
Alternative Route Graphs in Road Networks?

Roland Bader1, Jonathan Dees1,2, Robert Geisberger2, and Peter Sanders2

1 BMW Group Research and Technology, 80992 Munich, Germany.
2 Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany.

Abstract. Every human likes choices. But today’s fast route planning
algorithms usually compute just a single route between source and tar-
get. There are beginnings to compute alternative routes, but there is a
gap between the intuition of humans what makes a good alternative and
mathematical definitions needed for grasping these concepts algorithmi-
cally. In this paper we make several steps towards closing this gap: Based
on the concept of an alternative graph that can compactly encode many
alternatives, we define and motivate several attributes quantifying the
quality of the alternative graph. We show that it is already NP-hard to
optimize a simple objective function combining two of these attributes
and therefore turn to heuristics. The combination of the refined penalty
based iterative shortest path routine and the previously proposed Plateau
heuristics yields best results. A user study confirms these results.

1 Introduction

The problem of finding the shortest path between two nodes in a directed graph
has been intensively studied and there exist several methods to solve it, e.g.
Dijkstra’s algorithm [1]. In this work, we focus on graphs of road networks and
are interested not only in finding one route from start to end but to find several
good alternatives. Often, there exist several noticeably different paths from start
to end which are almost optimal with respect to length (travel time). There are
several reasons why it can be advantageous for a human to choose his or her route
from a set of alternatives. A person may have personal preferences or knowledge
for some routes which are unknown or difficult to obtain, e.g. a lot of potholes.
Also, routes can vary in different attributes beside travel time, for example in
toll pricing, scenic value, fuel consumption or risk of traffic jams. The trade-off
between those attributes depends on the person and the persons situation and is
difficult to determine. By computing a set of good alternatives, the person can
choose the route which is best for his or her needs.

There are many ways to compute alternative routes, but often with a very
different quality. In this work, we propose new ways to measure the quality of
a solution of alternative routes by mathematical definitions based on the graph
structure. Also, we present several different heuristics for computing alternative
routes as determining an optimal solution is NP-hard in general.

? Partially supported by DFG grant SA 933/5-1, and the ‘Concept for the Future’ of
Karlsruhe Institute of Technology within the framework of the German Excellence
Initiative.



1.1 Related Work

This paper is based on the MSc thesis of Dees [2]. A preliminary account of
some concepts has been published in [3]. Computing the k-shortest paths [4,5] as
alternative routes regards sub-optimal paths. The computation of disjoint paths
is similar, except that the paths must not overlap. [6] proposes a combination of
both methods: The computation of a shortest path, that has at most r edges in
common with the shortest path. However, such paths are expensive to compute.

Other researchers have used edge weights to compute Pareto-optimal paths
[7,8,9]. Given a set of weights, a path is called Pareto-optimal if it is better than
any other paths for respectively at least one criteria. All Pareto-optimal paths
can be computed by a generalized Dijkstra’s algorithm.

The penalty method iteratively computes shortest paths in the graph while
increasing certain edge weights [10]. [11] present a speedup technique for shortest
path computation including edge weight changes.

Alternatives based on two shortest paths over a single via node are considered
by the Plateau method [12]. It identifies fast highways (plateaus) which define
a fastest route from s to t via the highway (plateau). [13] presents a heuristic
to speedup this method using via node selection combined with shortest paths
speedup techniques and proposing conservative conditions of an admissible al-
ternative. Such a path should have bounded stretch, even for all subpaths, share
only little with the shortest path and every subpath up to a certain length should
be optimal.

2 Alternative Graphs

Our overall goal is to compute a set of alternative routes. However, in general,
they can share nodes and edges, and subpaths of them can be combined to new
alternative routes. So we propose the general definition of an alternative graph
(AG) that is the union of several paths from source to target. More formally,
let G = (V,E) be a graph with edge weight function w : E → R+. For a given
source node s and target node t an AG H = (V ′, E′) is a graph with V ′ ⊆ V
such that for every edge e ∈ E′ there exists a simple s-t-path in H containing
e, and no node is isolated. Furthermore, for every edge (u, v) in E′ there must
be a path from u to v in G; the weight of the edge w(u, v) must be equal to the
path’s weight.

A reduced AG is defined as an AG in which every node has indegree 6= 1
or outdegree 6= 1 and thus provides a very compact encoding of all alternatives
contained in the AG. Here, we focus on the computation of (reduced) AGs. We
leave the extraction of actual paths from the AG as a separate problem but note
that even expensive algorithms can be used since the AGs will be very small.

2



3 Attributes to Measure in AGs

For an AG H = (V ′, E′) we measure the following attributes

totalDistance :=
∑

e=(u,v)∈E′

w(e)

dH(s, u) + w(e) + dH(v, t)

averageDistance :=

∑
e∈E′ w(e)

dG(s, t) · totalDistance
decisionEdges :=

∑
v∈V ′\{t}

outdegree(v)− 1

where dG denotes the shortest path distance in graph G. The total distance
measures the extend to which the routes defined by the AG are nonoverlapping
– reaching its maximal value of k when the AG consists of k disjoint paths. Note
that the scaling by dH(s, u) + w(e) + dH(v, t) is necessary because otherwise,
long, nonoptimal paths would be encouraged. The average distance measures
the path quality directly as the average stretch of an alternative path. Here,
we use a way of averaging that avoids giving a high weight to large numbers of
alternative paths that are all very similar. Finally, the decision edges measure
the complexity of the AG which should be small to be digestible for a human.
Appendix A gives examples explaining why considering only two out of three of
these attributes can lead to meaningless results.

