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Abstract
In this bachelor thesis, multiway LCP-Merge is introduced, parallelized

and applied to create a fully parallel LCP-Mergesort, as well as NUMA
optimized pS5. As an advancement of binary LCP-Mergesort, a multiway
LCP-aware tournament tree is introduced and parallelized. For dynamic
load balancing, one well-known and two new strategies for splitting merge
work packages are utilised. Besides the introduction of fully parallel mul-
tiway LCP-Mergesort, further focus is put on NUMA architectures. Thus
‘parallel Super Scalar String Sample Sort’ (pS5) is adapted to the special
properties of these systems by utilising the parallel LCP-Merge. Moreover
this yields an efficient and generic approach for parallelizing arbitrary se-
quential string sorting algorithms and making parallel algorithms NUMA-
aware. Several optimizations, important for practical implementations, as
well as comprehensive experiments on two current NUMA platforms, are
then reported and discussed. The experiments show the good scalability of
the introduced algorithms and especially, the great improvements of NUMA-
aware pS5 with real-world input sets on modern machines.

Zusammenfassung
In dieser Bachelorarbeit wird ein mehrwegiger LCP-Merge eingeführt,

parallelisiert und für den Aufbau eines parallelen LCP-Mergesorts, sowie
einer NUMA optimierten pS5 Implementierung, angewandt. Als Weiterent-
wicklung des binären LCP-Mergesortes, wird ein mehrwegiger LCP-fähiger
Tournament Tree eingeführt und parallelisiert. Zur Aufteilung der Arbeit-
spakete, welche für eine dynamische Lastverteilung benötigt wird, werden
eine bekannte, sowie zwei neu eingeführte Strategien, genutzt. Neben der
Einführung eines parallelisierten LCP-Mergesortes, wird der weitere Fokus
auf NUMA Architekturen gelegt. Im Zuge dessen, wird ‘parallel Super Scalar
String Sample Sort’ (pS5), durch Anwendung des parallelen LCP-Merges,
auf die besonderen Eigenschaften dieser Systeme angepasst. Zusätzlich führt
dies zu einem effizienten und generischen Ansatz um sequentielle Sortieral-
gorithmen zu parallelisieren und bereits parallele Algorithmen um NUMA-
Fähigkeit zu erweitern. Weiterhin werden einige Optimierungen, welche für
praktische Implementierungen wichtig sind, sowie ausgiebige Experimente
auf zwei aktuellen NUMA Plattformen, erläutert und diskutiert. Die Expe-
rimente belegen mit realistischen Eingabedaten die gute Skalierbarkeit der
vorgestellten Algorithmen und besonders die enormen Verbesserungen des
pS5 Algorithmus auf NUMA Systemen.
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1 Introduction

1. Introduction

With the digital age, more and much larger amounts of data arise. Structuring, evalu-
ating and analysing this volume of data is a task of growing importance and difficulty.
However, the basic algorithms needed to do this, have been known and used for years.
With many of them requiring sorting data and merging results, it is quite comprehen-
sible that sorting is one of the most studied algorithmic problems in computer science
but nonetheless still of great interest.
Although the simplest sorting model assumes atomic keys, sorting strings lexicographi-
cally and merging sorted sequences of strings is required by many algorithms important
for today’s applications. Examples relying on string sorting range from MapRedcue
tools and databases over some suffix sorters to BigData analysis tools and much more.
In contrast to atomic keys, strings can be seen as arrays of atomic keys, which leads to
a larger computational complexity for string sorting. This is why it is very important
to exploit the structure of keys to avoid repeated costly work on entire strings.
Even though there is a large amount of work on sequential string sorting, only little work
has been done to parallelize it. But as nowadays the only way to gain wins from Moore’s
law, is to use parallelism, all performance critical algorithms need to be parallelized.
However, with first parallel sorting algorithms available, new challenges arise. As the
amount of available memory on modern many-core systems grows, non uniform memory
access (NUMA) architectures become more common. Curiously, although increased
main memory sizes reduce the need for external sorting algorithms on the one hand,
NUMA systems induce varying main memory access times, thus making it necessary to
apply external sorting algorithm schemes to in-memory implementations.
As a result, it is much more important to maximize efficiency of memory accesses
on NUMA systems. Exploiting known longest common prefixes (LCPs) when merg-
ing strings, can be used to skip over already considered parts of them, which reduces
memory accesses. Merging sequences of strings with their according LCP information
is an intuitive idea and Ng and Katsuhiko [NK08] already introduced a binary LCP-
aware merge sort but no multiway implementation was found. However, as our NUMA
systems currently have two, four and eight NUMA nodes, this is required to prevent
unnecessary memory operations.
Moreover, an efficient multiway LCP-aware merge allows to improve current sequential
and parallel merge sort implementations, possibly making them competitive to currently
faster algorithms. Especially for input sets with long average LCPs, this implementation
could outperform others.

