B
to preserve the connection between A and D. These loops also make the witness
computation and the update of the stored shortcuts more complex. A shortcut
(u,w) for node v with loop (v, v) must not only represent the path 〈u, v, w〉,
but also 〈u, v, v, w〉. So when we add a shortcut (v, v) during the contraction of
another node, we need to recompute all stored shortcuts of node v.

The order in which the nodes are contracted is deduced from a node priority
consisting of: (a) The edge quotient, the quotient between the amount of short-
cuts added and the amount of edge removed from the remaining graph. (b) The
hierarchy depth, an upper bound on the amount of hops that can be performed
in the resulting hierarchy. Initially, we set depth(u) = 0 and when a node v is

contracted, we set depth(u) = max(depth(u),depth(v)+1) for all neighbors u.
We weight (a) with 10 and (b) with 1 in a linear combination to compute the
node priorities. Nodes with higher priority are more ‘important’ and get con-
tracted later. The nodes are contracted by computing independent node sets
with a 2-neighborhood [20]. Also note that [2,3] perform a simulated contraction
of a node to compute its edge quotient. [20] improves this by caching witnesses,
but still needs to perform a simulated contraction when a shortcut is necessary.
We can omit this due to our stored sets of necessary shortcuts.

Interestingly, we cannot directly use the algorithms used for time-dependent
road networks [3]. We tried using the time-dependent model for the timetable
networks, but too many shortcuts were added, especially a lot of shortcuts be-
tween the different train-route nodes of the same station pair occur.4 Addition-
ally, [3] strongly base their algorithm on min-max search that only uses the time-
independent min./max. length of an edge to compute upper and lower bounds.
However, in timetable networks, the max. travel time for an edge is very high,
e. g. when there is no service during the night. So the computed upper bounds
are too high to bring any exploitable advantages. Without min-max search, the
algorithm of [3] is drastically less efficient, i. e. the preprocessing takes days in-
stead of minutes.

4.2 Query

Our query is a bidirectional Dijkstra-like query in the CH. A directed edge (v, w),
where w is contracted after v, is an upward edge, otherwise a downward edge.
Our forward search only relaxes upward edges and our backward search only
downward edges [2]. The node contraction ensures the correctness of the search.

For a CH time query, we do not know the arrival time at the target node.
We solve this by marking all downward edges that are reachable from the tar-
get node. The standard time query algorithm, using only upward edges and
the marked downward edges, solves the EAP. The CH profile query is based
on the standard profile query algorithm. Note that using further optimizations
that work for road networks (stall-on-demand, min-max search) [3] would even
slowdown our query.

5 Experiments

Environment. The experimental evaluation was done on one core of a Intel Xeon
X5550 processors (Quad-Core) clocked at 2.67 GHz with 48 GiB of RAM5 and
2x8MiB of Cache running SUSE Linux 11.1 (kernel 2.6.27). The program was
compiled by the GNU C++ compiler 4.3.2 using optimization level 3.

4 We tried to merge train-route nodes but this brought just small improvements.
5 We never used more than 556 MiB of RAM, reported by the kernel.

Table 1. Network sizes and number of nodes and edges in the graph for each
model.

trains/ elementary time-dependent station based
network stations buses connections nodes edges nodes edges

eur-longdist 30 517 167 299 1 669 666 550 975 1 488 978 30 517 88 091
ger-local1 12 069 33 227 680 176 228 874 599 406 12 069 33 473
ger-local2 9 902 60 889 1 128 465 167 213 464 472 9 902 26 678

Table 2. Performance of the station graph model compared to the time-
dependent model on plain Dijkstra queries. We report the total space, the #delete
mins from the priority queue, query times, and the speed-up compared to the
time-dependent model.

time-queries profile-queries
space #delete spd time spd #delete spd time spd

network model [MiB] mins up [ms] up mins up [ms] up

eur- time-dep. 27.9 259 506 1.0 54.3 1.0 1 949 940 1.0 1 994 1.0
longdist station 48.3 14 504 17.9 9.4 5.8 48 216 40.4 242 8.2

ger- time-dep. 11.3 112 683 1.0 20.9 1.0 1 167 630 1.0 1 263 1.0
local1 station 19.6 5 969 18.9 4.0 5.2 33 592 34.8 215 5.9

ger- time-dep. 10.9 87 379 1.0 16.1 1.0 976 679 1.0 1 243 1.0
local2 station 29.3 5 091 17.2 3.5 4.6 27 675 35.3 258 4.8

Test Instances. We have used real-world data from the European railways. The
network of the long distance connections of Europe (eur-longdist) is from the
winter period 1996/97. The network of the local traffic in Berlin/Brandenburg
(ger-local1) and of the Rhein/Main region in Germany (ger-local2) are from
the winter period 2000/01. The sizes of all networks are listed in Table 1.

