
Inducing Suffix and LCP Arrays in External Memory

Timo Bingmann∗, Johannes Fischer†, and Vitaly Osipov‡

KIT, Institute of Theoretical Informatics, 76131 Karlsruhe, Germany
{timo.bingmann,johannes.fischer,osipov}@kit.edu

Abstract

We consider text index construction in external memory

(EM). Our first contribution is an inducing algorithm for

suffix arrays in external memory. Practical tests show

that this outperforms the previous best EM suffix sorter

[Dementiev et al., ALENEX 2005] by a factor of about two

in time and I/O-volume. Our second contribution is to

augment the first algorithm to also construct the array of

longest common prefixes (LCPs). This yields the first EM

construction algorithm for LCP arrays. The overhead in

time and I/O volume for this extended algorithm over plain

suffix array construction is roughly two. Our algorithms

scale far beyond problem sizes previously considered in the

literature (text size of 80 GiB using only 4 GiB of RAM in

our experiments).

1 Introduction

Suffix arrays [16, 24] are among the most popular data
structures for full text indexing. They list all suffixes of
a static text in lexicographically increasing order. This
not only allows to efficiently locate arbitrary patterns
in unstructured texts (like DNA, East Asian languages,
etc.) in time proportional to the pattern length (as
opposed to text length), but also fast phrase searches
(e.g., “to be or not to be”) if the suffix array is built
over the phrase beginnings only [11].

The first and most important step in using suffix
arrays is the efficient construction of the index (“suffix
sorting”), the term “efficient” encompassing both time
and space. Until recently, the text indexing commu-
nity was confronted with the dilemma that there were
theoretically fast algorithms for constructing suffix ar-
rays (linear-time for integer alphabets) that were rather
slow in practice [1], while other superlinear algorithms
existed that outperformed the linear ones on all realistic
instances, in terms of both time and space [25,26,31]. In
particular, the extremely elegant difference cover algo-
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rithm (DC3 for short) by Kärkkäinen et al. [21], which
has quickly become a showcase string algorithm and
is now being taught in many computer science classes
around the world, is reported to be 3–4 times slower
than the best superlinear solutions, even with very care-
ful implementations [29].

This situation changed when in 2009 Nong et al.
[27, we cite more recent journal versions whenever
possible] presented another extremely elegant linear
time algorithm called SAIS that was also fast in practice
(based on the induced sorting principle [17])! Despite
being almost in-place and faster than (or almost as
fast as) all previous algorithms on all practical inputs,
its worst-case guarantees also imply that it has a
similar behavior on all inputs, while for all engineered
superlinear algorithms [25,26,31, etc.] there exist “bad”
inputs where the running time shoots up by several
order of magnitudes.

Nonetheless, the simplicity of the DC3 algorithm
(mostly sorting and scanning) enables straightforward
adaptation to more advanced models of computation
(PRAM, EM, distributed, etc.), and usually leads to
optimal algorithms in those models. In fact, there is a
fast EM implementation of DC3 [7] that outperformed
all other external suffix sorters in practice at the time
of its writing. Other external implementations of DC3
(or its variant DC7) confirmed those results [9].

In many applications (e.g., for fast string matching),
the suffix array needs to be augmented with the longest
common prefix array (LCP array for short), which holds
the lengths of longest common prefixes of lexicographi-
cally consecutive suffixes. In internal memory, the LCP
array can be constructed sufficiently fast. Indeed, the
currently fastest algorithm [13] also uses the induced
sorting framework on which SAIS is based. In the
EM model, the DC3 suffix sorter can be augmented to
also construct the LCP array within sorting complex-
ity. However, we are not aware of any previous imple-
mentation of this approach. Another purely theoreti-
cal solution is to use the EM suffix tree algorithm [10]
for constructing LCP arrays and derive the LCP ar-
ray by an EM Euler tour over the tree. This approach



seems even less suitable for an efficient implementation.
There are only a couple of semi-external construction al-
gorithms [15,18,33], where “semi-external” means that
they only need some arrays in RAM, while other parts
can be scanned.

We point out that a truly external LCP array
construction algorithm is the only missing piece for a
fast practical EM suffix tree construction, because, as
Barsky et al. [4, p. 986] say in their survey on EM
suffix trees: “The conversion of a suffix array into a
suffix tree turned out to be disk-friendly, since reads
of the suffix array and writes of the suffix tree can
be performed sequentially. However, the suffix array
needs to be augmented with the LCP information in
order to be converted into a suffix tree.” They also
comment on the possibility of adapting external DC3
to LCP arrays: “It is currently not clear how efficient
the presented algorithm for the LCP computation would
be in a practical implementation.” And finally they
say: “It may be only one step that divides us from a
scalable solution for constructing suffix trees on disk for
inputs of any type and size. Once this is done, a whole
world of new possibilities will be opened, especially in
the field of biological sequence analysis.” The present
paper closes this gap, as outlined in the following section
“Our Contributions.”

1.1 Our Contributions. Motivated by the superior
performance of the SAIS algorithm over other suffix
array construction algorithms in internal memory, in
this paper we investigate if the induced sorting principle
can be exploited also in the EM model. We have two
goals in mind: (1) engineer an EM suffix sorting (hence
also BWT!) algorithm that outperforms the currently
best one [7] while keeping it within sorting complexity,
and (2) implement the first external memory LCP array
construction algorithm that is faster than a DC3-based
approach. Both of our algorithms are based on the
induced sorting principle [27]. Thus, we make the first
comparative study of suffix arrays in EM that includes
the induced sorting principle, since all previous studies
[4, 7] were conducted before the advent of SAIS. In § 3,
we show that SAIS is suitable for the EM model by
reformulating the original algorithm such that it uses
only scanning, sorting, merging, and priority queues.
The former three operations are certainly doable in
EM, and there are also EM priority queues achieving
sorting lower bounds both in theory [2] and in practice
[8,30]. We make some careful implementation decisions
in order to keep the I/O-volume low. As a result,
our new algorithm, called eSAIS, is about two times
faster than the EM-implementation of DC3 [7]. The
I/O volume is reduced by a similar factor. We then

proceed and engineer the first fully EM algorithm for
LCP array construction. It is 3–4 times faster than
our own implementation of LCP construction using DC3
(recall there was no such implementation before). The
increase in both time and I/O volume of eSAIS with
LCP array construction compared to pure suffix array
construction is only around two.

Our algorithms scale far beyond problem sizes pre-
viously considered in the literature. In sum, all exper-
iments reported in this paper took 34 computing days
and 200 TiB I/O volume. At the extreme end, we could
build the suffix-array for an 80 GiB XML dump of the
English Wikipedia in 2.5 µsec per character using only
4 GiB of main memory, with a total of about 18 TiB
of generated I/O-volume. Such results have never been
reported before.