1.1. Contributions of this Bachelor Thesis

As the first step of this work, LCP-Mergesort, initially presented by Ng [NK08], will be
redefined to improve comprehensibility of the newly presented algorithms based on it.
As Ng only showed an average case analysis, the worst case computational complexity
of LCP-Mergesort will be analysed.
With the goal to create a fully parallel LCP-aware merge sort implementation, Ng’s
binary LCP-Merge algorithm is extended and a K-way LCP-aware tournament tree in-
troduced. This tournament tree is independently usable for mergingK sorted sequences
of strings with associated LCP information. Furthermore, a parallel K-way LCP-Merge
and the resulting fully parallelK-way LCP-Mergesort is presented. Additionally, a com-
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1 Introduction

mon algorithm for splitting the merge problem is adapted and a completely new one
presented.
Since we want to improve practical applications, it is of great importance to consider
real hardware architectures and optimizations required by them. Additionally it is
important that these algorithms do not just achieve good theoretical results, but can
really improve practical runtimes. Therefore we implemented our newly presented par-
allel LCP-Merge and LCP-Mergesort with three different splitting procedures. Further-
more, the parallel sorting algorithm pS5 of Timo Bingmann [BS13] will be improved for
NUMA architectures by exploiting the properties of K-way LCP-Merge.
In order to evaluate the presented algorithms, they will be compared with existing
parallel string sorting implementations like original pS5. To allow examination of the
degree of parallelism, not just runtimes but also speed ups of different algorithms are
reviewed.

1.2. Structure of this Bachelor Thesis

Section 2 gives an overview of used notations and existing algorithms. Whereas Ng’s
LCP-Mergesort is the basis for this work, Bingmann’s Parallel Super Scalar String
Sample Sort is a reference as one of the fastest parallel string sorters.
In Section 3 binary LCP-Mergesort is redefined and multiway LCP-Merge, as well as
multiway LCP-Mergesort are introduced. Moreover, a proof of the upper bound of
binary LCP-Mergesort’s runtime is provided.
Furthermore, Section 4 focuses on implementation details of the newly presented algo-
rithms in order to improve their practical performance even further.
The performance of the resulting C++ implementations is evaluated in Section 5, where
speed up factors and runtimes of various variants and algorithms are compared.
Finally, a summation of the results and an outlook to future work, is given in Section 6.
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2 Preliminaries

2. Preliminaries

A set S = {s1, ..., sn} of n strings of total length N = ∑n
i=1 |si| is our input. A string

s is a one-base array of characters from the alphabet Σ = {1, ..., σ}. The length of
a string s or any arbitrary array, is given by |s| and the ith element of an array a is
accessed via a[i]. On the alphabet Σ we assume the canonical ordering relation ‘<’ with
1 < 2 < ... < σ. Likewise for strings we assume the lexicographical ordering relation
‘<’ and our goal is to sort the strings of the given input sequence S lexicographically.
For indicating the end of strings, our algorithms require strings to be zero-terminated,
meaning s[|s|] = 0 /∈ Σ, which however can be replaced by any other end-of-string
convention.
With the length of the distinguishing prefix D, denoting the minimum number of char-
acters to be inspected to establish lexicographic ordering of S, there is a natural lower
bound for string sorting. More precisely, for sorting based on character comparisons,
we get the lower bound of Ω(D + n log n), whereas string sorting based on an integer
alphabet can be achieved in Ω(D) time.
Because sets of strings are usually represented as arrays of pointers to the beginning
of the string, there is an additional indirection when accessing a string character. This
generally causes a cache fault on every string access, even during linear scanning of an
array of strings. Therefore a major difference of string sorting in comparison to atomic
sorting, is the lack of efficient scanning.
Our algorithms are targeted for shared memory systems supporting p processing el-
ements or hardware threads on Θ(p) cores. Additionally some algorithms and opti-
mizations are specially targeted for non uniform memory access (NUMA) systems, also
providing p hardware threads on Θ(p) cores. However, the p hardware threads are
equally divided onto m NUMA nodes, each having fast direct access to local mem-
ory and slower access to remote memory via an interconnect bus system. Due to the
NUMA architecture, costs of memory accesses across NUMA nodes are much higher
and therefore need to be avoided.
Figure 1 illustrates a NUMA architecture with m = 4 NUMA nodes and p = 16 cores.
Whereas the cores p0, p4, p8 and p12, belonging to NUMA node 0, have fast access to
local Memory 0, remote access to the memories of nodes 1, 2 and 3 is much slower.