Results. We selected 1 000 random queries and give average performance mea-
sures. We compare the time-dependent model and our new station model using
a simple unidirectional Dijkstra algorithm in Table 2. Time queries have a good
query time speed-up above 4.5 and even more when compared to the number of
delete mins. However, since we do more work per delete min, this difference is
expected. Profile queries have very good speed-up around 5 to 8 for all tested
instances. Interestingly, our speed-up of the number of delete mins is even better
than for time queries. We assume that more re-visits occur since there are often
parallel edges between a pair of stations represented by its train-route nodes.
Our model does not have this problem since we have no parallel edges and each
station is represented by just one node. It is not possible to compare the space
consumption per node since the number of nodes is in the different models dif-
ferent. So we give the absolute memory footprint: it is so small that we did not
even try to reduce it, altough there is some potential.

Before we present our results for CH, we would like to mention that we
were unable to contract the same networks in the time-dependent model. The
contraction took days and the average degree in the remaining graph exploded.

Even when we contracted whole stations with all of its route nodes at once, it
did not work. It failed since the necessary shortcuts between all the train-route
nodes multiplied quickly. So we developed the station graph model to fix these
problems. Table 3 shows the resulting preprocessing and query performance. We
get preprocessing times between 3 to 4 minutes using a hop limit of 7. The
number of transfers is limited to the maximal number of transfers of a potential
shortcut + 2. These timings are exceptional low (minutes instead of hours)
compared to previous publications [19,13] and reduce time queries below 550µs
for all tested instances. CH work very well for eur-longdist where we get speed-
ups of more than 37 for time queries and 65 for profile queries. When we multiply
the speed-up of the comparison with the time-dependent model, we even get a
speed-up of 218 (time) and 534 (profile) respectively. These speed-ups are one
order of magnitude larger than previous speed-ups [19]. The network ger-local2

is also suited for CH, the ratio between elementary connections and stations
is however very high, so there is more work per settled node. More difficult is
ger-local1; in our opinion, this network is less hierarchically structured. We see
that on the effect of different hop limits for precomputation. (We chose 7 as a hop
limit for fast preprocessing and then selected 15 to show further tradeoff between
preprocessing and query time.) The smaller hop limit increases time query times
by about 25%, whereas the other two networks just suffer an increase of about
16%. So important witnesses in ger-local1 contain more edges, indicating a
lack of hierarchy.

We do not really have to worry about preprocessing space since those net-
works are very small. The number of edges roughly doubles for all instances.
We observe similar results for static road networks [2], but there we can save
space with bidirectional edges. But in timetable networks, we do not have bidi-
rectional edges with the same weight, so we need to store them separately. CH
on timetable networks are inherently space efficient as they are event-based, they
increase the memory consumption by not more than a factor 2.4 (ger-local1:
19.6 MiB → 47.5 MiB). In contrast, CH time-dependent road networks are not
event-based and get very complex travel time functions on shortcuts, leading to
an increased memory consumption (Germany midweek: 0.4 GiB → 4.4 GiB).
Recent work reduces the space consumption by using approximations to answer
queries exactly [21].

6 Conclusions

Our work has two contributions. First of all the station graph model, which
has just one node per station, is clearly superior to the time-dependent model
for the given scenario. Although the link and minimum operations are more
expensive, we are still faster than in the time-dependent model since we need
to execute them less often. Also all known speed-up techniques that work for
the time-dependent model should work for our new model. Most likely, they
even work better since the hierarchy of the network is more visible because of
the one-to-one mapping of stations to nodes and the absence of parallel edges.

Table 3. Performance of CH. We report the preprocessing time, the space over-
head and the increase in edge count. For query performance, we report the
#delete mins from the priority queue, query times, and the speed-up over a
plain Dijkstra (Table 2).

preprocessing time-queries profile-queries
hop- time space edge #del. spd time spd #del. spd time spd

network limit [s] [MiB] inc. mins up [µs] up mins up [ms] up

eur- 7 210 45.7 88% 192 75.7 251 37.5 260 186 3.7 65.1
longdist 15 619 45.3 86% 183 79.3 216 43.5 251 192 3.4 71.4

ger- 7 216 27.9 135% 207 28.8 544 7.3 441 76 27.0 8.0
local1 15 685 26.9 128% 186 32.1 434 9.2 426 79 24.2 8.9

ger- 7 167 36.0 123% 154 33.1 249 14.0 237 117 9.5 27.1
local2 15 459 35.0 117% 147 34.6 217 16.1 228 121 8.2 31.3

Our second contribution is the combination of the CH algorithm and the station
graph model. With preprocessing times of a few minutes, we answer time queries
in half a millisecond. Our algorithm is therefore suitable for web services with
high load, where small query times are very important and can compensate for
our restricted scenario.

