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Abstract

We study the problem of route planning on mobile
devices. There are two current approaches to this
problem. One option is to have all the routing data
on the device, which can then compute routes by
itself. This makes it hard to incorporate traffic updates,
leading to suboptimal routes. An alternative approach
outsources the route computation to a server, which
then sends only the route to the device. The downside
is that a user is lost when deviating from the proposed
route in an area with limited connectivity. In this work,
we present an approach that combines the best of both
worlds. The server performs the route computation
but, instead of sending only the route to the user, it
sends a corridor that is robust against deviations. We
define these corridors properly and show that their size
can be theoretically bounded in road networks. We
evaluate their quality experimentally in terms of size
and robustness on a continental road network. Finally,
we introduce several algorithms to compute corridors
efficiently. Our experimental analysis shows that our
corridors are small but very robust against deviations,
and can be computed quickly on a standard server.

1 Introduction

Map services have motivated extensive research on the
fast computation of driving directions in road networks.
Finding the quickest route between two points can be
modeled as a shortest path problem on weighted graphs.
The standard solution to this problem is Dijkstra’s
algorithm [13]. Although it runs in essentially linear
time [18], even on a server it still takes a few seconds
on continental road networks (with tens of millions
of intersections), which is not fast enough for most
applications. Several acceleration techniques find routes
much faster with a two-phase approach: an offline
preprocessing phase augments the graph with some
auxiliary data, which is then used to accelerate online
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queries. (A recent overview of these techniques is given
by Delling et al. [10].) The fastest known technique
needs only a few memory accesses to determine the
distance between two random points [3], in a fraction
of a microsecond.

Most of the techniques have been implemented
on server-like machines for the scenario where the
computer serves queries for a map service. Mobile
devices such as smartphones and tablets are increasingly
popular, however, and computing driving directions
is one of their key features. There are two basic
approaches to achieve this. In the online approach,
the device holds the map data for rendering only, while
the server keeps the auxiliary data for routing. The
route is then computed on the server and sent to the
device. This setting enables routes to incorporate the
most recent available data, such as real-time traffic
updates. Moreover, the mobile device must do almost
no computation: the route is just a list to be traversed.
The main drawback of this approach is that it is not
robust : if the user makes a wrong turn and deviates
from the proposed route, the server must be accessed
again. If this happens in an area with no connectivity
(or if the route was preloaded to a WiFi-only device),
the user is lost. This is remedied by the offline
approach, where the mobile device keeps all the data
internally and computes routes by itself. Although some
techniques are fast enough in this scenario [23], the
computation effort on the device is higher than for the
online approach. The main disadvantage, however, is
that data can be outdated and real-time updates cannot
be integrated easily since the auxiliary routing data has
to be updated.

This work introduces a hybrid approach. As in
the online version, we still compute the routes on a
server, potentially using the most recent traffic data.
Instead of submitting only the route itself to the user,
however, we submit a corridor that is robust against
deviations. A straightforward solution to this problem
is to send to the user the entire shortest path tree into
the destination. There are obvious downsides, however:
even modern algorithms [7] take too long to compute
the whole tree, and the amount of data sent would
be too large. Instead, we want to find a subtree of
the shortest path tree that is small but as robust as



possible. Sending just the route (we cannot send less)
or the entire tree (robust against all deviations) are the
extreme cases. We want something in between that
offers a good trade-off. There exist a variety of problems
that are related to our setup, like the computation of
detours [17], k-shortest paths [14, 22], alternatives [2, 6],
and replacement paths [22, 24]. However, none of these
approaches solves our problem.

Our contributions are as follows. First, we propose
different approaches to determine corridors, and care-
fully evaluate their quality. Second, we show that the
sizes of these corridors can be nontrivially bounded on
road networks. Third, we show how the corridors can
be efficiently computed. Finally, we perform a thorough
experimental evaluation of our method, showing that it
outperforms straightforward solutions by up to an or-
der of magnitude. It takes us a few milliseconds to find
corridors that are very small but extremely robust.

The paper is organized as follows. Section 2 reviews
techniques our work is based upon. Section 3 defines our
notion of corridors and proves that their size is limited
in road networks. Section 4 shows how to compute these
corridors. Section 5 presents an empirical evaluation of
the proposed corridor in terms of size, robustness, and
computational effort. Section 6 concludes our work.