Usually, we will limit the number decisionEdges and averageDistance and un-
der these constraint maximize totalDistance − α(averageDistance − 1) for some
parameter α.

Optionally, we suggest a further attribute to measure based on

variance =

∫ 1

0

(totalDistance−#edges(x))2dx

where #edges(x) denotes the number of edges (u, v) at position x, i.e. for which
there is a path in the AG including (u, v) such that

dH(s, u)

dH(s, u) + dH(u, t)
≤ x < dH(s, v)

dH(s, v) + dH(v, t)
.

For normalization, we compute the coefficient of variation

CoV =
√
variance/

∫ 1

0

#edges(x) dx .

Fig. 1 gives an example showing that small variance can distinguish between
AGs that would otherwise be indistinguishable.

There are also other attributes that seem reasonable at the first glance, but
they are problematic at a closer look:

– Counting the number of paths overestimates the influence of a large number
of variants of the same basic route that only differ in small aspects.

3



s t

(a)

s t

(b)

Fig. 1: Left graph: better distribution of alternatives

– Averaging path lengths over all paths in the AG or looking at the expected
length of a random walk in the AG similarly overemphasizes small regions
in the AG with a large number of variants.

– The area of the alternative graph considering the geographical embedding of
nodes and edges within the plane is interesting because a larger area might
indicate more independent paths, e.g., with respect to the spread of traffic
jams. However, this requires additional data not always available.

It is also instructive to compare our attributes with the criteria for admissi-
ble alternative paths used in [13]. Both methods limit the length of alternative
paths as some multiple of the optimal path length. The overlap between paths
considered in [13] has a similar goal as our total distance attribute. An impor-
tant difference is that we consider entire AGs while [13] considers one alternative
path at a time. This has the disadvantage that the admissibility of a sequence
of alternative paths may depend on the order in which they are inserted. We do
not directly impose a limitation on the suboptimality of subpaths which plays
an important role in [13]. The reason is that it is not clear how to check such a
limitation efficiently – [13] develops approximations for paths of the form PP ′

where both P and P ′ are shortest paths but this is not the case for most of the
methods we consider. Instead, we have developed postprocessing routines that
remove edges from the AG that represent overly long subpaths, see Section 4.6.
Results using the quality measures of [13] can be found in Appendix C.

4 Methods to Compute Alternatives

A meaningful combination of measurements is NP hard to optimize (see Ap-
pendix B for details). Therefore, we restrict ourselves to heuristics to compute
an AG. These heuristics all start with the shortest path and then gradually add
paths to the AG. We present several known methods and some new ones.

4.1 k-Shortest Paths

A widely used approach [4,5] is to compute the k shortest paths between s and
t. This follows the idea that also slightly suboptimal paths are good. However,
the computed routes are usually so similar to each other that they are not

4



considered as distinct alternatives by humans. Computing all shortest paths up
to a number k produces many paths that are almost equal and do not “look
good”. Good alternatives occur often only for k being very large. Consider the
following situation: There exist two long different highways from s to t, where
the travel time on one highway is 5 minutes longer. To reach the highways we
need to drive through a city. For the number of different paths through the city
to the faster highway which travel time is not more than 5 minutes longer than
the fastest path, we have a combinatorial explosion. The number of different
paths is exponential in the number of nodes and edges in the city as we can
independently combine short detours (around a block) within the city. It is not
feasible to compute all shortest paths until we discover the alternative path on
the slightly longer highway. Furthermore, there are no practically fast algorithms
to compute the k shortest path. We consider this method rather impractical for
computing alternatives.

4.2 Pareto

A classical approach to compute alternatives is Pareto optimality. In general,
we can consider several weight functions for the edges like travel time, fuel con-
sumption or scenic value. But even if we restrict ourselves to a single primary
weight function, we can find alternatives by adding a secondary weight function
that is zero for edges outside the current AG and the identical to the primary
edge weight for edges inside the AG. Now a path is Pareto-optimal if there is
no other path which is better with respect to both weight functions. Computing
all Pareto-optimal paths now yields all sensible compromises between primary
weight function and overlap with the current AG. All Pareto-optimal paths in a
graph can be computed by a generalized Dijkstra algorithm [7,8] where instead
of a single tentative distance, each node stores a set of Pareto-optimal distance
vectors. The number of Pareto-optimal paths can be quite large (we observe up
to ≈ 5000 for one s-t-relation in our Europe graph). We decrease the number of
computed paths by tightening the domination criteria to keep only paths that
are sufficiently different. We suggest two methods for tightening described in
[9]. All paths that are 1 + ε times longer than the shortest path are dominated.
Furthermore, all paths whose product of primary and secondary weight is 1/γ
times larger than another path are dominated. This keeps longer paths only if
they have less sharing. ε and γ are tuning parameters. We compute fewer paths
for smaller ε and larger γ. But still we do not find suboptimal paths, as non-
dominant paths are ignored. Note that the Pareto-method subsumes a special
case where we look for completely disjoint paths.