1.2 Further Related Work. General-purpose EM
string sorting routines have been described by Arge
et al. [3]. There are also practical EM methods for
constructing related text indexes like the Burrows-
Wheeler transform [12]. A recent paper [5] describes an
EM LCP array construction algorithm for the specific
case of short DNA-reads (which is, due to the quadratic
dependency on the length of the longest read, not
suitable for arbitrary strings). A completely different
research topic not pursued here is how to use an external
suffix array to efficiently answer queries; see e.g. [32].

2 Preliminaries

Let [0, n] := {0, . . . , n} and [0, n) := {0, . . . , n − 1} be
ranges of integers, and 1cond ∈ {0, 1} be a boolean
variable indicating the truth of condition cond.

Given a string T = [t0 . . . tn−1] of n characters
drawn from a totally ordered alphabet Σ, we call the
substring Ti := [ti . . . tn−1] the i-th suffix of T . For
a simpler exposition, we assume that tn−1 is a unique
character $ that is lexicographically smallest, although
our implementation does not rely on such a sentinel
character. The suffix array SAT of T is the permutation
of the integers [0, n), such that TSAT [i−1] < TSAT [i]

(lexicographic order is always intended when comparing
strings by “<”). We denote the inverse permutation of
SAT by ISAT . The companion array LCPT is defined
as LCPT [i] := lcpT (SAT [i − 1],SAT [i]), where LCPT [0]
remains undefined and lcpT (i, j) is the length of the
longest common prefix (LCP) of the suffixes Ti and Tj .

2.1 Induced Sorting Toolkit. Following previous
work [27], we classify all suffixes into two types: S and
L. For suffix Ti the type(i) is S if Ti < Ti+1, and L

otherwise. Suffix Tn−1 is fixed as type S. Furthermore,
we distinguish the “left-most” occurrences of either type
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as S∗ and L∗; more precisely, Ti is S∗ if Ti is S-type and
Ti−1 is L-type. Symmetrically, Ti is L∗-type if Ti is L-
type and Ti−1 is S-type. The last suffix Tn−1 = [$]
is always S∗, while the first suffix is never S∗ nor L∗.
Sometimes we also say the character ti is of type(i).

Using these classifications, one can identify subse-
quences within the suffix array. The range of suffixes
starting with the same character c is called the c-bucket,
which itself is composed of a sequence of L-suffixes fol-
lowed by S-suffixes. We also define the repetition count
for a suffix Ti as rep(i) := maxk∈N0{ti = ti+1 = · · · =
ti+k}; then the L/S subbuckets can further be decom-
posed into ranges of equal repetition counts, which we
call repetition buckets.

The principle behind induced sorting is to deduce
the lexicographic order of unsorted suffixes from a set
of already ordered suffixes. Many fast suffix sorting
algorithms incorporate this principle in one way or
another [29]. They are built on the following inducing
lemma [23]:

Lemma 2.1. If the lexicographic order of all S∗-suffixes
is known, then the lexicographic order of all L-suffixes
can be induced iteratively smallest to largest.

Proof. We start with L := S∗ as the lexicographically
ordered set of S∗-suffixes. Iteratively, choose the un-
sorted L-suffix Ti /∈ L that, among all unsorted L-
suffixes, has smallest first character ti and smallest rank
of suffix Ti+1 within L, such that Ti+1 is already in L.
From these properties, Ti < Tj for all Tj ∈ L \ {Ti}
follows due to the transitive ordering of L-suffix chains,
and Ti can be inserted into L as the next larger L-suffix.
This procedure ultimately sorts all L-suffixes, because
each has an S∗-suffix to its right.

Analogously, the order of all S-suffixes can be induced
iteratively largest to smallest, if the relative order of all
L∗-suffixes is known. Therefore, it remains to find the
relative order of S∗-suffixes.

For each S∗-suffix Ti, we define the S∗-substring
[ti, . . . , tj ], where Tj is the next S∗-suffix in the string.
The last S∗-suffix [$] is fixed to be a sentinel S∗-
substring by itself. We call the last character tj of each
S∗-substring the overlapping character. S∗-substrings
are ordered lexicographically, with each component
compared first by character and then by type, L-
characters being smaller than S-characters in case of
ties. This partial order allows one to apply lexicographic
naming to S∗-substrings [27]. By representing each
S∗-substring by its lexicographic name in the super-
alphabet Σ∗, one can efficiently solve the problem of
finding the relative order of S∗-suffixes to recursively
suffix sorting the reduced string of lexicographic names
of S∗-substrings.

3 Induced Suffix Sorting in External Memory

Our first goal is to design an EM algorithm based on the
induced sorting principle that runs in sorting complexity
and has a lower constant factor than DC3 [7]. The
basis for this algorithm is an efficient EM priority-queue
(PQ) [8], as suggested by the proof of lem. 2.1. Since
it is derived from RAM-based SAIS, we call our new
algorithm eSAIS (External Suffix Array construction by
Induced Sorting). We first comment on details of the
pseudocode shown as alg. 1, which is a simplified variant
of eSAIS. § 3.1 is then devoted to complications that
arise due to large S∗-substrings.

Let R denote the reduced string consisting of lex-
icographic names of S∗-suffixes. The objective of lines
2–9 is to create the inverse suffix array ISAR, contain-
ing the ranks of all S∗-suffixes in T . In line 2, the input
is scanned back-to-front, and the type of each suffix i
is determined from ti, ti+1, and type(i + 1). Thereby,
S∗-suffixes are identified, and we assume there are K
S∗-suffixes with K−1 S∗-substrings between them, plus
the sentinel S∗-substring. For each S∗-substring, the
scan creates one tuple. These tuples are then sorted as
described at the end of § 2.1 (note that the type of each
character inside the tuple can be deduced from the char-
acters and the type of the overlapping character). After
sorting, in line 3 the S∗-substring tuples are lexicograph-
ically named with respect to the S∗-substring ordering,
and the output tuple array N is naturally ordered by
names nk ∈ [0,K). The names must be sorted back to
string order in line 4. This yields the reduced string R,
wherein each character represents one S∗-substring. If
the lexicographic names are unique, the lexicographic
ranks of S∗-substrings are simply the names in R (lines
8–9). Otherwise the ranks are calculated recursively by
calling eSAIS and inverting SAR (lines 5–7).

