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attractive from a business point of view

easy way to provide options
(users have diverse preferences, let them decide)
overcome shortcomings in model and data
(shortest path might not be best in reality!)

interesting from a scientific viewpoint
building block (traffic models, stochastic routing)
NP-hard aspects (alternative graphs)
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Alternative Route Graphs in Road Networks
[Bader et al. 11]

penalty method
constructing alternative graphs
(open how to extract single alternatives)

slow, difficult to tune properly

Alternative Routes in Road Networks
[Abraham et al. 10a]

via nodes (Choice Routing)

finding (single) good alternatives
fast, intuitive parameters
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basic model
road network: graph G(V , E), edge weights w : E → R+

0
alternative: concatenation of two shortest paths 〈s..v〉, 〈v ..t〉

criteria for a good alternative

?

not too much longer (stretch ε)

sufficiently different (overlap γ)

reasonable (α-locally optimal)

→ define quantitative quality measure f (α, γ, ε) for alternatives
→ (only accept alternatives as viable, if single criteria are good enough)

v
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basic approach (X-BDV)
based on bidirectional search (Dijkstra’s algorithm)
→ grow search spaces from s and t
meeting nodes in search spaces are candidate via nodes
→ rank and check if alternative is viable
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s t
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→ grow search spaces from s and t
meeting nodes in search spaces are candidate via nodes
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much faster than Dijkstra’s algorithm (Contraction Hierarchies)
→ reduces search spaces significantly
→ less opportunities to find alternatives
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basic engineering (X-CHASEV)
apply faster speed-up techniques (CHASE)

precompute and store frequently used data (preunpacked shortcuts)

initial idea
computation of via nodes is costly

full search space exploration
evaluation of candidates

store all via nodes?
→ quadratic overhead in number of nodes. . .
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basic engineering (X-CHASEV)
apply faster speed-up techniques (CHASE)

precompute and store frequently used data (preunpacked shortcuts)

initial idea
computation of via nodes is costly

full search space exploration
evaluation of candidates

store all via nodes?
→ quadratic overhead in number of nodes. . . you don’t want to do that!
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observation
alternatives between regions share a lot

well-known fact for shortest paths
→ shortest paths entering/leaving a region

are covered by small number of nodes
[Abraham et al. 10b]



Optimization Potential
Can we still find a more substantial improvement?

8 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

observation
alternatives between regions share a lot

well-known fact for shortest paths
→ shortest paths entering/leaving a region

are covered by small number of nodes
[Abraham et al. 10b]



Optimization Potential
Can we still find a more substantial improvement?

8 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

observation
alternatives between regions share a lot

well-known fact for shortest paths
→ shortest paths entering/leaving a region

are covered by small number of nodes
[Abraham et al. 10b]



Optimization Potential
Can we still find a more substantial improvement?

8 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

observation
alternatives between regions share a lot

well-known fact for shortest paths
→ shortest paths entering/leaving a region

are covered by small number of nodes
[Abraham et al. 10b]



Optimization Potential
Can we still find a more substantial improvement?

8 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

observation
alternatives between regions share a lot

well-known fact for shortest paths
→ shortest paths entering/leaving a region

are covered by small number of nodes
[Abraham et al. 10b]



Optimization Potential
Can we still find a more substantial improvement?

8 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

observation
alternatives between regions share a lot

well-known fact for shortest paths
→ shortest paths entering/leaving a region

are covered by small number of nodes
[Abraham et al. 10b]



Optimization Potential
Can we still find a more substantial improvement?

8 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

observation
alternatives between regions share a lot

well-known fact for shortest paths
→ shortest paths entering/leaving a region

are covered by small number of nodes
[Abraham et al. 10b]

If the number of shortest paths between two regions is small,
so is the number of viable alternatives.

combined assumption

→ they can be covered by few nodes
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How to profit from this assumption?
graph partitioning
→ group nodes with similar shortest path characteristics
→ (and alternative route characteristics)

for each pair of regions store a via node candidate set
→ nodes that cover (good) alternatives between this region pair
→ only evaluate these candidates
→(search space exploration no longer needed)

→ single-level approach
→ (preprocessing, query)
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How to find an alternative between s and t?
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look up respective via node candidate set C(Rs, Rt )

check if path 〈s..v ..t〉 is a viable alternative, v ∈ C(Rs, Rt )
→ stop as soon as one is found (greedy)
→ iterate over all candidates to find best alternative (full processing)
(optimization: sort via node candidates in order of importance)

→ checking candidates much faster than search space exploration

s t
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→ checking candidates much faster than search space exploration
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alternatives between region pairs Ri , Rj cross border nodes Bi , Bj
→ f.e. region pair find alternatives between all border nodes (store via nodes)

bootstrapping
check all known via nodes first
if none is viable, compute a new one