2 Preliminaries

We interpret a road network as a directed graph G =
(V,A, `) with length function ` : A → N+

0 . In order to
incorporate turn costs, we use the so-called edge-based
representation of the road network [5]. Each vertex
represents a road segment, and two vertices v and w
are connected by an arc (v, w) if it is possible to turn
from one to the other through a single intersection. The
length of (v, w) represents the travel time from the start
of road segment v to the start of road segment w. We
denote by Pst the shortest s–t path in G, by |Pst| its
size (number of vertices), and by `(Pst) its length, i.e.,∑

(u,v)∈Pst
`(u, v). We also refer to `(Pst) as the distance

between s and t, denoted by d(s, t). We denote by T (t)
the inverse shortest path tree into t.

The literature often considers the point-to-point
shortest path problem, which asks for the path Pst
between a source s and a target t. An extension is
the corridor problem. Here we ask for a superset of the
shortest path that is robust against deviations from it.
Note that this problem is rather fuzzy because it highly
depends on the definition of robustness. In fact, one
contribution of our work is how to define and evaluate
the robustness of corridors.

Dijkstra. The standard approach for computing
shortest path trees in road networks with nonnegative
arc lengths is Dijkstra’s algorithm [13]. It maintains,

for every vertex u, an upper bound d(u) on the length
of the shortest path from the source s, as well as the
predecessor (parent) p(u) of u on the path. These
variables are initialized with d(s) = 0, d(u) =∞ for all
other vertices, and p(u) = null for all u. The algorithm
also maintains a priority queue with unscanned vertices.
At each step, it removes a vertex u from the queue with
minimum d(u) value and scans it: for each arc (u, v) ∈
A with d(u)+`(u, v) < d(v), it sets d(v) = d(u)+`(u, v)
and p(v) = u. The algorithm terminates when the queue
becomes empty. If we are only interested in the shortest
path from s to t, one can terminate the algorithm as
soon as t is about to be scanned. In road networks,
Dijkstra’s algorithm runs in essentially linear time [18].

Contraction Hierarchies. As mentioned before,
many speedup techniques have been developed for the
point-to-point shortest path problem [10]. One of
the most prominent is Geisberger et al.’s Contraction
Hierarchies (CH) [15]. Like most other techniques, it
has an (offline) preprocessing phase that augments the
graph by auxiliary data, which is then used to accelerate
(online) queries.

The preprocessing phase orders the vertices and
contracts them in this order. Contracting a vertex u
temporarily deletes it from the graph and adds arcs
between its neighbors to preserve the distances among
them. This is done as follows. For any ordered pair
(v, w) of neighbors of u such that (v, u) · (u,w) is the
only shortest v–w path in the current graph, we add
a shortcut (v, w) with `(v, w) = `(v, u) + `(u,w). We
call (v, u) the prefix of (v, w) and (u,w) its suffix. The
output of the preprocessing phase is the set A+ of
shortcut arcs, together with the position of each vertex
u in the order (denoted by rank(u)). The algorithm is
correct with any contraction order, but query times and
the size of A+ may vary. In practice, each vertex u is
given a priority computed by an online heuristic that
measures its importance [15]. In this work, we use a
linear combination of its edge quotient E(u) and its level
L(u). The edge quotient of u is given by the number of
arcs added divided by the number of arcs deleted if u
would be contracted next. The level of u is computed
during contraction. Initially, L(u) = 0 for all vertices u.
When contracting u, we set L(v) = max{L(v), L(u)+1}
for all uncontracted neighbors v of u.

The query phase of CH runs a bidirectional version
of Dijkstra’s algorithm on the graph G+ = (V,A∪A+),
but only looking at upward arcs, i.e., those leading
to neighbors with higher rank. More precisely, let
A↑ = {(u, v) ∈ A ∪ A+ : rank(u) < rank(v)} and
A↓ = {(u, v) ∈ A ∪ A+ : rank(u) > rank(v)}. The
forward search works on G↑ = (V,A↑), and the reverse
search on G↓ = (V,A↓). Each vertex v maintains



(possibly infinite) upper bounds ds(v) and dt(v) on its
distances from s (found by the forward search) and to
t (found by the reverse search). The algorithm keeps
track of the vertex u minimizing µ = ds(u) + dt(u), and
stops when the minimum value in either priority queue
is at least as large as µ.