As there may be too many Pareto-optimal alternatives, resulting in a large
decisionEdges variable, we select an interesting subset. We do this greedily by
iteratively adding that path which optimizes our objective function for the AG
when this path is added.

5



4.3 Plateau

The Plateau method [12] identifies fast highways (plateaus) and selects the best
routes based on the full path length and the highway length. In more detail, we
perform one regular Dijkstra [1] from s to all nodes and one backward Dijkstra
from t which uses all directed edges in the other direction. Then, we intersect the
shortest path tree edges of both Dijkstra’s. The resulting set consists of simple
paths. We call each of those simple paths a plateau. All nodes not represented in
a simple path form each an plateau of length 0. As there are too many plateaus,
we efficiently need to select the best alternative paths derived from the plateau.
Therefore, we rank them by the length of the corresponding s-t-path and the
length of the plateau, i.e. rank = (path length − plateau length). A plateau
reaching from s to t would be 0, the best value. To ensure that the shortest path
in the base graph is always the first path, we can prefer edges in the shortest
path tree rooted at s during the backward Dijkstra of t on a tie.

Plateau routes look good at first glance, although they may contain severe
detours. In general, a plateau alternative can be described by a single via node.
This is the biggest limitation of this method.

4.4 Penalty

We extend the iterative Penalty approach of [10]. The basic idea is to compute
a shortest path, add it to our solution, increase the edge weights on this path
and start from the beginning until we are satisfied with our solution.

The new shortest path is likely to be different from the last one, but not
completely different, as some subpaths may still be shorter than a full detour
(depending on the increase). The crucial point of this method is how we adjust
the edge weights after each shortest path computation. We present an assortment
of possibilities with which the combination results in meaningful alternatives.

First, we want to increase the edge weights of the last computed shortest
path. We can add an absolute value on each edge of the shortest path [10], but
this depends on the assembly and structure of the graph and penalizes short
paths with many edges. We by-pass this by adding a fraction penalty-factor of
the initial edge weight to the weight of the edge. The higher the factor (penalty),
the more the new shortest path deviates from the last one.

Beside directly adding a computed shortest path to the solution, we can also
first analyse the path. If the path provides us with a good alternative (e.g. is
different and short enough), we add it to our solution. If not, we adjust the edge
weights accordingly and recompute another shortest path.

Consider the following case: The first part of the route has no meaningful
alternative but the second part has 5. That means that the first part of the route
is likely to be increased several times during the iterations (multiple-increase).
In this case, we can get a shortest path with a very long detour on the first part
of the route. To circumvent this problem, we can limit the number of increases
of a single edge or just lower successive increases. We are finished when a new

6



shortest path does not increase the weight of at least one edge. This provides us
with a natural saturation of the number of alternatives.

The main limitation of the previous Penalty algorithm [10] is that the new
shortest path can have many small detours (hops) along the route compared to
the last path. Consider the following example: The last path is a long motorway
and the new shortest path is almost equal to the last one, but at the middle
of the motorway, it contains a very short detour (hop) from the long motorway
on a less important road (due to the increase). There can occur many of those
small hops; those look unpleasant for humans and contain no real alternative. In
the AG, this increases the number of decision edges while having no substantial
positive effect on other attributes. To alleviate this problem, we propose several
methods: First, we cannot only increase the weights of edges on the path, but also
of edges around the path (a tube). This avoids small hops, as edges on potential
hops are increased and are therefore probably not shorter. The increase of the
edges around the path should be decreasing with the distance to the path. Still,
we penalize routes that are close to the shortest path, although there can be a
long, meaningful alternative close to the shortest path. To avoid this, we can
increase only the weights of the edges, which leave and join edges of the current
AG. We call this increase rejoin-penalty. It should be additive and dependent
on the general increase factor k and the distance from s to t, e.g. rejoin-penalty
∈ [0..(penalty-factor)·0.5·d(s, t)]. This avoids small hops and reduces the number
of decision edges in the AG. The higher the rejoin-penalty, the less decision
edges in the alternative graph. In some cases, we want more decision edges at
the beginning or the end of the route, for example to find all spur routes to the
highways. Therefore, we can grade the rejoin-penalty according to the current
position (cf. variance in Section 3). Another possibility to get rid of small hops is
to allow them in the first place, but remove them later in the AG (Section 4.6).

A straightforward implementation of the Penalty method iteratively com-
putes shortest paths using the Dijkstra algorithm. However, there are more
sophisticated speedup techniques that can handle a reasonable number of in-
creased edge weights [11]. Therefore we hope that we can efficiently implement
the Penalty method.

4.5 Combinations

In general, the Penalty method operates on a preexisting set of alternative routes
and computes a new one. Therefore, a preprocess based on any other method
is possible. Furthermore, the greedy selection strategy developed for the Pareto
method could be applied to a set of paths computed by several methods. For
example, the combination of the Plateau and Penalty method can produce an
algorithm that is superior to a single one.