p0 p4

p8 p12

p1 p5

p9 p13

p2 p6

p10 p14

p3 p7

p11 p15

M
em

or
y
0 M

em
ory

1
M
em
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2M
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y
3

NUMA Node 0 NUMA Node 1

NUMA Node 2NUMA Node 3

Figure 1: NUMA architecture with m = 4 NUMA nodes and p = 16 cores.
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Figure 2: Memory bandwidth for accessing NUMA memory on IntelE5. See Table 1 on
page 45 for the exact hardware specification.

This behaviour can be examined in Figure 2, showing the memory bandwidth achieved
by the given number of threads, when linearly reading 64 bit values from a memory
area, which is equally segmented onto all NUMA nodes. The curves show the memory
bandwidth over the available threads when only accessing the memory on the NUMA
node that is exactly hopcount steps away. Therefore a thread running on NUMA
node n will solely write to the memory of node (n+ hopcount) mod m. The figure
clearly shows the tremendous gap in bandwidth between accessing the local NUMA
memory (hopcount = 0) and accessing the other node’s memories (hopcount = 1 or
hopcount = 2). Since sorting mostly requires read operations, the performance of write
operations isn’t displayed here. However, for write operations, a further slowdown is ex-
perienced, when reading from the memory positioned farthermost away (hopcount = 2)
in comparison to reading from a direct neighbour node.
More information on pmbw, the tool used for creating the measurements of Figure 2, can
be found at http://panthema.net/2013/pmbw/. For these tests, the NUMA branch of
pmbw has been used to test the performance of the function ScanRead64PtrSimpleLoop.

2.1. Notation and Pseudo-code

To describe the algorithms presented in this paper, we chose a tuple pseudo-code lan-
guage, combining array manipulation, mathematical set notation and Pascal-like con-
trol flow. Ordered sequences are written like arrays using square brackets [x, y, ...] and
’+’ is extended to also concatenate arrays. Neither arrays nor variables are declared
beforehand, so A[3] := 4 defines an array A and assigns 4 to the third position, as
array indexes are counted from 1 to |A|, being the length of the array. An example
for powerful expressions possible with this pseudo-code language is the following defi-
nition: A := [(k, exp(i ∗ k∗π2 ))|k ∈ {0, 1, 2, 3}], specifying A to be an array of the pairs
[(0, 1), (1, i), (2,−1), (3,−i)].
In order to avoid many special cases, we use the following sentinels: ‘ε’ is the empty
string, being lexicographically smaller than any other string, ‘∞’ is the character or
string, which is larger than any other, and ‘⊥’ as symbol for undefined variables.
Furthermore, for arrays s and t, let the symmetric function lcp(s, t) denote the length of

16
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2.2 Existing Sorting Algorithms

S s1 s2 s3 s4 ... sn

H ⊥ lcp(s1, s2) lcp(s2, s3) lcp(s3, s4) ... lcp(sn−1, sn)

(a) Structural view

S aab aacd aacd bac bacd bbac

H ⊥ 2 4 0 3 1

(b) Exemplary configuration

Figure 3: Structure of string sequence S with associated LCP array H.

the longest common prefix (LCP) of s and t. Thus, for one-based arrays, the LCP value
denotes the last index where s and t equal each other, whereas at index lcp(s, t)+1, s and
t differ, if that position exists. Based on that, lcpX(i) is defined to be lcp(X[i−1], X[i])
for an ordered sequence X. Accordingly, the associated LCP array H = [⊥, h2, ..., hn]
of a sorted string sequence S = [s1, ..., sn] is defined as hi = lcpS(i) = lcp(S[i− 1], S[i]).
Additionally, for any string s, we define lcp(ε, s) = 0 to be the LCP to the empty
string ε.
Figure 3a shows the structure of a string sequence and how its corresponding LCP array
is calculated. Furthermore Figure 3b illustrates the LCP array for the example string
sequence S = [aab, aacd, aacd, bac, bacd, bbac].
As the sum of all elements (excluding the first) of an LCP array H will often be
used, we define L(H) = ∑n

i=2 Hi or just L if H is clear in the context. The sum of the
distinguishing prefixes D and the sum of the LCP array H are related, but not identical.
Whereas D is the sum of the distinguishing prefixes, L only counts the length of LCPs
and also misses the length for the first string, leading to D ≥ L. In the example shown
in Figure 5b, we have L = 2+4+0+3+1 = 10, whereas D = 3+3+5+1+4+2 = 18.