The shortest path is computed in G+, so it may
contain shortcuts. If we are interested in the corre-
sponding path in G, we need to unpack it. Note that a
shortcut (v, w) is built from a prefix (v, u) and a suffix
(u,w) when contracting the vertex u. Storing this mid-
dle vertex u with (v, w) allows us to recursively unpack
a shortcut into the corresponding sequence of arcs in G.

PHAST. Delling et al. [7] developed an algorithm
that uses a contraction hierarchy to accelerate the
computation of full shortest path trees. At first sight,
it seems one could not do much better than Dijkstra’s
algorithm, which runs in linear time and is only twice
as slow as a plain BFS [18]. Both Dijkstra and BFS,
however, have very poor locality. Since they grow a
ball of increasing radius around the source, the vertices
in their queues are usually spread over different regions
of the graph—and in memory, leading to many cache
misses. Changing the graph layout in memory can help,
but no single layout works well for all possible sources s.

In road networks, PHAST [7] can avoid these
problems. Unlike Dijkstra, it works in two phases.
Preprocessing is the same as in CH. Given a source s,
the query first computes the full shortest path tree as
follows. Initially, set d(s) = 0 and d(v) = ∞ for all
other v ∈ V . Then run an upward search from s in
G↑(a forward CH search), updating d(v) for all vertices
v scanned. Finally, the scanning phase of the query
processes all vertices in G↓ in reverse rank order. To
process v, we check for each incoming arc (u, v) ∈ A↓

whether d(u) + `(u, v) improves d(v). If it does, we
update the value. After all updates, d(v) will represent
the exact distance from s to v. If we need actual parent
pointers in the original graph, we can run an additional
sweep over A (the arcs of the original graph) setting
p(u) = v if d(u) + `(u, v) = d(v) holds.

The main advantage of PHAST over Dijkstra is
that only the (cheap) upward CH search depends on
the source s. The (more costly) scanning phase vis-
its vertices and arcs in the same order for any source.
Permuting vertices appropriately during preprocessing
ensures the scanning phase accesses the lists of vertices
and arcs sequentially, minimizing cache misses. This
alone makes PHAST about 15 times faster than Dijkstra
in large road networks. Another advantage of PHAST
over Dijkstra’s algorithm is that it can easily be paral-
lelized. Implemented on an NVIDIA GTX 580 GPU,
the speedup increases to up to 500 compared to a single

core of a modern CPU.
PHAST can be extended to a one-to-many scenario,

where one must compute shortest paths from a query
vertex s to a (fixed) set T of vertices. The resulting
algorithm, called RPHAST [9], introduces a target
selection phase between preprocessing and query, which
extracts fromG↓ the smallest subgraph that is necessary
to compute distances to all t ∈ T .

3 Corridors

As already mentioned in Section 1, a straightforward
solution to the corridor problem is to send the entire
shortest path tree T (t) to the user. Besides the obvious
drawback of transmitting a large amount of data, even
with PHAST the computaiton is not fast enough to
enable real-time queries. Instead, we are interested in a
relevant subtree of T (t) that is as small as possible but
also robust against deviations. Our idea is as follows.
We choose a set S of seed vertices with S ∩ Pst = ∅.
Then, the s–t corridor C(s, t) is given by the union of
Pst and all u–t shortest paths with u ∈ S. Note that
with this definition, C(s, t) is a subtree of T (t). We now
discuss two ways of choosing a seed set.

An obvious choice for S is to include all vertices that
are “close” to the shortest path. More precisely, we set
Sτ = {u ∈ V | u /∈ Pst ∧ ∃v ∈ Pst : d(v, u) ≤ τ}. Intu-
itively, Sτ contains all vertices that are within distance
τ from the shortest path. We call the resulting cor-
ridor the τ -perimeter corridor (τ -PC) which is robust
against deviations of up to τ from the optimal route.
Moreover, we call the problem of finding such corridors
the τ -perimeter corridor problem. Although this defi-
nition looks promising, our experiments (see Section 5)
indicate that we can do better. The main drawback is
that we add too many vertices in urban areas and not
enough important roads.