In our opinion, our presented ideas build the algorithmic core to develop
efficient algorithms in more realistic scenarios. Especially the successful demon-
stration of the contraction of timetable networks brings speed-up techniques to
a new level. It allows to reduce network sizes and to apply other speed-up tech-
niques only to a core of the hierarchy, even in case that the contraction of all
nodes is infeasible.

References

1. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning
Algorithms. In Lerner, J., Wagner, D., Zweig, K.A., eds.: Algorithmics of Large and
Complex Networks. Volume 5515 of Lecture Notes in Computer Science. Springer
(2009) 117–139

2. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. [22] 319–333

3. Batz, G.V., Delling, D., Sanders, P., Vetter, C.: Time-Dependent Contraction
Hierarchies. In: Proceedings of the 11th Workshop on Algorithm Engineering and
Experiments (ALENEX’09), SIAM (April 2009) 97–105

4. Müller–Hannemann, M., Weihe, K.: Pareto Shortest Paths is Often Feasible in
Practice. In: Proceedings of the 5th International Workshop on Algorithm Engi-
neering (WAE’01). Volume 2141 of Lecture Notes in Computer Science., Springer
(2001) 185–197

5. Marcotte, P., Nguyen, S., eds.: Equilibrium and Advanced Transportation Mod-
elling. Kluwer Academic Publishers Group (1998)

6. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-Line: An Empiri-
cal Case Study from Public Railroad Transport. ACM Journal of Experimental
Algorithmics 5 (2000) 12

7. Brodal, G., Jacob, R.: Time-dependent Networks as Models to Achieve Fast Exact
Time-table Queries. [23] 3–15

8. Nachtigall, K.: Time depending shortest-path problems with applications to rail-
way networks. European Journal of Operational Research 83(1) (1995) 154–166

9. Orda, A., Rom, R.: Shortest-Path and Minimum Delay Algorithms in Networks
with Time-Dependent Edge-Length. Journal of the ACM 37(3) (1990) 607–625

10. Orda, A., Rom, R.: Minimum Weight Paths in Time-Dependent Networks. Net-
works 21 (1991) 295–319

11. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable
Information in Public Transportation Systems. ACM Journal of Experimental
Algorithmics 12 (2007) Article 2.4

12. Berger, A., Müller–Hannemann, M.: Subpath-Optimality of Multi-Criteria Short-
est Paths in Time- and Event-Dependent Networks. Technical Report 1, University
Halle-Wittenberg, Institute of Computer Science (2009)

13. Berger, A., Delling, D., Gebhardt, A., Müller–Hannemann, M.: Accelerating Time-
Dependent Multi-Criteria Timetable Information is Harder Than Expected. In:
Proceedings of the 9th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems (ATMOS’09). Dagstuhl Seminar Proceed-
ings (2009)

14. Delling, D., Wagner, D.: Time-Dependent Route Planning. In Ahuja, R.K.,
Möhring, R.H., Zaroliagis, C., eds.: Robust and Online Large-Scale Optimization.
Volume 5868 of Lecture Notes in Computer Science. Springer (2009) 207–230

15. Bast, H.: Car or Public Transport – Two Worlds. In Albers, S., Alt, H., Näher, S.,
eds.: Efficient Algorithms. Volume 5760 of Electronic Notes in Theoretical Com-
puter Science. Springer (2009) 355–367

16. Hart, P.E., Nilsson, N., Raphael, B.: A Formal Basis for the Heuristic Deter-
mination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics 4 (1968) 100–107

17. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Towards Realistic Modeling of
Time-Table Information through the Time-Dependent Approach. [23] 85–103

18. Disser, Y., Müller–Hannemann, M., Schnee, M.: Multi-Criteria Shortest Paths in
Time-Dependent Train Networks. [22] 347–361

19. Delling, D.: Time-Dependent SHARC-Routing. Algorithmica (July 2009) Special
Issue: European Symposium on Algorithms 2008.

20. Vetter, C.: Parallel Time-Dependent Contraction Hierarchies (2009) Student Re-
search Project. http://algo2.iti.kit.edu/documents/routeplanning/vetter_

sa.pdf.
21. Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-Dependent Contrac-

tion Hierarchies and Approximation. In: Proceedings of the 9th International
Symposium on Experimental Algorithms (SEA’10). Lecture Notes in Computer
Science, Springer (2010)

22. McGeoch, C.C., ed.: Proceedings of the 7th Workshop on Experimental Algo-
rithms (WEA’08). In McGeoch, C.C., ed.: Proceedings of the 7th Workshop on
Experimental Algorithms (WEA’08). Volume 5038 of Lecture Notes in Computer
Science., Springer (June 2008)