2.2. Existing Sorting Algorithms

To begin with, an overview on existing sorting algorithms is presented. Although there
exists a wide range of sorting algorithms, this section focuses on two of them, being
essential preliminary work for this thesis. LCP-aware merge sort has been introduced
by Waihong Ng in [NK08] and is a basis of this work. Timo Bingmann’s pS5 [BS13] is
a parallel string sorting algorithm that achieved great results in previous experiments
and will be further optimized by making it NUMA-aware.
More algorithms can be found in [BES14] and [BS13], including but not limited to
Multikey quicksort, MSD radix sort, Burstsort, Sample sort and Insertion sort.

2.2.1. LCP-Mergesort by Waihong Ng

LCP-Mergesort is a string sorting algorithm introduced by Waihong Ng and Katsuhiko
Kakehi [NK08]. It calculates and reuses the LCP of sorted sub-problems to speed up
string sorting. Ng’s binary LCP-Mergesort is redefined in more detail in Section 3.1.
As part of this section, the worst case computational complexity of LCP-Mergesort will
be shown to be in O(n log n + L). Later, LCP-Mergesort’s basic step LCP-Compare

17



2 Preliminaries

will be reused as a fundamental part of the new parallel K-Way-LCP-Merge algorithm
presented in this bachelor thesis.
A parallelized version of Ng’s binary LCP-Mergesort has been developed by Nagaraja
Shamsundar [Sha09]. The basic idea is to run instances of binary LCP-Mergesort
on every thread for subsets of the input strings. As soon as two threads finished their
work, their sorted result sequences are merged together sequentially. Whenever another
thread finishes (and no other thread is currently merging with the output sequence),
its sequence is sequentially merged with the output sequence. However, since the final
merging is done sequentially, only the sorting of the sequences is parallelized.

2.2.2. pS5 by Timo Bingmann

Parallel Super Scalar String Sample Sort (pS5) introduced by Timo Bingmann and Peter
Sanders [BS13] is a parallelized version of S5, designed to make use of the features of
modern many-core systems, having individual cache levels but relatively few and slow
memory channels. The S5 algorithm is based on sample sort and preliminary results
can be found in the bachelor thesis of Sascha D. Knöpfle [Knö12]. Parallel S5 uses
three different sub-algorithms depending on the size of subsets of the input strings.
Whereas for large subsets, a sequential S5 implementation is used, medium-sized inputs
are sorted with caching multikey quicksort, which itself is internally applying insertion
sort as base case sorter. In Section 4.4 our new parallel K-Way-LCP-Merge algorithm is
used to improve the performance of pS5 even further on NUMA systems.

18



3 Parallel Multiway LCP-Mergesort

3. Parallel Multiway LCP-Mergesort
Starting with the basic components, this section introduces a parallel multiway LCP-
Merge algorithm, usable for easier parallelization of sorting algorithms. Moreover, as
a direct application, a parallel multiway LCP-Mergesort will be introduced. Based on
that, in Section 4 the parallel multiway Merge is used for implementing a NUMA-aware
version of pS5 and more.

3.1. Binary LCP-Mergesort

LCP-Merge is a string merging algorithm introduced by Ng and Kakehi [NK08]. By
utilizing the longest common prefixes of strings it is possible to reduce the number of
needed character comparisons. As Ng and Kakehi show in their paper, this leads to an
average complexity of O(n log n) for string Mergesort, using the given LCP-Merge.
Preceding the proof of O(n log n) complexity, this section focuses on reformulating
LCP-Merge and explicitly defining its comparison step LCP-Compare. Since these steps
are fundamental parts of the following work, a rather verbose specification is used. This
not only allows an easier reuse of the code in later parts but also helps to visualize the
proof of computational complexity.