→ quadratic overhead, but in number of regions (∼ linear in number of nodes)
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via sets of neighboring regions are very large
→ longer query times, higher space consumption

possible solutions
fallback to baseline algorithm (X-CHASEV)
(for neighboring regions / within one region)

multi-level approach
(additional overhead)
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additional finer graph partitioning (1024 regions, Buffoon)
finer regions respect original course regions

when via node candidate sets get too large, switch to finer regions
affected region pairs marked by flag
→ little overhead in query
→ additional preprocessing only done when needed

apply baseline algorithm for neighboring finer regions (X-CHASEV)
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candidate sets
p=1 p=2 p=3

time size empty avg. empty avg. empty avg.
relaxed preprocessing [h] [kiB] [%] size [%] size [%] size
− single-level 1.1 859 2.6 4.4 12.7 5.1 30.5 4.4
− multi-level 1.7 3 669 6.2 6.1 17.4 5.9 36.9 4.2

X single-level 2.3 1 742 1.4 6.7 3.0 10.2 10.8 11.5
X multi-level 4.3 8 909 1.1 12.2 4.9 15.0 11.6 14.2

(4 AMD Opteron 6168 (1.90 GHz), 256 GiB main memory, 48 cores)

via node candidate sets are sparse (even better on connected regions)
→ small memory overhead
→ less than 10 MByte (good for caching)

preprocessing easily parallelizable
→ linear speed-up until memory bandwidth is reached

(relaxed variant of baseline algorithm with higher success rates but additional overhead)
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p=1 p=2 p=3
time success avg. time success avg. time success avg.

algorithm [ms] rate[%] tested [ms] rate[%] tested [ms] rate[%] tested
X-BDV 11.5s 94.5 - 12.2s 80.6 - 13.3s 59.5 -

X-CHV 1.2 75.5 - 1.7 40.2 - 2.3 14.2 -
X-CHASEV 0.5 75.5 - 0.7 40.2 - 1.0 14.2 -

single-level 0.1 80.7 1.9 0.3 50.8 2.8 0.4 24.8 3.8
multi-level 0.1 81.2 2.0 0.3 51.2 2.9 0.4 25.0 3.8

(Intel Core i7-920 (2.66 GHz), 12 GiB main memory, single core)

alternatives in sub-milliseconds
→ up to one order of magnitude faster than X-CHV
higher success rates
→ X-BDV as ”gold standard“
→ relative gap to X-BDV reduced by more than 25%

(relaxed variant with higher speed-ups and similar relative improvement in success rates)
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p=1 p=2 p=3
time success avg. time success avg. time success avg.

algorithm [ms] rate[%] tested [ms] rate[%] tested [ms] rate[%] tested
X-BDV 11.5s 94.5 - 12.2s 80.6 - 13.3s 59.5 -

X-CHV 1.2 75.5 - 1.7 40.2 - 2.3 14.2 -
X-CHASEV 0.5 75.5 - 0.7 40.2 - 1.0 14.2 -

single-level 0.1 80.7 1.9 0.3 50.8 2.8 0.4 24.8 3.8
multi-level 0.1 81.2 2.0 0.3 51.2 2.9 0.4 25.0 3.8

(Intel Core i7-920 (2.66 GHz), 12 GiB main memory, single core)

alternatives in sub-milliseconds
→ up to one order of magnitude faster than X-CHV
higher success rates
→ X-BDV as ”gold standard“
→ relative gap to X-BDV reduced by more than 25%

(relaxed variant with higher speed-ups and similar relative improvement in success rates)
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success rates compared to
shortest path lengths

highest improvement for
mid-range queries
(avg. region sizes: 215, 218)

(relaxed variant ≈ 5% below X-BDV)
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Online Setting
Application I
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Properties
learn via node candidate sets from stream of queries
applicable to legacy system (that implements some baseline algorithm)

only partitioning required in advance

Algorithm
start with empty via node candidate sets
apply our single-level approach
(check if existing candidate yields viable alternative)

if no alternative is found
apply baseline algorithm (X-CHASEV)
if alternative is found: store its via node

stop using baseline algorithm after some threshold is reached
(except for neighboring regions / within one region)
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Online Setting
Simulation results
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baseline algorithm for
first 500k queries (no learning)

rapid fall in query times
as our algorithm is applied
(learning phase ≈ 100k queries)

second decline when
thresholds are reached
(50 queries for each region pair)
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Alternative Graphs
Application II
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Properties
fast to compute, little overhead
two variants (with and without additional preprocessing)

Construction
combination of shortest paths

base method
s to t
s to C(Rs, Rt ) to t

enhanced method
s to t
s to Bs / Bt to t
Bs to C(Rs, Rt ) to Bt (prepro.)

→ computes superset



Alternative Graphs
Application II

19 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

Properties
fast to compute, little overhead
two variants (with and without additional preprocessing)

Construction
combination of shortest paths

base method
s to t
s to C(Rs, Rt ) to t

enhanced method
s to t
s to Bs / Bt to t
Bs to C(Rs, Rt ) to Bt (prepro.)