23. Proceedings of the 3rd Workshop on Algorithmic Methods and Models for Op-
timization of Railways (ATMOS’03). In: Proceedings of the 3rd Workshop on
Algorithmic Methods and Models for Optimization of Railways (ATMOS’03). Vol-
ume 92 of Electronic Notes in Theoretical Computer Science. (2004)

http://algo2.iti.kit.edu/documents/routeplanning/vetter_sa.pdf
http://algo2.iti.kit.edu/documents/routeplanning/vetter_sa.pdf

A Examples

Example 1. This is an example timetable with elementary connections. {(1, 1,
A, B, 23:05, 0:55), (1, 1, B, C, 1:02, 2:57), (1, 1, C, D, 3:00,4:20)} describe
elementary connections of a train from station A via stations B, C to station
D as shown in Figure ??. The train departs at station A at 23:05 (hh:mm)
and arrives at station B at 0:55 the next day. The length of this elementary
connection is 1:50 = 110 minutes. {(2, 1, C, E, 3:00, 4:00), (3, 2, C, E, 4:00,
5:00)} describe elementary connections of two trains from station C to E, the
first train departs at 3:00 and arrives at 4:00, the second train one hour later.
We omitted the minimum transfer times of the stations.

A B C D

E

(1, 1, A, B, 23:05, 0:55) (1, 1, B, C, 1:02, 2:57) (1, 1, C, D, 3:00,4:20)

(2, 1, C, E, 3:00, 4:00) (3, 2, C, E, 4:00, 5:00)

Fig. 1. Every node represents a station and every edge a set of elementary
connections.

Example 2.

ci (Z1, Z2, S1, S2, td, ta) depi arri
c1 (1, 1, A, B, 23:05, 0:55) 23:05 24:55
c2 (1, 1, B, C, 1:02, 2:57) 25:02 26:57
c3 (3, 2, C, E, 4:00, 5:00) 28:00 29:00

P = (c1, c2, c3) is a consistent connection with one transfer. The elementary
connections are from Example ??. Assume a transfer time at station C of 5
minutes. It would not be consistent to replace c3 with the train that arrives at
arr3(P) = 28:00 since there are only 3 < 5 = transfer(C) minutes between the
arrival and the departure at station C.

Example 3. This example explains the motivation for the notion of a critical
departure/arrival. Let our timetable be given by Figure ??. As each edge repre-
sents just a single elementary connection, we can represent connections by their
sequence of stations.

Let Q be the connection B → C → E and let P be the connection B → D →
E. Both connections are consistent and some of their attributes are summarized
in Table ??. Let us decide whether connection P dominates connection Q, i.e.
we can replace connection Q by P . The conditions (1) and (2) from Section 3
are already fulfilled. Both depart at 9:10 and the length of Q is 10 minutes and
the length of P is 9 minutes. At first glance, it might look like we can replace Q
by P .

However, if Q appears as subconnection of a larger connection, the result may
not be consistent. Let R be the connection A→ B → C → E → F . Connection
R is consistent as it is a single train from A to F without any transfers. Q is
a subconnection of R. When we replace Q by P in R, we get a connection R′

over A → B → D → E → F with transfers at B and E. Connection R′ is
not consistent. The reason is that between the arrival of at B at 9:06 and the
departure at 9:10 are only 4 minutes time, this is smaller than the minimum
transfer time of 5 minutes. If R would arrive earlier, e.g. at 9:05, the transfer
would be consistent, resd(Q) would increase to 5 minutes and Q would not be
a critical departure.

Note that at station E we have a different situation as at station B altough Q
is a critical arrival (at E). There, the transfer of R′ is consistent since between
the arrival at 9:19 and the departure at 9:24 are 5 minutes time to transfer.
However, in general, conditions (1) and (2) are only sufficient if Q is neither a
critical departure nor a critical arrival.

connection parr dep resd critical departure arr ndep resa critical arrival

Q 9:06 9:10 4 yes 9:20 9:24 4 yes
P ⊥ 9:10 – no 9:19 ⊥ – no

Table 4. Attributes of connections Q and P .

A B

C

D

E F
(1, 1, A, B, 9:00, 9:06)

(1
, 1,
B

, C
, 9:

10
, 9:

15
) (1, 1, C

, E
, 9:17, 9:20)

(1, 1, E, F , 9:24, 9:40)

(2, 1, B
, D

, 9:10, 9:12) (1
, 2,
D

, E
, 9:

14
, 9:

19
)

Fig. 2. Every node represents a station and every edge an elementary connection.
The minimum transfer time at every station is 5 minutes.