With ISAR containing the ranks of S∗-suffixes, we
apply lem. 2.1 in lines 10–15. The PQ contains quin-
tuples (ti, y, r, [ti−1, . . . , ti−`], i) with (ti, y, r) being the
sort key, which is composed of character ti, indicator
y = type(i) with L < S and relative rank r of suffix Ti+1.
To efficiently implement lem. 2.1, instead of checking all
unsorted L-suffixes, we design the PQ to create the rela-
tive order of S∗- and L-suffixes as described in the proof.
Extraction from the PQ always yields the smallest un-
sorted L-suffix, or, if all L-suffixes within a c-bucket are
sorted, the smallest S∗-suffix i with unsorted preceding
L-suffix at position i − 1 (hence ti−1 > c). Thus di-
verging slightly from the proof, the PQ only contains
L-suffixes Ti where Ti+1 is already ordered, plus all S∗-
suffixes where Ti−1 has not been ordered; so at any time
the PQ contains at most K items. In line 11, the PQ
is initialized with the array S∗, which is built in line 10
by reading the input back-to-front again, re-identifying
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Algorithm 1: eSAIS description in tuple pseudo-code

1 eSAIS(T = [t0 . . . tn−1]) begin
2 Scan T back-to-front, create [ (s∗k) | k ∈ [0,K) ] for K S∗-suffixes, and sort S∗-substrings:

P := SortS∗ [ ([ti . . . tj ], i, type(j)) | (i, j) = (s∗k, s
∗
k+1), k ∈ [0,K) ] // with s∗K := n− 1

3 N = [ (nk, i) ] := LexnameS∗(P ) // choose lexnames nk ∈ [0,K) for S∗-substrings
4 R := [nk | (nk, i) ∈ Sort(N by second component) ] // sort lexnames back to string order
5 if the lexnames in N are not unique then
6 SAR := eSAIS(R) // recursion with |R| ≤ |T |2
7 ISAR := [ rk | (k, rk) ∈ Sort[ (SAR[k], k) | k ∈ [0,K) ] ] // invert permutation

8 else // (Sort sorts lexicographically unless stated otherwise.)
9 ISAR := R // ISAR has been generated directly

10 S∗ := [ (tj , S, ISAR[k], [tj−1 . . . ti], j) | (i, j) = (s∗k−1, s
∗
k), k ∈ [0,K) ] // with s∗−1 := 0

11 ρL := 0, QL := CreatePQ(S∗ by (ti, y, r, [ti−1 . . . ti−`], i))
12 while (ti, y, r, [ti−1 . . . ti−`], i) = QL.extractMin() do // induce from next S∗- or L-suffix
13 if y = L then AL.append((ti, i)) // save i as next L-type in SA
14 if ti−1 ≥ ti then QL.insert(ti−1, L, ρL++, [ti−2 . . . ti−`], i− 1) // Ti−1 is L-type?
15 else L∗.append( (ti, L, ρL++, [ti−1 . . . ti−`], i) ) // Ti−1 is S-type

16 Repeat lines 11–15 and construct AS from L∗ array with inverted PQ order and ρS--.
17 return [ i | (t, i) ∈ Merge((ti, i) ∈ AL and (tj , j) ∈ AS .reverse() by first component) ]

S∗-suffixes and merging with ISAR to get the rank for
each tuple. Notice that the characters of S∗-substrings
are saved in reverse order. The while loop in lines 12–15
then repeatedly removes the minimum item and assigns
it the next relative rank as enumerated by ρL; this is the
inducing process. If the extracted tuple represents an
L-suffix, the suffix position i is saved in AL as the next
L-suffix in the ti-bucket (line 13). Extracted S∗-suffixes
do not have an output. If the preceding suffix Ti−1 is
L-type, then we shorten the tuple by one character to
represent this suffix, and reinsert the tuple with its rel-
ative rank (line 14). However, if the preceding suffix
Ti−1 is S-type, then the suffix Ti is L∗-type, and it must
be saved for the inducing of S-suffixes (line 15). When
the PQ is empty, all L-suffixes are sorted in AL, and
L∗ contains all L∗-suffixes ranked by their lexicographic
order. See fig. 4 for an example of this process.

With the array L∗ the while loop is repeated to sort
all S-suffixes (line 16). This process is symmetric with
the PQ order being reversed and using ρS-- instead
of incrementing. If ti−1 > ti occurs, the tuple can
be dropped, because there is no need to recreate the
array S∗ (as all L-suffixes are already sorted). When
both AL and AS are computed, the suffix array can
be constructed by merging together the L- and S-
subsequences bucket-wise (line 17). AS has to be
reversed first, because the S-suffix order is generated
largest to smallest. Note that in this formulation the
alphabet Σ is only used for comparison.

3.1 Splitting Large Tuples. After the detailed de-
scription of alg. 1, we must point out two issues that
occur in the EM setting. While S∗-substrings are usu-
ally very short, at least three characters long and on
average four, in pathological cases they can encompass
nearly the whole string. Thus in line 2–3 of alg. 1, the
tuples would grow larger than an I/O block B, and one
would have to resort to long string sorting [3]. More se-
riously, in the special case of [$] being the only S∗-suffix,

the while-loop in lines 12–15 inserts n(n+1)
2 characters,

which leads to quadratic I/O volume. Both issues are
due to long S∗-substrings, but we will deal with them
differently.

Long string sorting in EM can be dealt with using
lexicographic naming and doubling [3, Sect. 4]. How-
ever, instead of explicitly sorting long strings, we in-
tegrate the doubling procedure into the suffix sorting
recursion and ultimately only need to sort short strings
in line 2 of alg. 1. This is done by dividing the S∗-
substrings into split substrings of length at most B,
starting at the beginning, and lexicographically nam-
ing them along with all other substrings. Thereby, a
long S∗-substring is represented by a sequence of lexico-
graphic names in the reduced string. The corresponding
split tuples are formed in the same way as S∗-substring
tuples in P , they also overlap by one character, except
that this character need not be S∗-type. After the recur-
sive call, long S∗-substrings are correctly ordered among
all other S∗-substring due to suffix sorting, and split tu-
ples can easily be discarded in line 10 as they do not
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Algorithm 2: Inducing step with S∗-substrings split by D0 and D, replacing lines 10–15 of alg. 1

1 D := { s∗k −D0 − ν ·D | ν ∈ N, s∗k −D0 − ν ·D > s∗k−1, k ∈ [0,K) } // split positions, with s∗−1 = 0

2 S∗ := Sort[ (tj , ISAR[k], [tj−1 . . . ti], j,1i∈D) | j = s∗k, i = max(s∗k−1, j −D0), k ∈ [0,K) ]

3 L := Sort[ (tj , rep(j), j, [tj−1 . . . ti],1i∈D) | j ∈ D, i = max(s∗k−1, j −D), tj is L-type ]

4 S := Sort[ (tj , rep(j), j, [tj−1 . . . ti],1i∈D) | j ∈ D, i = max(s∗k−1, j −D), tj is S-type ]

5 ρL := 0, a := ⊥, ra = 0, S∗ := Stack(S∗), QL := CreatePQ(∅ by (ti, r, [ti−1 . . . ti−`], i, c))
6 while QL.NotEmpty() or S∗.NotEmpty() do
7 while QL.Empty() or t < QL.TopChar() with (t, r, [ti−1 . . . ti−`], i, c) = S∗.Top() do
8 QL.insert(ti−1, ρL++, [ti−2 . . . ti−`], i− 1, c), S∗.Pop() // induce from S∗-suffixes

9 a′ := a, a := QL.TopChar(), ra := (ra + 1)1a′=a, m := ρL, M := ∅ // next a-repetition bucket
10 while QL.TopChar() = a and QL.TopRank() < m do // induce from L-suffixes
11 (ti, r, [ti−1 . . . ti−`], i, c) = QL.extractMin(), AL.append((ti, i)) // save i as next L-type
12 if ` > 0 then
13 if ti−1 ≥ ti then QL.insert(ti−1, ρL++, [ti−2 . . . ti−`], i− 1, c) // Ti−1 is L-type
14 else L∗.append( (ti, ρL++, [ti−1 . . . ti−`], i, c) ) // Ti−1 is S-type

15 else if ` = 0 and c = 1 then M.append(i, ρL++, ) // need continuation?