4.6 Refinements / Post Processing

The heuristics above often produce reduced alternative graphs that can be eas-
ily improved by local refinements that remove useless edges. We propose two

7



methods: Global Thinout focuses at the whole path from s to t, and Local
Thinout only looks at the path between the edges. Global Thinout identifies
useless edges (u, v) in the reduced alternative graph G = (V,E) by checking for
dG(s, u) + w(u, v) + dG(v, t) ≤ δ · dG(s, t) for some δ ≥ 1. Local Thinout iden-
tifies useless edges in the reduced alternative graph G = (V,E) by checking for
w(u, v) > δ · dG(u, v) for some δ ≥ 1. After having removed edges with Local
Thinout, we may further reduce G and find new locally useless edges. In con-
trast, Global Thinout finds all globally useless edges in the first pass. Also, we
can perform Global Thinout efficiently by computing dG(s, ·) and dG(·, t) using
two runs of Dijkstra’s algorithm. Fig. 2 illustrates Global Thinout by example.

s

111
29

240

50 t
90

60

(a) Base graph, shortest path is 〈s, 2, t〉

s 1
11
29

t100

90

(b) Global thinout with δ = 1.2

Fig. 2: Global Thinout: The only, and therefore the shortest, s-t-path including
edge (1, 2) has length 121, which is greater than 1.2 · 100. Therefore, edge (1, 2)
is removed. Every other edge is included in a s-t-path with weight below 120.

5 Different Edge Weights

The methods to compute an AG depend only on a single edge weight function
(except Pareto). Therefore, we can use several different edge weight functions to
independently compute AGs. The different edge weights are potentially orthog-
onal to the alternatives and can greatly enhance the quality of our computed
alternatives. When we combine the different AGs into a single one, and want
to compute its attributes of Section 3, we need to specify a main edge weight
function, as the attributes also depend on the edge weights.

6 Experiments

We tested the proposed methods on a road network of Western Europe3 with
18 029 721 nodes and 42 199 587 directed edges, which has been made available
for scientific use by the company PTV AG. For each edge, its length and one out

3 Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Netherlands,
Norway, Portugal, Spain, Sweden, Switzerland, and the UK

8



of 13 road categories (e.g., motorway, national road, regional road, urban street)
is provided so that an expected travel time can be derived. As k-Shortest Paths
and normal Pareto are not feasible on this large graph, we also provide results
just on the network of Luxembourg (30 732 nodes, 71 655 edges).

Hardware/Software. Two Intel Xeon X5345 processors (Quad-Core) clocked
at 2.33 GHz with 16 GiB of RAM and 2x4MB of Cache running SUSE Linux 11.1.
GCC 4.3.2 compiler using optimization level 3. For k-shortest path, we use the
implementation from http://code.google.com/p/k-shortest-paths/ based
on [14], all other methods are new implementations.

Our experiments evaluate the introduced methods to compute AGs. We eval-
uate them by our base target function

totalDistance− (averageDistance)

with constraints

averageDistance ≤ 1.1 and decisionEdges ≤ 10 .

So we want the average distance to be at most 10% larger than the shortest
path, providing us with short alternatives. Furthermore, there should not be
more than 10 decision edges resulting in an clearly representable AG.

To compute an AG for a source/target pair, each method iteratively computes
a new path until the constraints are violated and adds it to the AG. From this
evolving set of AGs, the one with the best target function is chosen. As the Pareto
method computes several paths at once, we use the greedy method to select the
next path to add to the AG: We iteratively add the path which maximizes the
target function while still satisfying the constraints. In our experiments with a
few different penalty-factors, a factor of 0.4 without multi-increase and a factor
of 0.3 with infinite multi-increase showed best performance. As rejoin-penalty,
we use 0.005·penalty-factor. We further combine the Penalty + Pareto method
using the greedy selection strategy.

We use Global Thinout for refinement; Local Thinout has similar effects but
is not as effective. As value for δ we choose 1.2 as it showed best performance. Our
experiments showed that Global Thinout only improves the Penalty method with
multi-increase, and the Plateau method. We will only report the best results.

The results based on 100 randomly selected source/target pairs are presented
in Tab. 1. We see that the Penalty and Plateau method are clearly superior to
the other methods. On Europe, Penalty is slightly better, as the Plateau method
is limited to a single via node. We observe that the rejoin-penalty is a necessary
ingredient of the Penalty method, as it increases the target function value by up
to 48% on Europe. The best results are achieved when we combine Penalty and
Plateau. We counted the number of paths contributed by both methods, showing
that the Penalty method contributes 65% to the average AG and Plateau only
35%. The other tested methods are clearly dominated by these two methods.
The Pareto method is slightly better than Disjoint and k-Shortest Paths, but
the tightened domination criteria significantly reduces quality.

9

http://code.google.com/p/k-shortest-paths/


Table 1: Mean target function values.
Method Thinout Luxembourg Europe

Penalty 0.4 rejoin + Plateau ∞ 3.29 3.70

Penalty 0.3 rejoin multi-increase 1.2 2.85 3.34
Penalty 0.4 rejoin ∞ 2.91 3.21

Penalty 0.3 multi-increase 1.2 2.77 2.25
Penalty 0.4 ∞ 2.75 2.47

Plateau 1.2 3.05 3.08

Pareto ∞ 2.39 -
Pareto (ε = 0.1, γ = 1.05) ∞ 1.69 2.02

Disjoint Paths ∞ 1.10 1.12
k-Shortest Paths ∞ 1.07 -

6.1 User Study

The experiments from above show that the Penalty and the Plateau method
produce good results for our target function. However, we want to corroborate
more objectively that the graphs which perform well at our target function are
meaningful for humans. Every participant of the survey had to describe several
(at least 2) meaningful motor vehicle routes for a start and destination pair.
The described routes and the region should be known to the participant so that
hopefully the given routes are meaningful. There were no restrictions on the
length or on region of the routes. Given those routes, we assay whether our
methods find most of the alternative routes, i.e. whether most of the routes are
included in the (reasonable large) alternative graph. A methods perform well if
it finds the alternative paths given by the survey participants.