For this reason, we propose (and from here on use)
the notion of turn corridor (TC). Here, S contains all
vertices adjacent to Pst; more formally S = {u ∈ V | u /∈
Pst ∧ ∃v ∈ Pst : (v, u) ∈ A)}. This makes the corridor
robust against exactly one deviation from the shortest
path. We call a vertex u ∈ S a deviation vertex. We
can easily extend this approach to recursively construct
a k-turn s–t corridor TC k(s, t) that is robust against
k wrong turns. Therefore, we determine the k-th order
deviation vertices Dk = {u ∈ V | u /∈ TC k−1(s, t)∧∃v ∈
TC k−1(s, t) : (v, u) ∈ A)}, i.e., all vertices adjacent to
TC k−1(s, t), with TC 0(s, t) = Pst. Then TC k(s, t) is

seeded by Sk =
⋃k
i=1Di. We call the corresponding

problem of finding such corridors the k-turn corridor
problem. Note that if shortest paths are unique, turn
corridors are unique as well. Figure 1 visualizes the
differences between PC and TC.
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Figure 1: Schematics for perimeter (left) and turn (right) corridors.

Theoretical analysis. Given the definition of turn
corridors, we now show that their size is limited in
graphs with low highway dimension [1, 4]. The con-
cept of highway dimension has been introduced to ex-
plain the good performance of hierarchical point-to-
point speedup techniques on road networks (which are
believed to have small highway dimension). Since it is
a theoretical model, it makes some simplifying assump-
tions such as the graph being undirected.

We can use highway dimension to show that, under
reasonable assumptions, a 1-turn corridor has at most
O(h · n0.75) vertices, where h is the highway dimension
of the graph. To explain highway dimension in more
detail, we need the concept of a shortest path cover
(SPC). An (r, k)-SPC S is a set of vertices with two
properties. First, it hits all shortest paths of length
between r and 2r. Second, the set is sparse: for any
vertex u ∈ V , the ball B2r(u) (containing all vertices v
with d(u, v) < 2r) contains at most k vertices from S.
The highway dimension of a graph is the minimum h
such that an (r, h)-SPC exists for all r.

Following Abraham et al. [4], we also consider the
graph to be undirected. For simplicity, we assume the
maximum degree of G is constant, shortest paths are

unique, and edge weights are bounded by a constant,
i.e., `(a) ∈ Θ(1). The last assumption implies that
`(Pst) ∈ O(|Pst|), and can be enforced by splitting
long edges into multiple ones. Finally, we assume that
|Pst| ∈ O(

√
n), which is reasonable in road networks (cf.

Section 5).

Theorem 3.1. (Turn Corridor Size) Let G be an
undirected weighted graph with constant maximum de-
gree, highway dimension h, and length function ` : A→
N+

0 , where ∀a ∈ A : `(a) ∈ Θ(1). Moreover, `(Pst) ∈
O(
√
n) for all s, t ∈ V . Then, |TC 1(s, t)| ∈ O(h · n0.75)

holds.

Proof. Let c := Θ( 4
√
n). Then `(Pst) ∈ O(c2) holds for

all shortest paths. We consider two cases:

Case 1 (`(Pst) ∈ ω(c)): We partition Pst into O(c)
parts, each of length at most c. In each subpath
P i, consider a vertex ui and the balls of size 2c and
4c around it. See Figure 2 for an illustration. Since
the length of any edge is bounded by a constant,
any deviation vertex v is contained in B2c(ui). Due
to the subpath optimality, the shortest path from
v to the target starts with a shortest path of length
2c that is fully contained in B4c(ui). Moreover,

s tui

4c

2c

v

hi

Phit

ui

Figure 2: Illustration of the proof of Theorem 3.1. Left: We split Pst into O(c) parts and consider the balls of
size 2c and 4c around a vertex ui on each subpath P i. Right: The deviation vertex v is contained in the ball of
size 2c. The shortest path from v to t starts with a shortest path of length 2c that is covered by hi.



because the graph has highway dimension h, all
shortest paths of length 2c in that ball are covered
by at most h vertices. Since there exist O(c) devi-
ation vertices of P i, the sum of the lengths of all
shortest paths from the deviation vertices to the h
covering vertices is bounded by O(c2). From each
of these h vertices, the length of the shortest path
to t is bounded by O(c2). Since we have O(c) sub-
paths, the total size of the corridor is bounded by
O(h · c3) = O(h · n0.75) edges.