16 foreach Merge([ (a, ra, i, r) | (i, r) ∈ Sort(M) ] with (a, ra, i, [ti−1, . . . , ti−`], c) ∈ L) do
17 if ti−1 ≥ ti then QL.insert(ti−1, r, [ti−2 . . . ti−`], i− 1, c) // Ti−1 is L-type
18 else L∗.append( (a, r, [ti−1 . . . ti−`], i, c) ) // Ti−1 is S-type

correspond to any S∗-suffix. The d-critical version of
SAIS [27, Sect. 4] is a similar approach.

The second issue arises due to repeated re-insertions
of payload characters into the PQ in line 14, possibly
incurring quadratic I/O volume. This again is handled
by splitting the S∗-substrings, now starting at the end,
into chunks of size D0 or D (D0 ≥ D indicating when
to split at all, and D ≥ 1 being the actual split length).
Lines 10–15 of alg. 1 have to be replaced by alg. 2,
which we will describe in the following. Let D be the
set of splitting positions, counting first D0 and then
D characters backwards starting at each S∗-suffix until
the preceding S∗-suffix is met. As before, for each S∗-
substring a tuple is stored in the S∗ array, except that
only the initial D0 payload characters are copied. We
call these items seed tuples. If an S∗-substring consists
of more than D0 characters, a continuation tuple is
stored in one of the two new arrays L or S in lines
3–4, depending on the type of its overlapping character.
This overlapping character ti will later be used together
with its repetition count rep(i) to efficiently match
continuation tuples with preceding tuples (see § 2.1 for
the definition of repetition counts); rep(i) is easily
calculated while reading the text back-to-front. Along
with both seed and continuation tuples we save a flag
1i∈D marking whether a continuation exists.

Differing from alg. 1, in line 5 the PQ is initialized
as empty and S∗ will be processed as a stack. This
modification separates the while loop into inducing
from S∗-suffixes in lines 7–8 and inducing from L-

suffixes in lines 10–15. The two induction sources are
alternated between, with precedence depending on their
top character: QL.TopChar() = ti with (ti, r, τ, i, c) =
QL.Top(). Since L-suffixes are smaller than S∗-suffixes
if they start with the same character, the while loop
in 7–8 may only induce from S∗-suffixes with the first
character being smaller than QL.TopChar(); otherwise,
the while loop in 10–15 has precedence. When line 9
is reached, the loop in 10–15 extracts all suffixes from
the PQ starting with a, after which the S∗ stack must
be checked again. In lines 11–14 the extracted tuple is
handled as in alg. 1, however, when there is no preceding
character ti−1 in the tuple and the continuation flag c is
set, the tuple underruns and the matching continuation
must be found. For each underrun tuple, the required
position i and its assigned rank ρL is saved in the
buffer M , which will be sorted and merged with the
L array in line 16. Matching of the continuation tuple
can be postponed up to the smallest rank at which a
continued tuple may be reinserted into the PQ. This
earliest rank is m = ρL, as set in line 9, because any
reinsertion will have r ≥ ρL, and thus the while loop
10–15 extracts exactly the ra-th repetition bucket of
a. Because continuation tuples must only be matched
exactly once per repetition bucket, the continuation
tuples are sorted by (tj , rep(j), j), whereby L can be
sequentially merged with M if M is kept sorted by the
first component and L scanned as a stack.

In § 4 we compute the optimal values for D0 and D,
and analyze the resulting I/O volume.
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Figure 1: Data flow graph of the algorithm; numbers refer to the line numbers of alg. 1 and alg. 2, respectively. The input
T is read and saved to a file (2), while creating tuples. Sorting these tuples yields P , whose entries are lexicographically
named in N (3) and sorted again by string index, resulting in R (4). If names are not unique in R, the algorithm calls
itself recursively (6) to calculate SAR. The suffix array is inverted into ISAR (7) and resulting ranks are merged with T to
create seed and continuation tuples (10), which are distributed into sorters (2,3,4) in alg. 2. The main while-loop (6–15)
reads from array S∗ and priority-queue QL. Depending on the calculation, the while-loop outputs final L-suffix order
information into AL, stores merge requests to M when tuples underrun, reinserts a shortened tuple, or it saves L∗-tuples.
Merge requests are handled by matching tuples from M and L (16–18) and reinserting into QL. When the while-loop for
inducing L-suffixes finishes, the process is repeated with seed tuples from L∗ and continuation tuples from S, yielding the
final S-suffix order values in AS . The output suffix array is constructed by merging AL and AS (17).

4 I/O Analysis of eSAIS with Split Tuples

We now analyze the overall I/O performance of our
algorithm and find the best splitting parameters D0 and
D, both under practical assumptions. We will focus on
calculating the I/O volume processed by Sort in lines
2–4 and 16, and by the PQs.

For simplicity, we assume that there is only one el-
emental data type, disregarding the fact that charac-
ters can be smaller than indices, for instance. Thus a
tuple is composed of multiple elements of equal size.
We write Sort(n) or Scan(n) as the number of I/Os
needed to sort or scan an array of n elements. For our

practical experiments we assume n ≤ M2

B , and thus can
relate Sort(n) = 2Scan(n), which is equivalent to say-
ing that n elements can be sorted with one in-memory
merge step. With parameters M = 230 (1 GiB) and
B = 210 (1 MiB), as used in our experiments, up to 250

(1 PiB) elements can be sorted under this assumption.
Furthermore, we also assume that the PQ has amortized
I/O complexity Sort(n) for sorting n elements, an as-
sumption that is supported by preliminary experiments.

In the analysis we denote the length of S∗-substrings
excluding the overlapping character, thus the sum of
their lengths is the string length. For further simplicity,
we assume that line 15 of alg. 2 always stores continu-
ation requests in M , and unmatched requests are later
discarded. Thus our analysis can ignore the boolean
continuation variables.

For a broader view of the algorithm, we abstracted
alg. 1 (including alg. 2) into a pipelined data flow graph
in fig. 1.

Lemma 4.1. To minimize I/O cost alg. 2 should use
D = 3 and D0 = 8 for splitting S∗-strings.

Proof. We first focus on the number of elements sorted
and scanned by the algorithm for one S∗-substring of
long length ` = kD for k ∈ N1 when splitting by period
D and set D0 := D. In this proof we count amortized
costs Sort(1) per element sorted and Scan(1) per
element scanned. This is possible, as all n` S∗-substrings
are processed by the algorithm sequentially.