Example 4. Consider train 1 that departs at stationA at 12:00 and arrives/departs
at station B at 12:01, then gets to C at 12:02. The train 2 departs at C at 12:03,
at B at 12:04 and at D at 12:05. The set of elementary connections is {(1, 1,
A, B, 12:00, 12:01), (1, 1, B, C, 12:01, 12:02), (2, 2, C, B, 12:03, 12:04), (2, 1,
B, D, 12:04, 12:05)}, as shown in Figure ??. Let the transfer time at station B
be 5 minutes and the transfer time at station C be 1 minute. We want to go
from A to D. It is not consistent to transfer from train 1 to train 2 at B since
it would require a transfer time of 3 minutes or less. However, it is possible to
transfer at C and then we get a consistent connection from A to D arriving at
12:05. Thus when we contract station C, we need to add a loop at station B.
Technically speaking, the loop allows to transfer between certain connections at
station B below the minimum transfer time.

A B C

D

(1, 1, A, B, 12:00, 12:01)
(1, 1, B, C, 12:01, 12:02)

(2, 2, C, B, 12:03, 12:04)

(2, 1, B, D, 12:04, 12:05)

Fig. 3. Every node is a station and every edge an elementary connection. Let
transfer(B) = 5 and transfer(C) = 1, then a loop at station B is necessary after
the contraction of station C.

Example 5. This example should indicate why so many shortcuts are added
during CH preprocessing in the time-dependent model and why the station graph
model is a solution. Assume that we have a network with three stations A, B
and C. Let there be three different train routes from A to B and from B to
C. This is represented by 3 train-route nodes at A, 3 + 3 = 6 train-route nodes
at B and 3 train-route nodes at C. To allow transfers at stations, there is a
dedicated station node and transfer edges from/to the train-route nodes. The
graph is shown in Figure ??. Now assume that we contract station B with all
its nodes, and that we always need to add a shortcut. The resulting graph is
shown in Figure ??. So the initially 3 outgoing edges from the train-route nodes
of station A and the 3 incoming edges to the train-route nodes of station C
multiplied to 3 · 3 = 9 edges.

Figures ??, ?? show the graph of the same network, but in the station graph
model, before and after the contraction. There is just a single node per station
and no parallel edges. During the contraction of station B, we just add a single
shortcut from station A to station C representing a set of connections (these
connections need not have the same train-route and the set also need not have
the FIFO-property).

S A

TR
A 1

TR
A 2

TR
A 3

TR
B 1

TR
B 2

TR
B 3

S B

TR
B 4

TR
B 5

TR
B 6

TR
C 1

TR
C 2

TR
C 3

S C

Fig. 4. Example graph in the time-dependent model before the contraction of
station B, including the Station node and all Train-Route nodes. The edges
between station and train-route nodes are for transfers, the edges between train-
route nodes are for connections.

S A

TR
A 1

TR
A 2

TR
A 3

TR
C 1

TR
C 2

TR
C 3

S C

Fig. 5. Example graph in the time-dependent model. After the contraction of
station B, there can be an edge from every train-route node of A to every train-
route node of C.

A B C

Fig. 6. Example graph in the station graph model before the contraction of
station B. There is a single node per station.

A C

Fig. 7. Example graph in the station graph model after the contraction of station
B.

B Proofs

Proof (of Lemma 1). ⇒ P dominates Q: Condition (1) locates P and Q at the
same stations. Condition (2) ensures that we can replace R = Q by P directly
or when transfer times are irrelevant. The last two conditions (3) and (4) ensure
that we can replace Q by P even when Q is just a part of a bigger connection and
we need to consider transfer times. The prefix of this bigger connection w.r.t. Q
may arrive in S1(Q) with stop event Z1(Q) and condition (3) ensures that it is
consistent to transfer to Z1(P). Consequently the suffix of this bigger connection
w.r.t. Q may depart in S2(Q) with stop event Z2(Q) and condition (4) ensures
that it is consistent to transfer to Z2(P).
⇐ ∀R we can replace Q by P : Condition (1) holds trivially. We get condition

(2) with R = Q. Let Q = (c1, . . . , ck) be a critical departure and Z1(Q) 6= Z1(P).
Condition (3) is satisfied by choosing R as given by the critical departure of Q
where Q is prefix of R. Let Q = (c1, . . . , ck) be a critical arrival and Z2(Q) 6=
Z2(P). Condition (4) is satisfied by choosing R as given by the critical arrival of
Q where Q is suffix of R. ut

C Pseudo-Code

Algorithm 1: TimeQuery(A, B, t0)

// tentative dominant sets of arrival connections from A to S
1 foreach S ∈ B \A do ac(S) := ∅;
// special value for A since we depart here at time t0

2 ac(A) := {(⊥, t0)};
// priority queue, key is earliest arrival time

3 Q.insert(t0, A);
4 while Q 6= ∅ do
5 (t, S) := Q.deleteMin();
6 if S = B then return t;
7 foreach e := (S, T) ∈ E do
8 N := minimum {ac(T), e.link(ac(S))};
9 if N 6= ac(T) then // new connections not dominated

10 ac(T) := N ; // update arrival connections at T
11 k := minP∈N arr(P); // earliest arrival time at T
12 if T in Q then Q.decreaseKey(k, T) else Q.insert(k, T);