The survey includes 79 alternatives for 26 different start and destination
pairs (≈ 3 paths each), most of the routes are located in southern Germany. The
distance of the pairs varies from 5 km up to 150 km.

Table 2: Reason for alternative paths (Survey)
Reason Count

Faster at specific times 20
Route around (risk of) traffic jam 11
Proposed by route planer 12
Fast(er than proposed by route planer) 12
Relaxed driving/Easy route 10
n/a 14

Reason for alternatives. Tab. 2 shows a summary of the different reasons why
a path is considered as a meaningful alternative route by the participant. The
categories “Faster at specific times” and “Route around (risk of) traffic jam” are

10



very similar and are the most occurring reason (20+11), i.e. the alternative paths
are dynamically chosen based on the time of day (or weekday) or the current
traffic situation (sometimes even based on the current state of traffic lights).

Survey Evaluation. In order to compare the routes given by the survey partici-
pants to the routes of our methods, we convert them to routes of our graph data.
For each start and destination pair, we obtain an alternative graph (called user
graph) by merging the edges of the routes. After that, we compute an alternative
graph for each s− t-pair with our method (called method graph). Note that the
edge weights are not given by the survey. We use edge weights based on the
travel time as it is the main reason to select an alternative. The Penalty method
uses a penalty-factor of 0.4, with rejoin-penalty, and without multiple-increase,
due to the best performance on Luxembourg (cf. Tab. 1).

Table 3: Penalty and Plateau Match Factor. The column “Matched” describes
the mean fraction of the edge weights in the user graph, which are covered by the
method graph. “Weight Factor” is the mean of the ratio, weight of the method
graph to weight of the user graph.

# Iterations Method Matched Weight Factor

2 Penalty 69% 0.91
2 Plateau 65% 0.88

3 Penalty 76% 1.21
3 Plateau 73% 1.18

3 Penalty+Plateau 81% 1.47

Results. In Tab. 3 we illustrate results for all of our test cases. The matching
rate is around 70% for 2 iterations and and around 75% for 3. Penalty has a
slightly better mean match factor, but the weight of the method graph is also
slightly higher. The union of the method graphs increases the match factor to
81%. We consider this matching rates as indication of the usefulness of both
methods. Appendix D shows example graphs of the survey.

7 Conclusion and Outlook

Our main contribution is a new way to characterize alternative routes that may
look more natural to humans. The attributes defined for an alternative graph
allow to measure the quality of a set of alternative routes. Furthermore, we
compare methods to compute such AGs. The Plateau method and our improved
version of the Penalty method showed best performance and clearly dominate
the other tested methods.

The Penalty method has to be integrated with the dynamic speedup tech-
nique of [11]. There may be potential for further improvements compared to [11],
as we we know that we have to consider all weight changes in the next query.

11



Also the Penalty method itself can be improved. The user often wants a choice
of highways, but also a choice to reach these highways. Further improvements to
the Penalty method can help to compute meaningful spur routes to the highways.

A geographic embedding of the AG allows a clearly representation of sev-
eral alternative paths. To further improve the user experience, highlighting the
differences between the alternatives could be added, e.g. showing points of in-
terest along the routes. This allows the user to make a sound choice for the path
along she will actually drive. The choice can be further supported by including
previous choices and recommendations of other users.

References

1. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische
mathematik 1(1) (1959) 269–271

2. Dees, J.: Computing Alternative Routes in Road Networks. Master’s thesis, Karl-
sruhe Institut für Technologie, Fakultät für Informatik (April 2010)

3. Dees, J., Geisberger, R., Sanders, P., Bader, R.: Defining and Computing Al-
ternative Routes in Road Networks. Technical report, ITI Sanders, Faculty of
Informatics, Karlsruhe Institute of Technology (2010)

4. Eppstein, D.: Finding the k shortest paths. In: Proceedings of the 35th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’94). (1994) 154–165

5. Yen, J.Y.: Finding the K Shortest Loopless Paths in a Network. Management
Science 17(11) (1971) 712–716

6. Scott, K.: Finding alternatives to the best path (1997)
7. Hansen, P.: Bricriteria Path Problems. In Fandel, G., Gal, T., eds.: Multiple

Criteria Decision Making – Theory and Application –. Springer (1979) 109–127
8. Martins, E.Q.: On a Multicriteria Shortest Path Problem. European Journal of

Operational Research 26(3) (1984) 236–245
9. Delling, D., Wagner, D.: Pareto Paths with SHARC. In Vahrenhold, J., ed.:

Proceedings of the 8th International Symposium on Experimental Algorithms
(SEA’09). Volume 5526 of Lecture Notes in Computer Science., Springer (June
2009) 125–136

10. Chen, Y., Bell, M.G.H., Bogenberger, K.: Reliable pre-trip multi-path planning
and dynamic adaptation for a centralized road navigation system. In: ITSC 2005
- 8th International
IEEE Conference on Intelligent Transportation Systems, Vienna, IEEE (2007) 14–
20