Case 2 (`(Pst) ∈ O(c)): Pst has O(c) deviation ver-
tices v, and `(Pvt) ∈ O(c) holds for all of them.
This directly gives us a bound of O(c2) on the size
of TC 1(s, t).

Note that these bounds are very conservative: they
do not use the fact that the shortest paths from the cov-
ering vertices to the target share many edges. Indeed,
experiments suggest that corridors are much smaller:
their size depends linearly on the size of the shortest
path.

4 Computation of Corridors

In this section, we discuss how we can solve the k-turn
corridor problem efficiently. We first show how existing
techniques can be applied and then turn to a tailored
solution. All techniques follow the same pattern: we
perform k + 1 rounds, with each round extending the
corridor (denoted by C) by one turn. Therefore, in
each round i, we first determine the deviation vertices
D = {u ∈ V | u /∈ C ∧ ∃(v, u) : v ∈ C} of C.
Then we add for each u ∈ D the u–t shortest path
to C. In round 1, we set D = {s}. With this general
approach, C = TC i−1(s, t) after round i. Recall that
TC 0(s, t) = Pst.

4.1 Straightforward Approaches. The most nat-
ural approach to compute TC k(s, t) is to first construct
T (t) with Dijkstra’s algorithm. Then, we maintain two
stacks S0 and S1, where S0 is initialized with s. In each
round, we process the vertices of S0. When removing
the top vertex u from S0, we add u to C and scan all its
outgoing edges (u, v) ∈ A with v /∈ C. If v is the parent
of u in T (t), we add v to S0, otherwise to S1. The round
ends by setting S0 = S1 and S1 = ∅. Note that at the
end of round i, S0 contains all the deviation vertices
from C, and C = TC i−1(s, t). We call this approach
corridor Dijkstra (cDijkstra).

The main drawback of cDijkstra is the prohibitive
running time to build the shortest path tree. This can
be partly remedied by replacing Dijkstra with PHAST;
we call the resulting algorithm cPHAST. Still, even
on multiple cores PHAST cannot compute trees fast

enough on continental road networks using the edge-
based representation. The GPU version of PHAST can,
but it has other issues. First, not all servers nowadays
are equipped with GPUs. Second, all remaining com-
putations would have to be performed on the GPU as
well, since the GPU–CPU communication is expensive.
In fact, even copying just the corridor from the GPU
can already be costly.

Instead of computing full shortest path trees, we
could use a point-to-point speedup technique such as
CH (other techniques could be used as well). In each
round, we first compute the deviation vertices D of C
by traversing C. Then, we run for each u ∈ D a CH
query and add the unpacked shortest path to C. We
call this approach corridor CH (cCH).

The major drawback of this approach is that it
does a lot of unnecessary computations—in particular,
it performs the upward search from t multiple times. We
can remedy this by adapting the bucket-based approach
of Knopp et al. [20] to our scenario. We run the upward
search from t only once and store its search space by
keeping the distance to t for each vertex we scan. Then,
to compute a new shortest path from a deviation vertex
u, we only need to run the upward search from u. When
we scan a vertex v that has also been scanned from t,
we check whether d(u, v) + d(v, t) < d(u, t) holds and
update d(u, t) accordingly. Of course, we still have to
unpack all shortcuts that appear on shortest paths. This
corridor bucket CH (cBCH) approach saves roughly
30% of the work of cCH.

4.2 Our Approach. Analyzing cBCH, one may no-
tice that the algorithm still does a lot of unnecessary
computations. For example, the upward searches from
neighboring deviation vertices most probably overlap a
lot and we unpack shortcuts multiple times. Indeed,
as Section 5 will show, all above mentioned approaches
fall short in terms of performance. We now present our
tailored corridor computation algorithm (TCC), which
avoids unnecessary computations as much as possible.
It uses a contraction hierarchy and borrows some ideas
from PHAST and RPHAST.

Like cBCH, TCC runs an upward search from t
in G↓ during initialization, storing the search space.
TCC still works in rounds, but each now consists
of three phases. First, the upward phase, borrowed
from RPHAST [9], determines all vertices D′ that
are reachable from D in G↑. Then, the sweep phase
computes the distances to all vertices in D′. At the
end of the sweep phase, we have computed the shortest
paths from each vertex in D to t in G+. Finally, the
unpacking phase then extracts all these packed paths
and adds them to C. Since we again have computed



all shortest paths from all deviation vertices to t, C =
TC i−1(s, t) after round i. In the following, we detail
each phase in turn.