For one S∗-substring the algorithm incurs Sort(D+
3) for sorting S∗ (line 2) and Sort(( `D − 1) · (D + 3))
for sorting L and S (lines 3–4). In QL and QS a total
of Sort( `D ( 1

2D(D + 1)) + ` · 3) occurs due to repeated
reinsertions into the PQs with decreasing lengths. The
buffer M (line 16) requires at most Sort(( `D − 1) · 2),
while reading from L and S is already accounted for.
Additionally, at most Scan((D−1) + 3) occurs when
switching from QL to QS via L∗, as at least the first S-
character was removed. Overall, this is Sort( `D ( 1

2D
2 +

9
2D + 5) − 2) + Scan(D + 2), which is minimized for

D =
√

10 ≈ 3.16, when assuming Sort = 2Scan.
Taking D = 3, we get at most Sort( 23

3 `−3)+Scan(5)
per S∗-substring.

Next, we determine the value of D0 (as the length
at when to start splitting by D). This offset is due
to the base overhead of using continuations over just
reinserting into the PQ. Given an S∗-substring of length
`, repeated reinsertions without continuations would
incur Sort( 1

2`(`+1)+ ` ·3)). By putting this quadratic
cost in relation to the one with splitting by D = 3, we
get that at length ` ≈ 7.7 the cost in both approaches
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is balanced. Therefore, we choose to start splitting at
D0 = 8.

Theorem 4.1. For a string of length n the I/O volume
of alg. 1 is bounded by Sort(17n) + Scan(9n), when
splitting with D = 3 and D0 = 8 in alg. 2.

Proof. To bound the I/O volume, we consider a string
that consists of n

` S∗-substrings of length `, and deter-
mine the maximum volume over all 2 ≤ ` ≤ n, where
` = 2 is the smallest possible length of S∗-substrings,
due to exclusion of the overlapping character. Alg. 1
needs Scan(2n) to read T twice (in lines 2 and 10) and
Sort(n + n

` · 2) to construct P in line 2, counting the
overlapping character and excluding the boolean type,
which can be encoded into i. In this Sort the I/O
volume of LexnameS∗ is already accounted for. Cre-
ating the reduced string R requires sorting of N , and
thus Sort(2 · n` ) I/Os. Then the suffix array of the
reduced string R with |R| ≤ n

` is computed recursively
and inverted using Sort(2· n` ), or the names are already
unique. After creating ISAR, alg. 2 is used with the pa-
rameters derived in lem. 4.1, incurring the amortized
I/O cost calculated there for all n

` S∗-substrings. The
final merging of AL and AS (line 17) needs Scan(2n).
In sum this is

V (n) ≤ Scan(2n) + Sort(n+ n
` · 2) + Sort(n` · 2)

+ V (n` ) + Sort(n` · 2) + Scan(2n)

+n
` ·min{Sort( 23

3 `− 3) + Scan(5) ,

Sort( 1
2`(`+ 1) + ` · 3) + Scan( `2 )} .

Maximizing V (n, `) for 2 ≤ ` ≤ n by ` = 2, we get
V (n, `) ≤ V (n, 2) ≤ Sort(8.5n) + Scan(4.5n) + V (n2 )
and, solving the recurrence, V (n, `) ≤ Sort(17n) +
Scan(9n). In § 6 a worst-case string is constructed with
S∗-substrings of length ` = 2.

5 Inducing the LCP Array in External Memory

In this section we describe the first practical algorithm
that calculates the LCP array in external memory. The
general method of integrating LCP construction into
SAIS has already been described [13]; here, we adapt
it to the EM model and have to deal with issues that
did not arise in the RAM implementation [13] because
the latter was not implemented recursively. From the
recursion, we can assume that the LCP array LCPR of
the reduced string R is calculated together with SAR,
while in the base case with unique lexicographic names
LCPR is simply filled with zeros. Calculation of the LCP
array LCPT of the original text is done in two phases:
first LCPR is expanded to the array LCPS∗ containing
the LCPs of lexicographically consecutive S∗-suffixes of

T , and from these the LCP values of all other suffixes
are induced by solving semi-dynamic range minimum
queries (RMQs) in EM.

5.1 Expanding the Recursive LCP Array.
Given the recursively calculated LCP array LCPR,
we first show how to calculate LCPS∗ [k] :=
lcpT (s∗SAR[k−1], s

∗
SAR[k]), which is the maximum num-

ber of equal characters (in T , not in R!) starting at two
lexicographically consecutive S∗-suffixes. See also fig. 2,
which gives an example of all concepts presented in this
section.

There are two main issues to deal with: firstly, a
reduced character in R is composed of several characters
in T . Apart from the obvious need for scaling the
values in LCPR by the lengths of the corresponding S∗-
substrings, we note that even different characters in R
can have a common prefix in T and thus contribute
to the total LCP. For example, in fig. 2 the first two
S∗-substrings [aba] and [acbba] both start with an
’a’, although they are different characters in R. The
second issue is that lexicographically consecutive S∗-
suffixes can have LCPs encompassing more than one
S∗-substring in one suffix, but not in the other. For
example, the S∗-suffix T3 = [acbbabacbbc$] and T9 =
[acbbc$] have an LCP of 4 that spans two S∗-substrings
of the latter suffix.

To handle both issues, additional information must
be precalculated during the S∗-substring splitting and
lexicographic naming steps in lines 2–3 of alg. 1. Dur-
ing splitting in line 2, the S∗-substring tuples must be
amended with the repetition count of the overlapping
character, P := SortS∗ [ ([ti, . . . , tj ], i, type(j), rep(j)) |
(i, j) = (s∗k, s

∗
k+1), k ∈ [0,K) ], which must also influ-

ence the sorting and naming of S∗-substrings, as de-
scribed in the next paragraph. Furthermore, we store
the length of each S∗-substring (or split string if large S∗-
substrings are split), minus the one overlapping charac-
ter, in an array called SizeS∗ := [ s∗k+1− s∗k | k ∈ [0,K) ]
in string order. Lastly, during lexicographic naming,
we compute the LCPs of lexicographically consecutive
S∗-substrings in an array LCPN , and later use (static)
RMQs over LCPN to find the common characters of ar-
bitrary S∗-suffixes.

