

Institute of Theoretical Informatics Algorithmics

# Candidate Sets for Alternative Routes in Road Networks<sup>[1]</sup>

Dennis Luxen and Dennis Schieferdecker - {luxen,schieferdecker@kit.edu}
http://algo2.iti.kit.edu

**Modelling Alternatives** 

concatenation of two shortest paths at via node



#### **Extension (Multi-Level)**

Partitioning can be done in multiple levels. If source and target regions

#### must adhere to quality criteria

# **Quality Criteria**

#### uniformly bounded stretch

each subpath should not be too much longer than a shortest path [ $\epsilon = 25\%$ ]



#### maximum overlap

paths should not have too many subpaths in common [ $\gamma = 80\%$ ]



#### Iocal optimality

all local decisions along a path should make sense [ $\alpha = 25\%$ ]



# **Baseline Algorithm [2]**

grow search spaces from s and t

plateaus yield candidates for via nodes

Algorithm is named according to underlying shortest path technique, e.g. X-BDV, X-CHV, X-CHASEV, ...



are neighboring or the same, the algorithm recurses to a finer level.







### **Experimental Evaluation**

Algorithms are implemented in C++ and compiled with g++ 4.5 using full optimizations. Queries use a Core i7-920 at 2.66 GHz (12 GiB). Preprocessing uses 4 Opteron 6168 at 1.90 Ghz (256 GiB). Experiments are done on the road network of Western Europe, as provided by PTV AG for the 9th DIMACS Implementation Challenge.

| no relaxation |        |          |        |             |  |  |
|---------------|--------|----------|--------|-------------|--|--|
|               | p=1    |          |        | p=2         |  |  |
|               | time   | success  | time   | success     |  |  |
| query         | [ms]   | rate [%] | [ms]   | rate [%]    |  |  |
| X-BDV         | 11.5 s | 94.51    | 12.3 s | 80.60       |  |  |
| X-CHV         | 1.218  | 75.56    | 1.771  | 40.25       |  |  |
| X-CHASEV      | 0.581  | 75.56    | 0.797  | 40.25       |  |  |
| single-level  | 0.167  | 80.73    | 0.304  | 50.87       |  |  |
| multi-level   | 0.162  | 81.20    | 0.304  | 51.25       |  |  |
| 06            |        |          |        | o _ o _ o o |  |  |

| 3-relaxtion  |        |          |        |          |  |  |
|--------------|--------|----------|--------|----------|--|--|
|              | p=1    |          | p      | p=2      |  |  |
|              | time   | success  | time   | success  |  |  |
| query        | [ms]   | rate [%] | [ms]   | rate [%] |  |  |
| X-BDV        | 11.5 s | 94.51    | 12.3 s | 80.60    |  |  |
| X-CHV        | 3.488  | 88.59    | 4.382  | 64.75    |  |  |
| X-CHASEV     | 2.756  | 88.59    | 3.258  | 64.75    |  |  |
| single-level | 0.254  | 90.05    | 0.438  | 70.22    |  |  |
| multi-level  | 0.188  | 90.06    | 0.386  | 70.40    |  |  |
|              |        |          |        | ~ & >    |  |  |
|              |        |          |        | 0        |  |  |



#### **Conjecture (limited number of alternative paths)**

If the number of shortest paths between two regions of a road network is small, so is the number of plateaus. Likewise, the number of admissible alternatives is small and can be covered by few via nodes.

# Idea (Single-Level)

- partition graph into regions
- compute via node candidate set for each pair of regions
- examine sets during query



# Query

- determine via node candidate set for the considered region pair
- check via node candiates in set
- stop when quality criteria are fulfilled
- If regions are neighboring or the same, baseline algorithm is used.



|               | time | size    | avera | average size |  |
|---------------|------|---------|-------|--------------|--|
| preprocessing | [h]  | [kiB]   | p=1   | p=2          |  |
| single-level  | 1.11 | 858.42  | 4.44  | 5.17         |  |
| + multi-level | 0.66 | 2809.72 | 6.12  | 5.92         |  |



|               | time | size     | _ | average size |       |
|---------------|------|----------|---|--------------|-------|
| preprocessing | [h]  | [kiB]    |   | p=1          | p=2   |
| single-level  | 2.38 | 1741.77  |   | 6.74         | 10.26 |
| + multi-level | 1.96 | 7 166.44 |   | 12.20        | 15.09 |

# **Online Algorithm**

Can be added on top of a legacy system. Via node candidate sets start empty. If our algorithm does not yield an alternative, the baseline algorithm is applied as **fallback** and the found via node added to the appropriate set. Fallbacks are stopped after sets become saturated.







#### Preprocessing

Our algorithm is used for **bootstrapping**:

- compute alternatives for all pairs of boundary nodes for all region pairs
- if no alternative is found, run baseline algorithm to compute new via node
- add node to respective via node candidate set

Engineering: parallelization, sampling, storing search spaces, ...



0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 Queries [1k] Queries [1k]

# **Alternative Graphs**

- summarize multiple alternatives
- provide a sparse set of options
- computable from via node candidate sets



3000

#### Bibliography

[1]Luxen, Schieferdecker. 2012. Candidate Sets for Alternative Routes in Road Networks. (SEA'12)[2]Abraham, Delling, Goldberg, Werneck. 2013. Alternative Routes in Road Networks. (JEA #18)

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