We keep a global marker, called final, that identifies
vertices with correct distance value to t. During initial-
ization, we can only ensure correct distance values for
all vertices on the contracted path from t to the highest
ranked vertex. Hence, we mark only them as final.

The upward phase identifies all vertices D′ that are
reachable from D in G↑. Recall that D is the set of
deviation vertices of the current corridor C. Therefore,
we first traverse the current corridor C to identify all
deviation vertices. In the first round, D = {s}. Then,
we set D′ = D and maintain a queue Q initialized by
D. Whenever we remove a vertex u from Q, we first
check whether u is marked as final. If it is, we discard
u; otherwise, we scan all upward edges (u, v) ∈ A↑ and
add each v /∈ D′ to both Q and D′.

In the sweep phase we process D′ in a top-down
manner, as in PHAST. For each u ∈ D′, we scan all
(u, v) ∈ A↑ and check whether `(u, v) + d(v) < d(u); if
so, we update d(u) and p(u). Due to the correctness of
PHAST, this process computes the shortest paths from
all deviation vertices to t in G+.

The unpacking phase now expands all these packed
shortest paths. We start by adding all vertices in D
to a queue Q. Whenever we extract a vertex u from
Q, we check whether u ∈ C. If it is, we discard u;
otherwise, we add u to C, mark it as final, and identify
its parent v. We recursively unpack the shortcut (v, u),
setting the distance values and parent pointers of the
middle vertices accordingly. Moreover, we mark all
middle vertices as final and add them to C. Note that
we do not need to unpack the suffix of a shortcut if
its middle vertex w is already contained in C because
w ∈ C implies that Pwt is already fully contained in
C. We need, however, continue to unpack the prefix
because Puw does not need to be part of C. Note that,
with this unpacking routine, each shortcut contributing
to C is unpacked exactly once.

Optimizations. We can apply some optimization
techniques to accelerate TCC. First, we can reorder
vertices by their level in the contraction hierarchy to
improve locality. We also exploit the fact that the
number of levels is small in road networks by keeping
a bucket per level. While determining the vertices
(which we need to process) that are reachable from the
deviation vertices, we add each reachable vertex to the
bucket associated with its level. Then, we can process
the levels in decreasing order, scanning each level in a
linear fashion. This accelerates the algorithm since it
increases locality.

5 Experiments

We implemented all algorithms from Section 4 in C++
and compiled them with GCC 4.4.3, using the op-
timization flags -O3 and -mtune=native. We use
a binary heap as priority queue. The experiments
were conducted on an Intel Core-i7 920 (4 cores, each
clocked with 2.67 GHz) with hyper-threading activated
(2 threads per core) and 12 GB of DDR3-1066 RAM
running SuSE Linux 11.3. As input, we use the road
network of Western Europe, made publicly available by
PTV AG [21] for the 9th DIMACS implementation chal-
lenge [12]. The published graph is node-based, how-
ever, with each intersection modeled by a vertex and
each road segment by a directed arc. This model is not
very realistic: it does not incorporate turn costs, which
makes routing artificially easier [8, 16]. We therefore ex-
pand the network to use the edge-based representation
(see Section 2), which leads to a graph that has 42.5
million vertices and 95.5 million directed arcs. Since we
do not have access to publicly available turn costs, we
follow the approach of Delling et al. [8] and set U-turn
costs to 100 seconds; the remaining turns are free.

All CH-based algorithms we tested share the same
preprocessed data. We implemented the CH preprocess-
ing following the implementation of Kieritz et al. [19],
using 4 ·E(u) + 2 ·L(u) as priority term (cf. Section 2).
With these parameters, computing the contraction hier-
archy takes 100 minutes on one core and results in 102
(132) million upward (downward) arcs.

5.1 Quality. We first evaluate the quality of our cor-
ridors for various parameters. We test two properties:
size and robustness against deviations. While the first
one is easy to measure, we need to come up with a mea-
sure for robustness. For this, we consider two driver pro-
files that model drivers deviating from the route from
time to time. The first is the p deviation driver DD(p),
which leaves the optimal route at every intersection with
probability p. The second profile is the (p, p′)-nervous
deviation driver NDD(p, p′). Here, a driver also devi-
ates from the optimal route with probability p; after a
wrong turn, however, the probability of making another
wrong turn increases to p′ > p (because the driver gets
nervous). Once the driver gets back on track, the devi-
ation probability goes back to p.