11. Schultes, D., Sanders, P.: Dynamic Highway-Node Routing. In Demetrescu, C., ed.:
Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07). Volume
4525 of Lecture Notes in Computer Science., Springer (June 2007) 66–79

12. CAMVIT: Choice routing (2009) http://www.camvit.com.
13. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Alternative Routes in

Road Networks. In Festa, P., ed.: Proceedings of the 9th International Symposium
on Experimental Algorithms (SEA’10). Volume 6049 of Lecture Notes in Computer
Science., Springer (May 2010) 23–34

14. de Queiros Vieira Martins, E., Queir, E., Martins, V., Margarida, M., Pascoal,
M.M.B.: A new implementation of yen’s ranking loopless paths algorithm (2000)

15. Garey, M.R., Johnson, D.S.: Computers and intractability. Freeman (1979)

12

http://www.camvit.com


A Three Necessary Attributes

It is not meaningful to observe and optimize only two of the three attributes:
total distance, average distance, and decision edges. We illustrate this for the
absence of each of those attributes, see Fig. 3. The solid edges within the graphs
build up the alternative graph.

If we optimize our alternative graph solely on average distance and decision
edges, the best alternative graph consists of a shortest path from s to t, see
Fig. 3a. The number of decision edges is 0 and the average distance is 1, which
is optimal. However, the resulting graph does not include any alternative routes,
although the dashed edge with weight 101 is a meaningful alternative.

If we optimize our alternative graph for total distance and decision edges,
the best alternative graph consists of the union of a set of disjoint paths from s
to t, see Fig. 3b. The total distance is one more (+1) than the decision edges,
which is the best possible. The length of the single paths is not relevant and
therefore long. However, this is not acceptable since there exist two considerably
shorter alternatives (dashed edges with weight 99) resulting in almost the same
total distance.

Fig. 3c illustrates an alternative graph which is optimized for total distance
and average distance, but not for decision edges. This seems to be the best from
all graphs in Fig. 3. The average distance is 1.0 (optimal) and the total distance
is 2.24. However, there are some problems. There are many decision edges (21),
most of them are almost useless. At the beginning and at the end, there is a
grid of edges. In road networks, this can be due to the fact that s and t are
located at positions with minor street classes (e.g. in a residential area). Grids
of streets exist at these locations from which there are many junctions to the
next higher class streets. The length of the paths through these grids are often
similar. However, these paths are no real alternative and are not interesting
for users (at least not all of the paths). If we list all of them, the alternative
graph is quite similar to the original graph and this is not a useful proposal
for alternative routes. Beside the grids, there are two alternative edges in the
middle of the graph with weight 1, close to the edges, with weight 45. In road
networks, this can happen at higher class streets having an intersection with
smaller streets (e.g. a higher class street leading through a small town). At the
intersection, there is a very small detour leaving the higher class street and
immediately joining it again. This detour is normally no “real alternative” and
not interesting. To get rid of the unwanted parts, we must also optimize decision
edges. When optimizing, the number of split-ups should be low and thus every
split should have advantages (in terms of total distance or average distance).
With this (hopefully) only good branches will remain.

13



s t
100

101

(a) Ignoring total distance

s t
99 1

150

99

450

99

(b) Ignoring average distance

s t

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

45

45

45

45

1

1

2

2

1

1

1

1

1

1

1 1

1 1

(c) Ignoring decision edges

Fig. 3: Optimizing two of: total distance, average distance or decision edges

14



B NP-Hardness of Objective Function

In this section we show that it is NP-hard to compute an alternative graph
H = (V ′, E′) for a given Graph G = (V,E) and s, t ∈ V which is optimal for (a
simplified version of) the target function with constraints from Section 3. The
target function is

total distance

with constraints
average distance ≤ C∗ (C∗ ∈ R+)

decision edges ≤ N (N ∈ N)

Actually, this is the same target function proposed for evaluating the quality
of an alternative graph in Section 3 without the average distance in the target
function (i.e. using α = 0).

To show that the problem is NP-hard (i.e. its decision problem is NP-complete),
we perform a reduction from Knapsack. Knapsack is a well known NP-
complete problem [?]. It is defined as follows.

Knapsack
Instance: n Elements with costs ci ∈ N and profit pi ∈ N with i ∈

{1, . . . , n}, maximal cost C ∈ N and goal value K ∈ N.

Question: Is there a set B ⊆ {1, . . . , n} such that
∑
i∈B ci ≤ C and∑

i∈B pi ≥ K ?

Our Problem to compute an alternative graph is stated as follows:

Alternative Graph
Instance: A graph G = (V,E), w : E → R+, s, t ∈ V and C∗,K∗ ∈

R+, N ∈ N.

Question: Is there an alternative Graph H such that
total distance ≥ K∗ and average distance ≤ C∗

and decision edges ≤ N?

Lemma 1. Alternative Graph ∈ NP .

Proof (Proof). Given an instance of Alternative Graph, we non-deterministically
guess a solution. We are able to verify if this solution is a “Yes”-instance by com-
puting the attributes for the alternative graph and check whether they meet the
constraints in polynomial time, hence, Alternative Graph is in NP .