13 return ⊥;

Algorithm 2: ProfileQuery(A, B)

// tentative dominant sets of connections from A to S
1 foreach S ∈ B \A do con(S) := ∅;
// special value for A since we depart here

2 con(A) := {⊥};
// priority queue, key is minimum length from station A

3 Q.insert(0, A);
4 while Q 6= ∅ do
5 (t, S) := Q.deleteMin();

// prune due to daily (1440 min. = 1 day) operating trains

6 if minP∈con(B) {arr(P)− dep(P)}+ 1440 < t then return c(B);
7 foreach e := (S, T) ∈ E do
8 N := minimum {con(T), e.link(con(S))};
9 if N 6= con(T) then // new connections not dominated

10 c(T) := N ; // update arrival connections at T
11 k := min

P∈N
{arr(P)− dep(P)}; // min length from A to T

12 if T in Q then Q.decreaseKey(k, T) else Q.insert(k, T);

13 return ⊥;

D Figures

v

u w

y x

v

u w
new shortcut

at contraction of v

potentially necessary

shortcut for contrac-

tion of u potentially necessary

shortcut for contrac-

tion of w

Fig. 8. If the contraction of node v adds a new shortcut (u,w), we need to update
the necessary shortcuts stored with u and w. For the contraction of w (in the
future), a potentially necessary shortcut (u, x) needs to be considered and for
the contraction of u (in the future), a potentially necessary shortcut (y, w) needs
to be considered.

E Implementation Details

The ordered set of connections for an edge is stored in an array. It is primar-
ily ordered by departure time, secondarily by arrival time, and finally critical
arrivals come before non-critical arrivals. For each connection, we only store a
representative with departure time in [0, 1439]. So the array actually represents
a larger outrolled array of multiple days and we get the connections of different
days by shifting the times by 1440.

E.1 Operations on Arrival Connections

The ordered set of arrival connections is also stored in an array. It is primarily
ordered by arrival time, and finally critical arrivals come before non-critical
arrivals. This ensures that no arrival connection in the array dominates an arrival
connection with lower index.

A basic link algorithm for the time query would link to all connections and
afterwards remove the dominated arrival connections. Let g := |ac(S)| and h :=
|fn(e = (S, T))|. The basic algorithm would create up to Θ(g · h) connections.
Especially h can be very large even though usually only a small range in fn(e)
is relevant for the link operation.

We improve the basic algorithm. Given a connection P ∈ g, we identify the
first connection Pt ∈ h we can link to. This first connection is the beginning of
a dominant range. Obviously, there will be a connection in h, so that after this
connection, all connections linked with P will result in dominated connections.
Therefor, such a connection marks the end of a dominant range. It is preferable
to make the dominant range as small as possible, but also supersets of dominant
ranges are dominant ranges. We could also distinguish between linking to a
certain connection with and without transfer, but we restrict ourselves only to
the case with transfer. This results in a practically very efficient link operation
since we can precompute the dominant range for each Pt as it is independent of
P . So given an array of arrival connections ac(S) and an array of connections of
an edge fn(e) to relax, the link will work as follows:

1. edt := minP∈ac(S) arr(P) (mod 1440) // earliest departure time, in [0, 1439]
2. ett := edt+ transfer(S) (mod 1440) // earliest departure with transfer time
3. Find first connection Pn ∈ fn(e) with minimal cycledifference(edt, dep(Pn))

using buckets.
4. Find first connection Pt ∈ fn(e) with minimal cycledifference(ett, dep(Pt)).

Connection Pt gives a dominant range that is identified by the first connec-
tion Pe outside the range This partitions the outrolled array of fn(e):

...
Pn

link w/o transfer
Pt

link w/ transfer
Pe

...

We may only link to a connection in [Pn, Pt) without (w/o) transfers and thus
all arrival connections in ac(S) are relevant to decide which consistent arrival
connections we can create there. It is consistent to link to all connections
with transfers from Pt on.

5. While we link, we remember the minimal arrival time and use it to skip
dominated arrival connections.

6. Finally, we sort the resulting connections and remove the dominated ones.
This step is necessary because the minimum arrival time may decrease while
we link and we may have to remove duplicates, too.

Given two sets of arrival connections at a node, we want to build the dominant
set of the union, the minimum. This can be done in linear time by just merging
them. Sometimes arrival connections are equivalent but not identical. Two arrival
connections are equivalent if they are identical or have the same arrival time and
neither of them has a critical arrival. In this case we must keep just one of them.
We make this decision so that we minimize the number of queue inserts in the
query algorithm, e. g. prefer the one from ac(T) if available.