For these driver profiles, we evaluate how often a
user following these patterns reaches the target without
leaving the corridors we computed. We call this the
success rate of a drive. Table 1 reports the size and the
average success rates over 100 drives for two profiles,
DD(5%) and NDD(5, 10%). We average the numbers
over 1 000 corridors, each corresponding to a random
query.



Table 1: Quality of different corridors. Column size gives the average number of vertices in the corridor, and
success rate reports the percentage of successful drives by (5%)-deviation and (5%, 10%)-nervous deviation drivers.

turn corridor perimeter corridor
size success rate [%] τ size success rate [%]

k |V | DD(5%) NDD(5, 10%) [s] |V | DD(5%) NDD(5, 10%)
0 1 351 0.0 0.0 0 1 351 0.0 0.0
1 4 835 10.3 7.1 10 6 223 7.0 4.4
2 12 204 73.2 64.7 20 7 689 8.7 5.5
3 25 892 96.8 94.8 30 9 570 10.6 6.9
4 50 271 99.7 99.4 50 14 284 15.0 10.2
5 88 742 100.0 99.9 100 31 547 28.2 21.7
6 148 370 100.0 100.0 300 209 513 79.6 77.2

We observe that turn corridors dominate perimeter
corridors. Not only are turn corridors smaller, but they
also have better success rates. One reason is that turn
corridors are favored by our driver profiles, but they
also adapt better to different scales. In fact, for the
profiles we consider almost all drives are successful for
k as low as 3. At this point, the corridor is only 19
times bigger than the route itself. Also note that one
could use succinct data structures [11] to obtain an
extremely compact representation of the corridors: since
the corridor is a tree, one needs only a few bits per
vertex. More concretely, for k = 3 we would need to
send less than 10 kB to the user.

We also note that perimeter corridors stay small
up to deviations of 100 seconds (combined with low
success rates though). Increasing the deviation to 300
seconds increases the size of the corridors by a factor of
7 compared to 100 seconds, making them even bigger
than 6-turn corridors. A reason for this is that we use
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Figure 3: Success rate of different k turn corridors for
varying p deviation driver profiles.

U-turn costs of 100 seconds; only after increasing the
deviation beyond this point can the corridors handle U-
turns. This explains the low success rate of perimeter
corridors, but only partially: even with 300 seconds the
success rate is still well below that of much smaller turn
corridors.

We also evaluate the impact of the deviation proba-
bility p (for the DD(p) profile) on the success rate of our
turn corridors, Figure 3 shows the results. As expected,
the higher k, the more robust the corridors are. For
k = 6, we achieve a success rate of nearly 100% up to
p = 10%. This means that the corridor is robust against
drivers that on average deviate from the route at every
tenth chance. If we increase p to 25%, still less than half
the drives leave the corridor. We also observe that for
k = 3, the success rate drops below 70% for p ≥ 10%.
Hence, this experiments reveals that increasing k above
3 does yield advantages. In particular, for WiFi-only
devices it may pay off to send bigger corridors to the
user.

We stress that these success rates are achieved
without updating the corridor after a deviation. Of
course, we can further increase the success rate by
allowing updates to the corridor as soon as the user
enters an area with connectivity again. Our experiments
show that we only have to send about 80 vertices (on
average) to update a corridor for k = 1 after a deviation.
This is 60 times less than resending the whole corridor.
For k = 4, we have to send 2 000 vertices after a single
deviation, still only a small fraction of the full corridor
and only twice the size of a shortest path.