The final formula for computing LCPS∗ is given by

LCPS∗ [k] =

SAR[k]+LCPR[k]−1∑
i=SAR[k]

SizeS∗ [i] + rmqLCPN
(`[k], r[k])(5.1)

with `[k] = ISAR
[
SAR[k−1] + LCPR[k]

]
+ 1

and r[k] = ISAR
[
SAR[k] + LCPR[k]

]
,

where the first part sums over the sizes of the common
lexicographic names of consecutive S∗-suffixes, and the
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T c a b a c b b a b a c b b c $
type(i) L S∗ L∗ S∗ L∗ L L S∗ L∗ S∗ L∗ S∗ S L∗ S∗

R
SizeS∗

1 2 1 3 4 0
2 4 2 2 3 0

k 0 1 2 3 4 5

SAR 5 0 2 1 3 4
LCPR − 0 1 0 0 0
LCPS∗ − 0 6 1 4 0

([ti . . . tj ], i, type(i), rep(j)) LCPN
([$], 14, S, 0 ) −
([aba], 1, S, 0 ) 0
([aba], 7, S, 0 ) 3
([acbba], 3, S, 0 ) 1
([acb], 9, S, 1 ) 4
([bbc$], 11, S, 0 ) 0

Figure 2: Example of the structures before and after the recursive call of the induced sorting algorithm. Left: the top
part shows the text, the classification of suffixes and the reduced string R on which the algorithm is run recursively. The
resulting suffix and LCP arrays for R are shown in the lower part (SAR and LCPR). Whereas the former has a direct
correspondence to the S∗-suffixes in T , the latter needs to be expanded to LCPS∗ to account for the different alphabets in
T and R. Right: additional information needed to expand LCPR to LCPS∗. The sorted array P , consisting of S∗-substrings
and associated information. The last column LCPN shows the LCPs of lexicographically consecutive S∗-substrings.

RMQ delivers the LCP of the following unequal pair,
as explained above. If LCPR[k] = 0, then the whole
expression reduces to LCPN [k], as one would except.

We must point out a fine detail about LCPN here: in
(e)SAIS, components of S∗-substrings are compared first
by character and then by type. For LCP construction,
however, we are interested only in the common char-
acters. Thus when equal characters of different type
are encountered, the number of repetitions of the dis-
tinguishing character that match in both S∗-substrings
must be added to the LCP. This is sufficient since if the
same character occurs with different types, then these
differing types are defined by the next differing charac-
ter of each suffix, where one suffix is L and the other S,
and these therefore must be different. Thus all common
characters after such a position must be equal to the dis-
tinguishing character itself. In particular, this implies
that we only need to look one S∗-substring ahead.

For example, regard the penultimate row on the
right side of fig. 2. Even though there are only 3 com-
mon characters in [acb] and its preceding S∗-substring
[acbba], there is a ‘4’ in LCPN because the S∗-substring
[acb] has a repetition count of 1.

Like the LCP calculation, the S∗-substring sort or-
der must be adapted to also encompass the repetition
count of the overlapping character. As before, overlap-
ping L characters are smaller than S characters. Of two
overlapping L characters, the one with lower repetition
count is considered as smaller. Symmetrically, of two
S characters, the one with higher repetition count is
smaller.

Having established how LCPS∗ is in principle calcu-
lable, we now discuss how to implement the algorithm
in the EM model. According to eq. (5.1), two sub-
problems must be solved efficiently in external memory:
range sums over SizeS∗ and range minimum queries over

LCPN . The first is solved by preparing query tuples for
the sum boundaries and then performing a prefix-sum
scan on SizeS∗ .

For the static range minimum queries in LCPN , we
follow a common RAM-technique [14]: we precompute
O(n) potential subqueries by a scan of LCPN , and store
them on disk. The actual queries are divided into 3
subqueries, sorted, and merged with the precomputed
queries (first by left, then by right query end). A final
sort by query IDs brings the answers to subqueries back
together. This technique was already sketched in the
DC3 algorithm [21].

5.2 Inducing the LCP Array. We now explain how
to construct the LCP array LCPT of the input string
T , given the LCP-values of S∗-suffixes in T in the array
LCPS∗ , as explained above. The general idea is to follow
the inducing mechanism as explained in § 3 and induce
the LCP-values along with the suffix array values [13].

First look at the inducing of L-suffixes (lines 11–
15 in alg. 1). For what follows, we imagine an array
SA|QL

consisting of the suffix array values of suffixes
that are extracted from the priority queue QL in line 12
of alg. 1 (last element i of the quintuple), in the order
as they are extracted (hence SA|QL

consists of the fifth
components of S∗, plus the second components of AL).
Likewise, we define the array LCP|QL

consisting of the
corresponding LCP array values. Hence, the aim is to
augment the while loop in lines 12–15 of alg. 1 to also
compute LCP|QL

. The LCPs of S∗-suffixes are exactly
the array LCPS∗ , as computed above. We next show
how to compute the entries in LCP|QL

for the L-suffixes.
Suppose that line 13 is just about to append (ti, i)

to the array SA|QL
, right next to a tuple (ti′ , i

′) for
some i′ < i with ti = ti′ . The goal is to determine
h, the LCP of suffixes i and i′ of T . See also fig. 3,
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ρL 0 1 2 3 4 5 6 7 8 9 10 11 12 13

SA|QL
14 1 7 3 9 6 2 8 5 11 13 0 4 10

LCP|QL
− 0 6 1 4 0 2 5 1 2 0 1 1 3

$ a b c
−ρS 10 9 8 7 6 5 4 3 2 1 0

SA|QS
1 7 3 9 2 8 11 12 13 4 10

LCP|QS
0 6 1 4 0 5 2 1 0 1 3

a b c

Figure 4: Example of the inducing step. Left: for the string in fig. 2, the suffix- and LCP-values of the L-suffixes (normal
font) are induced from the LCPs of S∗-suffixes (bold font). The variable ρL refers to lines 11–15 of alg. 1. The notation
SA|QL

and LCP|QL
is used to denote all SA and LCP values extracted from the priority queue QL in line 12 of alg. 1. Right:

The reverse process (line 16 of alg. 1), where the S-suffixes are induced from the L∗-suffixes.

which shows the situation in terms of the (in reality
nonexistent) arrays SA|QL

and LCP|QL
. The suffixes

that caused the inducing of i and i′ are Ti+1 and Ti′+1,
respectively, and due to lem. 2.1 those two latter suffixes
are lexicographically smaller than suffix Ti′ (hence also
smaller than Ti). Now observe that the suffixes Ti and
Ti′ are exactly the suffixes Ti+1 and Ti′+1 with the new
character ti prepended. Hence, the LCP of Ti and Ti′

is exactly one more than the LCP of Ti+1 and Ti′+1.
If ti+1 6= ti′+1, then the LCP is h = 1. Otherwise,

due to the lexicographic ordering of the suffixes, the
LCP of Ti+1 and Ti′+1 can be obtained by taking the
minimum of all LCP|QL

-values between the positions of
those suffixes. The LCPs of all those suffixes are already
known either from LCPs of S∗-suffixes or by induction
from L-suffixes. Hence, h := rmqLCP|QL

(` + 1, r) + 1 is

the true LCP-value of Ti and Ti′ when outputting (ti, i)
in line 13 of alg. 1, where ` and r are the positions of
i′+1 and i+1 in the partial suffix array. These positions
` and r are available directly from the PQ: they are the
relative ranks ‘r’ in the preceding and current quintuple.
There remains one exception for the LCP of the last L-
suffix and the first S-suffix within a bucket, however, this
case is easy to handle [13] using the repetition counts of
those suffixes.