→ computes superset



Alternative Graphs
Application II

19 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

Properties
fast to compute, little overhead
two variants (with and without additional preprocessing)

Construction
combination of shortest paths

base method
s to t
s to C(Rs, Rt ) to t

enhanced method
s to t
s to Bs / Bt to t
Bs to C(Rs, Rt ) to Bt (prepro.)

→ computes superset



Alternative Graphs
Application II

19 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

Properties
fast to compute, little overhead
two variants (with and without additional preprocessing)

Construction
combination of shortest paths

base method
s to t
s to C(Rs, Rt ) to t

enhanced method
s to t
s to Bs / Bt to t
Bs to C(Rs, Rt ) to Bt (prepro.)

→ computes superset



Alternative Graphs
Application II

19 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

Properties
fast to compute, little overhead
two variants (with and without additional preprocessing)

Construction
combination of shortest paths

base method
s to t
s to C(Rs, Rt ) to t

enhanced method
s to t
s to Bs / Bt to t
Bs to C(Rs, Rt ) to Bt (prepro.)

→ computes superset



Alternative Graphs
Application II

19 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

Properties
fast to compute, little overhead
two variants (with and without additional preprocessing)

Construction
combination of shortest paths

base method
s to t
s to C(Rs, Rt ) to t

enhanced method
s to t
s to Bs / Bt to t
Bs to C(Rs, Rt ) to Bt (prepro.)

→ computes superset



Alternative Graphs
Application II

19 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

Properties
fast to compute, little overhead
two variants (with and without additional preprocessing)

Construction
combination of shortest paths

base method
s to t
s to C(Rs, Rt ) to t

enhanced method
s to t
s to Bs / Bt to t
Bs to C(Rs, Rt ) to Bt (prepro.)

→ computes superset



Alternative Graphs
Application II

19 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

Properties
fast to compute, little overhead
two variants (with and without additional preprocessing)

Construction
combination of shortest paths

base method
s to t
s to C(Rs, Rt ) to t

enhanced method
s to t
s to Bs / Bt to t
Bs to C(Rs, Rt ) to Bt (prepro.)

→ computes superset



Alternative Graphs
Application II

19 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

Properties
fast to compute, little overhead
two variants (with and without additional preprocessing)

Construction
combination of shortest paths

base method
s to t
s to C(Rs, Rt ) to t

enhanced method
s to t
s to Bs / Bt to t
Bs to C(Rs, Rt ) to Bt (prepro.)

→ computes superset



Conclusion

20 Luxen, Schieferdecker:
Candidate Sets for Alternative Routes in Road Networks

Institute of Theoretical Informatics
Algorithmics II

Summary
improvement in query times (one order of magnitude)

lowered quality gap to X-BDV (25% and more)

negligible memory footprint (less than 10 MByte)

applications (online setting, alternative graphs)

Outlook
theoretical foundations (using highway dimension)

alternatives with more via nodes (similar to transit node routing)



Thank you for your attention!
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Time for questions!
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Alternatives Routes
How do you find them, quicker and more often?
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relaxed Contraction Hierarchies
artificially increase search space (allow descent up to x levels)
→ improves success rate
adjustable trade-off: speed vs. success rate

s t

candidates

[Abraham et al. 10a]



Results
Query performance (relaxed CH)
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p=1 p=2 p=3
time success avg. time success avg. time success avg.

algorithm [ms] rate[%] tested [ms] rate[%] tested [ms] rate[%] tested
X-BDV 11.5s 94.5 - 12.2s 80.6 - 13.3s 59.5 -

X-CHV 3.4 88.5 - 4.3 64.7 - 5.3 38.0 -
X-CHASEV 2.7 88.5 - 3.2 64.7 - 3.8 38.0 -

single-level 0.2 90.0 2.2 0.4 70.2 3.8 0.6 44.0 5.6
multi-level 0.1 90.0 2.3 0.3 70.4 4.0 0.5 44.2 5.8

(Intel Core i7-920 (2.66 GHz), 12 GiB main memory, single core)

alternatives in sub-milliseconds
→ more than one order of magnitude faster than X-CHV
higher success rates
→ relative gap to X-BDV reduced by more than 25%
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Why does single-level/multi-level improve success rates?
via node candidates derived from alternatives between border nodes
→ combination of search spaces of all border nodes
→ larger overlap
→ more chances to encounter viable via nodes

s t

candidates
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Why does single-level/multi-level improve success rates?
via node candidates derived from alternatives between border nodes
→ combination of search spaces of all border nodes
→ larger overlap
→ more chances to encounter viable via nodes

s t

candidates

Bs Bt
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Results
Local queries (relaxed CH)
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Online Setting
Simulation results (basic CH)
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Queries [1k]
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Online Setting
Simulation results (relaxed CH)
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