Local queries. Up to now, we only evaluated
the quality of corridors for random queries, which are
mostly long-range. Since most queries are not cross-
continental in practical applications, we now evaluate
corridors depending on the Dijkstra rank of the query.
(The Dijkstra rank of a vertex u with respect to s is
i if u is the i-th vertex taken from the priority queue
when running Dijkstra’s algorithm from s.) Figure 4
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Figure 4: Corridor size (left) and success rate of a DD(5%) (right) depending on the Dijkstra rank of a query.

shows the results for Dijkstra ranks between 210 and
225. As expected, the corridor sizes increases with the
Dijkstra rank. In road networks, we can assume that
if a vertex has Dijkstra rank i, the shortest path from
s to v contains O(

√
i) vertices. This is reflected by

k = 0. Moreover, we observe that the size blowup
(|TC k(s, t)|/|Pst|) is almost independent of the rank
of the query: it is only slightly bigger for short-range
queries. The reason for this is that short-range queries
often do not touch the highways and the number of
deviation vertices is higher in urban areas than on
highways.

We also observe that the success rate of DD(5%)
highly depends on the rank of the query: the lower
the rank, the higher the success rates. Since most
real-world queries are short- and mid-range, we expect
our corridors to perform even better than reported in
Table 1.

5.2 Performance. After evaluating the quality of
corridors, we now check how fast we can compute them
with the algorithms we presented in Section 4. Our
input again is Europe, and we evaluate the (sequential)

Table 2: Sequential running times of different algo-
rithms for computing turn corridors. All running times
are given in milliseconds.

k cCH cBCH cPHAST TCC
0 0.33 0.34 968.42 0.73
1 7.35 5.26 969.32 5.67
2 44.45 30.96 970.36 9.73
3 156.95 100.81 973.36 16.26
4 382.51 263.00 974.14 27.34
5 795.26 545.97 977.30 42.54
6 1643.34 1132.72 982.83 68.66

running times for 1000 queries with s and t chosen
at random. In this scenario, running cDijkstra takes
roughly 14 seconds per query, independent of k. Table 2
reports the results for the other algorithms we consider.
Note that we could build parallel versions of cCH,
cBCH, cPHAST, and TCC that would scale very well
with the number of cores used.

We observe that cPHAST is about 14 times faster
than cDijkstra. This is expected, since most of the work
is spent on constructing the shortest path tree, and
confirms the speedup reported by Delling et al. [7]. This
is still not fast enough, however, and would not enable
real-time queries even with a parallel implementation.

Both cCH and cBCH outperform cPHAST for k ≤
5, but they are slower for k = 6. It is easy to see
why: the number of CH searches run by cCH and cBCH
increases with the number of deviation vertices, which
grows with k. In contrast, cPHAST computes a (costly)
shortest path tree only once, and can add deviation
vertices almost for free.

Comparing cCH and cBCH with TCC, we observe
that for k ≤ 1 all three algorithms have very similar
performance. For k > 1, however, TCC outperforms
any other algorithm. More importantly, query times
remain below 28 ms for k ≤ 4, which is still fast enough
for interactive applications. (It is comparable to typical
network latencies.) For k = 4, TCC is more than an
order of magnitude faster than any other algorithm. As
noted in Section 5.1, increasing k further is of limited
use. Summarizing, TCC is the best choice to compute
corridors.

Local queries. As in the quality experiments, we
now turn to local queries. Figure 5 reports the running
times of cCH, cBCH, and TCC when varying k between
1 and 6 and Dijkstra ranks between 210 and 225. We
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Figure 5: Performance of TCC, cCH, and cBCH when computing k-TCs with k between 1 and 6 for varying
Dijkstra ranks.



observe that TCC outperforms cCH and cBCH on
almost all scales. Only for k = 1 and low Dijkstra ranks
are cCH and cBCH slightly faster than TCC. Moreover,
cBCH outperforms TCC slightly for k = 1 and high
Dijkstra ranks as well. However, for our most interesting
scenario, k = 4, TCC always is the fastest algorithm.

6 Conclusion

In this paper, we introduced the concept of shortest
path corridors. Motivated by driving directions for
mobile devices, we argued that existing approaches
to mobile route planning have disadvantages, such as
using outdated information or an inability to update
directions when the user deviates from the optimal
route. Shortest path corridors achieve the best of both
worlds: the can use the most recent data and are robust
against deviations. Its key idea is to identify a good
subtree of the shortest path tree into the target. We
have shown that the corridors we proposed are small
and robust. We also presented several algorithms to
compute them, including a tailored one, called TCC. On
a continental-sized road network, TCC yields the best
computation times, sometimes by more than an order
of magnitude compared to straightforward approaches.
This speedup makes the difference between queries
being interactive (real-time) or not.
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