Lemma 2. Given a Knapsack instance I with n elements and N in {1 . . . n},
we can build an Alternative Graph instance I∗, such that, if and only if I is
a “Yes”-instance which can be solved with N elements, I∗ is a “Yes”-instance,
too.

Proof (Proof). We are given an Knapsack instance: n Elements with costs ci ∈
N and profit pi ∈ N with i ∈ {1, . . . , n}, maximal cost C ∈ N and goal value K ∈
N. Additionally, let N be a value N ∈ {1, . . . , n}. Our goal is to transform this

15



instance into an Alternative Graph instance, where the transformed instance
is a “Yes”-instance if and only if the Knapsack instance can be solved with
N elements, i.e. solution B contains N elements. The idea is to transform each
element of the knapsack instance into a branch in G of the Alternative Graph
instance. A branch to the alternative graph increases the total distance (profit)
and decision edges but also increases the average distance (costs). If a branch
is added to the alternative graph, this means, we add the corresponding item
to our Knapsack solution. The total distance models the profit constraint and
the average distance the cost constraint of Knapsack. As the average distance
does not increase by a constant additive value when adding a branch, we have
to design the weights of the branches in G carefully. This is also the reason for
limiting the solution to exactly N elements.

First, we scale the cost and the profits of the Knapsack instance:

p′i :=
pi

maxj pj
· δ + 0.5

c′i :=
ci

maxj cj
· 0.1 + 0.6

where 0 < δ < 0.1 (defined later). With that, p′i ∈ [0.5, 0.6) ∩ [0.5, δ] and c′i ∈
[0.6, 0.7].

Without loss of generality, let p′i be in non-decreasing order, i.e. p′i ≤ p′i+1.
Now we build G as follows: Let P be a simple path from s to t with length 1
consisting of several nodes. For every element i of the Knapsack instance there
is a node i on P with distance `i from s. Beside the edges on the path P , for each
i, we insert an edge from s to i with length `i + xi. This edge is called branch i
and is a detour for a part of path p with length `i, the detour is xi longer. To
prevent multiple edges, we insert a node s′ directly after s on P .

More formally, we build G = (V,E), with

V = {s, s′, t} ∪ {1, 2, . . . , n}

and

E = {(s, s′), (s′, 1)} ∪ {(1, 2), . . . , (n− 1, n))} ∪ {(n, t)} ∪ {(s′, 1), . . . , (s′, n)}

and edge weights

w(s, s′) = 0 w(n, t) = 1− `n w(i, i+ 1) = `i+1 − `i w(s′, i) = `i + xi

with 0 ≤ `i ≤ 1 and 0 ≤ xi.
Fig. 4 shows an example graph with three branches (so there are three cor-

responding items in Knapsack).

Note that every solution not including path p can easily be modified to
include p, while all satisfied constraints remain satisfied. That means, we can
always improve an alternative graphs and include path p, then only the included

16



branches differ. We define A := {i | branch (s, i) is in the alternative graph}.
Therefore our target function (total distance) can be written as

1 +
∑
i∈A

pi = 1 +
∑
i∈A

`i + xi
1 + xi

≥ K∗

with the constraint (average distance)

1 +
∑
i∈A (`i + xi)

1 +
∑
i∈A

`i+xi

1+xi

≤ C∗

and constraint (decision edges)
|A| ≤ N

If we add branch i to our alternative graph, the target function (total dis-
tance) is increased by `i+xi

1+xi
and the enumerator in the average distance formula

is increased by `i + xi. We set their value dependent on the scaled profit and
cost of the Knapsack instance:

`i + xi
1 + xi

:= p′i (=
pi

maxj pj
· δ + 0.5)

`i + xi := c′i (=
ci

maxj cj
· 0.1 + 0.6)

This is valid since there always exists a single solution for `i and xi satisfying
the equations and 0 ≤ `i ≤ 1 and 0 ≤ xi, remembering that p′i ∈ [0.5, 0.6) and

c′i ∈ [0.6, 0.7] (We have xi =
c′i
p′i
− 1 and `i = c′i − c′i

p′i
+ 1).

With that, we set our constraints total distance

K∗ := 1 + 0.5 ·N + δ · K

maxj pj

and average distance

C∗ := (
C

maxj cj
· 0.1 +N · 0.6 + 1)/(1 +N · 0.5)

To assure that a valid solution contains exactly N elements we set δ ·N < 0.5.
With that, the alternative graph must contain N branches to satisfy the total
distance constraint. As already |A| ≤ N we have |A| = N for all “Yes”-instances.