Running time. The above link operation is more complex than a usual link
operation that maps departure time to arrival time. However, we give an idea why
this link operation is very fast and may work in constant time in many cases. The
experiments in Section 5 show that it is indeed very efficient. Let b be the number
of connections in the bucket. Let cd be the number of connections that depart
within the transfer time window [Pn, Pt) at the station. Let ca be the number of
arrival connections |ac(S)|, r be the number of connections that depart within
the range [Pt, Pe). The runtime for computing a link is then O(b+ cdca + r).
We choose the number of buckets proportional to the number of connections,
so b is in many cases constant. For linking connections without transfer, we
have the product O(cdca) as summand in the runtime. We could improve the
product down to O(cd + ca + u) with hashing, where u is the number of linked
connections. But this is slower in practice, since cd and ca are usually very small.
The station-dependent transfer time window is usually very small, and also, only
very few connections depart and arrive within a single window. It is harder to give
a feeling of the size of the range [Pt, Pe). Assume that every connection operates
daily. Let be d the difference between the length of Pt and the minimum length
of any connection in fn(e). d + transfer(S) is an upper bound on the size of
the time window of this range. So when d is small, and this should be in many
cases, also r is small. To show that our link operation is empirically fast, we give
the average of the parameters we used to bound our runtime in Table ??. The
average is the most relevant measure because we perform several hundreds link
operations per query.

network b cd ca cd · ca r

eur-longdist 2.7 0.55 1.12 0.68 1.09
ger-local1 3.0 0.57 1.32 0.94 1.22
ger-local2 3.2 0.69 1.38 1.20 1.26

Table 5. Average of 1 000 random time queries.

Computing the Dominant Range. Besides the buckets, we also need to compute
the dominant ranges. Lemma ?? gives the instructions how to efficiently compute
them using a sweepline algorithm approach.

Lemma 3. Assume an array F of connections between two stations S1 and S2

that operate daily. The array is primarily ordered by departure time and the
secondarily ordered by arrival time and then critical arrival before non-critical
arrivals. Let P be a arrival connection at station S1 that can link with a connec-
tion Q in the outrolled array with a transfer. Then, all connections that are later
in this outrolled array and may not be dominated by the new arrival connection,
created by the link of P and Q, depart earlier than dep(Q)+d+transfer(S2). d is
the difference between the length of Q and the minimum length of any connection
in F .

Proof. Let Q′ be a connection that does not depart earlier than dep(Q) + d +
transfer(S2). Since arr(P) + transfer(S1) ≤ dep(Q), and dep(Q) ≤ dep(Q′), we
can link P with Q′. By definition of d is length(Q) ≤ length(Q′) + d and thus
arr(Q) = dep(Q) + length(Q) ≤ dep(Q) + length(Q′) + d ≤ (dep(Q′) − d −
transfer(S2)) + length(Q′) + d ≤ arr(Q′)− transfer(S2). When Q′ has a critical
arrival, then arr(Q′) ≤ ndep(Q′) so that P linked with Q will dominate P linked
with Q′.

E.2 Operations on Connections

Linking two edges for shortcuts and profile search uses the dominant range
computation at link time. We change the order of the connections in the array
for this operation. They are still primarily ordered by departure. But within the
same departure time, the dominant connection should be after the dominated
one. That allows for an efficient backward scan to remove dominated connections.
So we secondarily order by length descending, thirdly non-critical before critical
departure, and finally non-critical before critical arrival. Finally, we order by
the first and last stop event, preferring a stop event with critical departure or
arrival. The last criterion is necessary for an efficient building of a dominant
union (minimum) of two connection sets where the preference is on one set.

Given two edges e1 = (S1, S2) and e2 = (S2, S3), we want to link all consis-
tent connections to create fn(e3) for an an edge e3 = (S1, S3). A trivial algorithm
would link each consistent pair of connections in fn(e1) and fn(e2) and then com-
pare each of the resulting connections with all other connections to find a dom-
inant set of connections. However, this is impractical for large g = |fn(e1)| and
h = |fn(e2)|. We would create Θ(g · h) new connections and do up to Θ

(
(gh)2

)
comparisons.

So we propose a different strategy for linking that is considerably faster for
practical instances. We process the connections in fn(e1) in descending order.
Given a connection P , we want to find a connection Q that dominates P at
the departure at S1. So we only need to link P to connections in fn(e2) that
depart in S2 after the arrival of P but before the arrival of Q. Preferably we

want to find the Q with the earliest arrival time. However, we find the Q with
the earliest arrival time in S2 with dep(Q) ≥ dep(P)+ transfer(S2). Then Q will
not only dominate P at the departure but also any connection departing not
later than P . So we can use a simple finger search to find Q. Now we link P only
to connections in fn(e2) departing between the arrival of P and Q. We use finger
search to find the first connection that departs in fn(e2) after the arrival of P .
Of course, we need to take the transfer time at S2 into account when we link. It
is not always necessary to link to all connections that depart before Q arrives;
we can use the knowledge of the minimum length in fn(e2) to stop linking when
we cannot expect any new dominant connections. The newly linked connections
may (1) not be dominant and also may (2) not be in order.