For example, look at the inducing of suffixes T2 and
T8 in the left part of fig. 4. Both suffixes start with char-

ρL ` r

SA|QL
· · i′+1 · · · i+1 · · · · · · · i′ i · · · ·

LCP|QL
· · ∗ · · · ∗ · · · · · · · ∗ h · · · ·

ti+1 ti

Figure 3: General scheme of the inducing step. When
inducing i, the LCP value h = rmqLCP|QL

(` + 1, r) + 1 can

be derived using an RMQ between the previous and current
relative ranks of the induce sources, ` and r.

acter b. The suffixes that caused the inducing are T3
and T9 at positions 3 and 4 of SA|QL

, respectively, both
starting with a. Their LCP is 4, which is determined by
the trivial range minimum query rmqLCP|QL

(4, 4) = 4.

Therefore, we set LCP|QL
[7] to 5.

The RMQs delivering the LCP values are created
in batch during inducing and answered afterwards,
forming the LCP array. But notice that they are
interdependent ! This implies that RMQ problem we
are faced with is in fact a dynamic problem. To solve
it, we decided not to explore which of the well known
EM data structures such as buffer trees [2] are suitable
for solving this task within sorting complexity. Instead,
we made the highly realistic assumption that the main
memory size M is large enough such that n

M = O(M);
or, more precisely, n ≤ C ·M2 for some small constant
C (with one GiB of main memory and C = 1/4 as in
our implementation this means we can handle problems
of size n ≤ 258, almost one Exabyte). This assumption
is more lax than the one used in § 4.

Under this assumption we can split the array
LCP|QL

into blocks of size s := C · M and keep the
LCP|QL

-values of the current block in RAM. Further,
we can keep the minima of all O(n/M) = O(M) pre-
vious blocks in RAM. We build succinct semi-dynamic
RAM-based RMQ-structures over both arrays, as in [13,
Sect. 3.2]. Then every range minimum query can be
split into three subqueries: the first and last subquery
being contained in a block of size s, and the middle
(possibly large) subquery perfectly aligning with block
boundaries on both ends. The former two subqueries
are answered when the block is held in RAM, while the
latter subquery is answered when the last block it con-
tains has been processed. This takes overall O(n) time
and O(n/B) I/Os.

We made some additional optimizations for cases
where LCP|QL

-values can be induced without range
minimum queries. One interesting case is related to the
repetition counts: consider among all L-suffixes in a c-
bucket (c ∈ Σ) the first suffixes starting with c, cc, ccc,
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etc. Their LCP-values are 0,1,2, etc., which is exactly
their repetition count. The current repetition count,
however, is the known variable ‘ra’ when extracting
from the PQ, and thus the LCP can be set immediately
without any RMQ. This optimization turned out to be
very effective for highly repetitive texts.

Finally, we note that we have also implemented
a completely in-memory version of RMQs that relies
on the fact that only the right-to-left minima (looking
left from the current position i) are candidates for the
minima. Except for pathological inputs there are only
O(M) such right-to-left minima, because the minimum
at each bucket boundary is zero. Therefore they all fit
in RAM and can be searched in a binary manner or
using more involved heuristics [13].

6 Experimental Evaluation

We implemented the eSAIS algorithm with integrated
LCP construction in C++ using the external memory
library Stxxl [8]. This library provides efficient exter-
nal memory sorting and a priority queue that is mod-
eled after the design for cached memory [30]. Note
that in Stxxl all I/O operations bypass the operat-
ing system cache; therefore the experimental results are
not influenced by system cache behavior. Our imple-
mentation and selected input files are available from
http://tbingmann.de/2012/esais/.

Before describing the experiments, we highlight
some details of the implementation. Most notably,
Stxxl does not support variable length structures,
nor are we aware of a library with PQ that does.
Therefore, in the implementation the tuples in the
PQ and the associated arrays are of fixed length, and
superfluous I/O transfer volume occurs. Due to fixed
length structures, the results from the I/O analysis for
the tuning parameter D cannot directly be used. We
found that D = D0 = 3 are good splitting values in
practice. All results of the algorithms were verified
using a suffix array checker [7, Sect. 8] and a semi-
external version of Kasai’s LCP algorithm [22] (when
possible). We designed the implementation to use an
implicit sentinel instead of ‘$,’ so that input containing
zero bytes can be suffix sorted as well. Since our goal
was to sort large inputs, the implementation can use
different data types for array positions: usual 32-bit
integers and a special 40-bit data type stored in five
bytes. The input data type is also variable, we only
experimented with usual 8-bit inputs, but the recursive
levels work internally with the 32/40-bit data type.
When sorting ASCII strings in memory, an efficient in-
place radix sort [19] is used. Strings of larger data types
are sorted in RAM using g++ STL’s version of introsort.
The initial sort of short strings into P was implemented

using a variable length tuple sorter.
We chose a wide variety of large inputs, both

artificial and from real-world applications:
Wikipedia is an XML dump of the most recent

version of all pages in the English Wikipedia, which
is obtainable from http://dumps.wikimedia.org/; our
dump is dated enwiki-20120601.

Gutenberg is a concatenation of all ASCII text
documents from http://www.gutenberg.org/robot/

harvest as available in September 2012.
Human Genome consists of all DNA files from

the UCSC human genome assembly “hg19” download-
able from http://genome.ucsc.edu/. The files were
stripped of all characters but {A, G, C, T, N} and normal-
ized to upper-case. Note that this input contains very
long sequences of unknown N placeholders, which influ-
ences the LCPs.

Pi are the decimals of π, written as ASCII digits
and starting with “3.1415.”

Skyline is an artificial string for which eSAIS has
maximum recursion depth. To achieve this, the string’s
suffixes must have type sequence LSLS . . . LS at each
level of recursion. Such a string can be constructed
for a length n = 2p, p ≥ 1, using the alphabet
Σ = [ $, σ1, . . . , σp ] and the grammar {S → T1$, Ti →
Ti+1σiTi+1 for i = 1, . . . , p−1 and Tp → σp}. For p = 4
and Σ = [ $, a, b, c, d ], we get dcdbdcdadcdbdcd$; for
the test runs we replaced $ with σ0. The input Skyline
is generated depending on the experiment size, all other
inputs are cut to size.

Our main experimental platform A was a cluster
computer, with one node exclusively allocated when
running a test instance. The nodes have an Intel Xeon
X5355 processor clocked with 2.66 GHz and 4 MiB of
level 2 cache. In all tests only one core of the processor
is used. Each node has 850 GiB of available disk space
striped with RAID 0 across four local disks of size
250 GiB; the rest is reserved by the system. We limited
the main memory usage of the algorithms to 1 GiB of
RAM, and used a block size of 1 MiB. The block size
was optimized in preliminary experiments.