The total distance constraint of the Alternative Graph instance is sat-
isfied with N branches if and only if the profit constraint of the Knapsack
instance is satisfied with the corresponding N elements, as the weights of the el-
ements and the constraints are just linear scaled. However, the average distance
constraint is more complex. Our goal is that each element adds up additively to
the average distance similar to the Knapsack instance. However, the denomi-
nator in the average distance formula (1 +

∑
i∈A

`i+xi

1+xi
) is not constant. We first

assume that all items in the denominator are equal to 0.5. In reality, the items

17



in the denominator can be larger, each up to 0.5 + δ. This weakens the average
distance constraint. To be sure that this does not create additional solutions, a
solution of the Knapsack instance violating the cost constraint must also vio-
late the average distance constraint of the corresponding Alternative Graph
solution. We set

δ := min(
1

200N maxj cj
, 0.09, 0.5/(N + 1))

We now show that, if the constraint in the Knapsack instance is not satis-
fied, neither is the constraint in the Alternative Graph instance. Assume that
the costs in the Knapsack instance are too high (

∑
c > C), then

∑
c ≥ C + 1

and we need to show that

1 +N · 0.6 +
∑
c

maxjcj
0.1

1 +N · (0.5 + δ)
> C∗

(
∑
c≥C+1)⇐

1 +N · 0.6 + C+1
maxjcj

0.1

1 +N · (0.5 + δ)
>

C
maxj cj

0.1 +N · 0.6 + 1

1 +N · 0.5 ⇔

(
1

maxj cj
0.1)(1 +N · 0.5) > Nδ(

C

maxj cj
0.1 +N · 0.6 + 1)

(δ≤ 1
200N maxj cj

)

⇐

1 +N · 0.5 > C

20 maxj cj
0.1 +

N · 0.6
20 maxj cj

+
1

20
⇐

1

N
+ 0.5 >

C

20 maxj cj ·N
+

1

20
+

1

20

(C≤N ·maxj cj)
4

⇐

0.5 >
1

20
+

1

20
+

1

20

which is true.
Hence, every solution for the Knapsack instance satisfying the cost and

profit constraint with N elements (“Yes”-instance) has a corresponding solution
for the corresponding Alternative Graph instance satisfying the average dis-
tance, total distance and decision edges constraint (“Yes”-instance). If there is
no solution for the Knapsack instance with N elements, there is also no solu-
tion for the corresponding Alternative Graph instance, since if there was a
solution, there would be a corresponding Knapsack solution with N elements.
Contradiction.

Lemma 3. Knapsack is reducible to Alternative Graph

Proof (Proof). We are given an Knapsack instance with n elements. In Lemma 2,
we have shown that, for every N ∈ {1, . . . , n}, we can build a Alternative
Graph instance, such that if a solution for Knapsack with N elements exists, so

4 or else
∑
c > C would not be possible

18



s t

`1 + x1

`2 + x2

`1 `2-`1

`3 + x3

s′ 1 2 3`3 − `20 1− `3

Fig. 4: Example transformation graph G, d(s, t) = 1

there exists a solution for Alternative Graph. Also, for every N ∈ {1, . . . , n},
if no solution for Knapsack with N elements exits, there is also no solution for
the build Alternative Graph instance. We observe that n is polynomial in the
input size of the Knapsack instance. Therefore, we just build n Alternative
Graph instances, one instance for every N ∈ {1, . . . , n}. If any of those instances
is a “Yes”-instance, the Knapsack instance is a “Yes”-instance, too. If none of
those instances is a “No”-instance, the Knapsack instance is a “No”-instance,
too. There is only a polynomial number of Alternative Graph instances.
Hence, Knapsack is reducible to Alternative Graph in polynomial time.

Theorem 1. Alternative Graph is NP-complete.

Proof (Proof). Using Lemma 1 and Lemma 3, it directly follows that Alter-
native Graph is NP-complete.

19



C Path Quality Measures

In Tab. 4 we present results using the different path quality measures of [13].
‘UBS’ is the maximum stretch over all subpaths, ‘sharing’ is the percentage that
are shared with the shortest path, and ‘locality’ is the percentage of the path
length, such that every path of this length is optimal. We just measured the
first path added during the iterative construction of the AG, although there are
indications that not the first path we add is the best one with these quality
measures. The values for Europe were based on just 100 paths, at it was very
time-consuming to compute these values. The first three lines present the meth-
ods of [13]. We see that Penalty has worse UBS and locality, but the sharing is
much smaller. So our alternatives are more different but at certain parts of the
route we have a higher detour. The overall detour is not that large, as we restrict
this to 10%. Plateau has similar results as the methods of [13], as they are both
based on single via nodes. As we prefer long plateaus, locality is good. But we
use a different selection function, resulting in larger UBS but lower sharing. We
could not measure results with Global Thinout, as this refinement is applied to
the AG and not on a specific path. Most likely, the results with Global Thinout
are better.

Table 4: Different path quality measures.
Method Europe

UBS[%] sharing[%] locality[%]

X-BDV 9.4 47.2 73.1
X-REV 9.9 46.9 71.8
X-CHV 10.8 42.9 72.3

Penalty 0.4 rejoin 21.1 16.5 11.3
Plateau 24.1 41.9 54.9

20



D Example Graphs of the Survey

Fig. 5 shows example graphs for three start and destination pairs of the survey.
The user graphs on the left are given by survey participants. The graphs in the
middle are computed by the Penalty method and the graphs on the right are
computed by Plateau method with edge weight travel time. In the examples, both
the Penalty and the Plateau graphs cover a significant part of the user graph.
Still, some parts are not covered and some parts in the Penalty or Plateau graph
do not occur in the user graph.

21



(a) User (b) Penalty (c) Plateau

(d) User (e) Penalty (f) Plateau

(g) User (h) Penalty (i) Plateau

Fig. 5: Sample Alternative Graphs of the Survey

22


	 Alternative Route Graphs in Road Networks 
	 Roland Bader, Jonathan Dees, Robert Geisberger, Peter Sanders 