(1) To remove dominated connections, we use a sweep buffer that has as
state the current departure time and holds all relevant connections with higher
order to dominate a connection with the current departure time. The number of
relevant connections is usually small. We need at most all the connections that
depart less than transfer(S1) later than the current departure time and also all
connections that depart at least transfer(S1) later than the current departure
time but their arrival time is not more than transfer(S3) later than the current
earliest arrival time. Assuming that only few connections depart in S1 within
transfer(S1) minutes, and only few connections arrive in S3 within transfer(S3)
minutes, the sweep buffer has only a few entries.

(2) Connections can only be unordered within a range with same departure
time, e. g. when they have ascending lengths. So we use the idea of insertion
sort to reposition a connection that is not in order. While we reposition a new
connection, we must check whether it dominates the connections that are now
positioned before it. E.g. a new connection with same departure than the pre-
vious one but smaller length may dominate the previous one if the departure is
not critical.

After we processed all connections in fn(e1), we have a superset of fn(e3)
that is already ordered, but some connections may be dominated. This happens
when the dominant connection departs after midnight and the dominated con-
nection before, so the periodic border is between them. To remove all dominated
connections, we continue scanning backwards through the new connections but
now on “day -1” using the sweep buffer. We can stop when no connection in the
sweep buffer is of “day 0”.

Running time. We give an idea why this link operation is very fast and may work
in linear time in many cases. The experiments in Section 5 show that it is indeed
very efficient. Let cP be the size of the range in fn(e3) that departs between the
arrival of P and Q. Let bP be the runtime of the finger search to find the earliest
connection in fn(e2) that departs after the arrival of P Let s be the maximum
number of relevant connections in the sweep buffer. The runtime of link is then

O
(∑

P∈fn(e1)
(cP s+ bP)

)
. This upper bound reflects the linking and usage of

the sweep buffer. The backward scanning on “day -1” is also included, since it
just adds a constant factor to the runtime. The finger search for Q is amortized

in O(1), so it is also included in the runtime above. It is hard to get a feeling for
cP and bP , they can be large when h = |fn(e2)| is much larger than g = |fn(e1)|.
Under the practical assumption that

∑
P∈fn(e1)

(cP + bP) = O(g + h), we get

a runtime of O((g + h)s). As we already argued when we described the sweep
buffer, s is small and in many cases constant, so our runtime should be O(g + h)
in many cases.

network cP

∑
P∈fn(e1) cP

g+h
bP

∑
P∈fn(e1) bP

g+h

∑
P∈fn(e1) (cP+bP)

g+h
s

eur-longdist 0.93 0.29 3.25 0.84 1.14 2.34
ger-local1 1.26 0.29 3.97 0.93 1.22 3.85
ger-local2 1.44 0.30 4.30 1.08 1.38 5.30

Table 6. Average of 1 000 random profile queries.

Constructing the Minimum of two Sets of Connections. Query algorithms need
two basic operations: link and minimum. For newly visited nodes only link is
relevant, but usually a minimum follows a link, so it is efficient to integrate both.
But first we will describe a standalone minimum operation, we use it to compare
witness paths and possible shortcuts. It is basically a backwards merge of the
ordered arrays of connections and uses a sweep buffer as for the link operation.
Similar the link operation, we continue backward scanning on “day -1” to get
rid of dominated connections over the periodic border.

Like for an arrival connection, two connections are equivalent when they have
the same length, an equivalent departure and equivalent arrival. Two connections
P and Q have an equivalent departure when their departure is identical or when
the departure is not critical and they have the same departure time. Analogously,
two connections P and Q have an equivalent arrival when their arrival is identical
or when the arrival is not critical and they have the same arrival time. Because of
the order, equivalent connections are next to each other. So we can easily detect
them during the merge. Tie breaking is done in a way to reduce the number of
priority queue operations.

Running time. Let g and h be the cardinalities of the two sets we merge. Let
s be the maximum size of the sweep buffer. Then, the runtime of the minimum
operation is O((g + h)s). Since s is small and in many cases constant, the runtime
should be O(g + h) in many cases. To show that our link and minimum operation
are empirically fast, we give the average of the parameters we used to bound our
runtime in Table ??.

Integrating Link and Minimum. A minimum operation always follows a link op-
eration when we relax an edge to an already reached station S. This happens
quite often for profile queries, so we can exploit this to tune our algorithm. We
directly process the newly linked connections one by one and directly merge

them with the current connections at S. When a new connection is not in or-
der, we fix this with the insertion sort idea. The rest is like in the stand-alone
minimum operation. This integration reduces required memory allocations and
gives significant speed-ups.

	Contraction of Timetable Networks with Realistic Transfers
	Robert Geisberger