Due to the limited local disk space in the cluster
computer, we chose to run some additional, larger
experiments on platform B: an Intel Xeon X5550
processor clocked with 2.66 GHz and 8 MiB of level 2
cache. The main memory usage was limited to 4 GiB
RAM, we kept the block size at 1 MiB and up to six
local SATA disk with 1 TB of local space were available.
Programs on both platforms were compiled using g++

4.4.6 with -O3 and native architecture optimization.
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Figure 5: The first row shows construction time and I/O volume of eSAIS (open bullets) and DC3 (filled bullets) on
experimental platform A. The second row shows selected characteristics of the input strings.

6.1 Plain Suffix Array Construction. As noted
in the introduction, the previously fastest EM suffix
sorter is DC3 [7]. We adapted and optimized the
original source code1, which is already implemented
using Stxxl, to our current setup and larger data types.
An implementation of DC7 exists that is reported to be
about 20% faster in the special case of human DNA [33],
but we did not include in our experiments.

Figure 5 shows the construction time and I/O
volume of eSAIS and DC3 on platform A using 32-bit
keys. The two algorithms eSAIS (open bullets) and DC3
(filled bullets) were run on prefixes T [0, 2k) of all five
inputs, with only Skyline being generated specifically
for each size. In total these plots took 3.2 computing
days and over 16.8 TiB of I/O volume, which is why only
one run was performed for each of the 90 test instances.

For all real-world inputs eSAIS’s construction time
is about half of DC3’s. The I/O volume required by

1http://algo2.iti.kit.edu/dementiev/esuffix/docu/

eSAIS is also only about 60% of the volume of DC3.
The two artificial inputs exhibit the extreme results they
were designed to provoke: Pi is random input with short
LCPs, which is an easy case for DC3. Nevertheless,
eSAIS is still faster, but not twice as fast. The results
from eSAIS’s worst-case Skyline show another extreme:
eSAIS has highest construction time on its worst input,
whereas DC3 is moderately fast because Skyline can
efficiently be sorted by triples. The high I/O volume
of eSAIS for Skyline is due to its maximum recursion
depth, reducing the string only by 1

2 and filling the PQ
with n

2 items on each level. The PQ implementation
requires more I/O volume than sorting, because it
recursively combines short runs to keep the arity of
mergers in main memory small. Even though DC3
reduces by 2

3 , the recursion depth is limited by log3 n
and sorting is more straightforward.

Besides the basic eSAIS algorithm, we also imple-
mented a variant which “discards” sequences of multi-
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Figure 7: Measured construction time and I/O volume of three implementations is shown for the largest test instance
Wikipedia run on platform B using 40-bit positions

ple unique names from the reduced string prior to re-
cursion [7, 28]. However, we discovered that this opti-
mization has much smaller effect in eSAIS than in other
suffix sorters (see fig. 6 (a)-(d)). This is probably due
to the induced sorting algorithm already adapting very
efficiently to the input string’s characteristics.

6.2 Suffix and LCP Array Construction. We
implemented two variants of LCP construction: one
solving RMQs in EM (LCPext), and the other entirely
in RAM (LCPint). The EM solution saves RMQs
to disk during the inducing process, and constructs
the LCP array from these queries after the SA was
completed. Contrarily, the RAM solution precalculates
the LCP for each induced position from an in-memory
structure and saves the LCP in the PQ. Thus the LCP
array is constructed at the same time as the SA (when
extracting from the PQ). The size of the in-memory
RMQ structure is related to the maximum LCP and the
number of different inducing targets within one bucket,
and grows up to 300 MiB for the Human Genome.
The in-memory RMQ construction also requires the
preceding character ti−1 to be available when processing
the while loop, a restriction that requires an overlap of
two characters in continuation tuples and thus leads to
a larger I/O volume. Since no EM variant of DC3 with
LCP construction in Stxxl is available, we extended
the original implementation as suggested in [20].

Figure 6 (a)-(d) shows the results of all six variants
of the algorithms on the real-world inputs run on
platform A. We observe that eSAIS-LCP internal or
external are the first viable methods to calculate suffix
array and LCP array in EM; our version of DC3-LCP
finishes in justifiable time only for very small instances.
On all real-world inputs the construction time of eSAIS-

LCP is never more than twice the time of DC3 without
LCP construction. As expected, in-memory RMQs are
consistently faster than EM-RMQs and also require
fewer I/Os, even though the PQ tuples are larger.

To exhibit experiments with building large suffix
arrays, we configured the algorithms to use 40-bit
positions on platform A. Figure 6 (c)-(d) show results
for the Wikipedia and Gutenberg input only up to 233,
because larger instances require more local disk space
than available at the node of the cluster computer. On
average over all tests instances of Wikipedia, calculation
using 40-bit positions take about 33% more construction
time and the expected 25% more I/O volume.

The size of suffix arrays that can be built on plat-
form A was limited by the local disk space; we therefore
determined the maximum disk allocation required. Ta-
ble 1 shows the average maximum disk allocation mea-
sured empirically over our test inputs for 32-bit and
40-bit offset data types.

On platform B we had the necessary 4 TiB disk
space required to process the full Wikipedia instance,
and these results are shown in fig. 7. The maximum
size of the in-memory RMQ structure was only about
12 MiB. Sorting of the whole Wikipedia input with
eSAIS took 2.4 days and 18 TiB I/O volume, and with
eSAIS with LCP construction (internal memory RMQs)
took 5.0 days and 35 TiB I/O volume.

eSAIS -LCPint -LCPext DC3 -LCP

32-bit 25n 44n 52n 46n 88n

40-bit 28n 54n 63n 58n 109n

Table 1: Maximum disk allocation in bytes required by the
algorithms, averaged and rounded over all our inputs
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7 Conclusions and Future Work

We presented a better external memory suffix sorter
that can also construct the LCP array. Although our
implementations are already very practical, we point
out some optimizations that could yield an even bet-
ter performance in the future. Because eSAIS is largely
compute bound, a more efficient internal memory pri-
ority queue implementation, e.g. a radix heap, may im-
prove suffix array construction time significantly. An-
other fact that could lead to significantly better perfor-
mance is that any reinsertion into the PQ is always after
the last tuple of the current repetition bucket. Thus the
PQ’s main-memory merge buffer could be bypassed in
many cases. Performance on inputs relying heavily on
sorting (like Pi and Skyline) could also be improved by
sorting S∗-substring deeper than only three characters
if they are very short. As a whole, the potential of fur-
ther speed improvements by optimization of eSAIS is
higher than for DC3. We also note that, the final recur-
sive stage can also output the Burrows-Wheeler trans-
form [6] directly from the extracted PQ tuple, instead
of the suffix array. Obviously, for real-world applica-
tions one should stop sorting in external memory when
the reduced string can be suffix sorted internally. This
is currently not implemented. Finally, it is possible to
combine the two variants of eSAIS-LCP (internal and
external RMQs) into one algorithm with a bounded in-
memory RMQ structure, where unanswered RMQs are
saved to EM and solved later.
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