3.1.1. LCP-Compare

LCP-Compare is the basic LCP-aware comparison step used in all algorithms presented
in this work. It is a replacement for standard string comparison function, which usu-
ally iterates over the characters of a string until a mismatch is found. In order to
improve runtime, LCP-Compare exploits the longest common prefixes calculated in pre-
vious steps.
Like shown in Algorithm 1, LCP-Compare takes two strings sa and sb and the cor-
responding LCPs ha and hb to calculate the sort order of sa and sb, as well as the
lcp(sa, sb). The given LCPs hi need to be the LCPs of their string si with a third com-
mon, lexicographically smaller string. Therefore there must be a string p with p ≤ si
and hi = lcp(p, si) where i ∈ {a, b}.
Figure 4 visualizes the input parameters of LCP-Compare and their relation to the
common predecessor p. In Figure 4 it is assumed that ha = lcp(p, sa) < lcp(p, sb) = hb.
In this situation no characters need to be compared, since the lexicographical order can
be calculated solely depending on the LCPs: let y = sa[ha + 1] and x = p[ha + 1] be the
distinguishing characters of p and sa. Due to the precondition p ≤ sa and the definition
of LCPs, we do not just know x 6= y but also x < y. However, due to hb > ha, we further
know the distinguishing characters of sa and sb to be y and x = sb[ha + 1] = p[ha + 1]
which leads to the conclusion sb < sa.
In order to effectively calculate the sort order and LCP of sa and sb, LCP-Compare
differentiates three main cases:
Case 1: If both LCPs ha and hb are equal, the first ha = hb characters of all three

strings p, sa and sb are equal. In order to find the distinguishing characters of
sa and sb, the strings need to be compared starting at position ha + 1. This
is done by the loop in line 3. With the distinguishing character found by the
loop, the sort order can be determined. Additionally the lcp(sa, sb) = h′ is
inherently calculated in the loop as a by-product.
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3 Parallel Multiway LCP-Mergesort

Input: sa, sb, ha = lcp(p, sa), hb = lcp(p, sb) with p ≤ sa and p ≤ sb

p x

sa y

sb x

x 6= y

characters

Figure 4: Illustration of case 2 of LCP-Compare with ha < hb.

Case 2: If ha < hb, as shown in Figure 4, the first ha characters of the three strings p, sa
and sb are equal. Because ha and hb are the LCPs to the common predecessor
p, the characters at index ha + 1 are the distinguishing characters between
sa and sb. Due to p < si and ha < hb follows p[ha + 1] = sb[ha + 1] and
p[ha + 1] < sa[ha + 1]. This results in sb[ha + 1] < sa[ha + 1] and therefore
sb < sa.

Case 3: If ha > hb, the same arguments as in case 2 can be applied in symmetrically.

Algorithm 1 combines these observations to construct LCP-Compare, the basic step of
LCP-Mergesort and the later introduced K-Way-LCP-Merge. The three distinct cases
from above, being the basic parts of LCP-Compare, can be seen in lines 1, 7 and 8,
whereas the character comparison loop can be found in line 3.
To be able to use LCP-Compare for Binary LCP-Merge and LCP-Mergesort but also
for K-Way-LCP-Merge, the function is written in a rather generic way. That’s why the
caller has to specify the values a and b as keys, identifying the given strings sa and sb.
Furthermore, LCP-Compare does not return the ordered input strings, but w, l ∈ {a, b},
and hw, hl the corresponding LCPs, so that s ≤ sw ≤ sl and respectively hw = lcp(p, sw)
and hl = lcp(p, sl).

Algorithm 1: LCP-Compare
Input: (a, sa, ha) and (b, sb, hb), with sa, sb two strings, ha, hb corresponding LCPs;

assume ∃ string p with p ≤ sa and p ≤ sb, so that ha = lcp(p, sa) and
hb = lcp(p, sb).

1 if ha = hb then // Case 1: LCPs are equal
2 h′ := ha + 1
3 while sa[h′] 6= 0 & sa[h′] = sb[h′] do // Execute character comparisons
4 h′++ // Increase LCP
5 if sa[h′] ≤ sb[h′] then return (a, ha, b, h′) // Case 1.1: sa ≤ sb
6 else return (b, hb, a, h′) // Case 1.2: sa > sb

7 else if ha < hb then return (b, hb, a, ha) // Case 2: sa > sb
8 else return (a, ha, b, hb) // Case 3: sa < sb

Output: (w, hw, l, hl) where {w, l} = {a, b} with p ≤ sw ≤ sl, hw = lcp(w, s) and
hl = lcp(sw, sl)
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3.1.2. Binary LCP-Merge and Binary LCP-Mergesort

Based on LCP-Compare, LCP-Merge is given in Algorithm 2. The algorithm takes two
sorted sequences of strings S1 and S2 and their LCP arrays H1 and H2 to calculate the
combined sorted sequence S0 with its LCP array H0.

Algorithm 2: Binary LCP-Merge
Input: S1 and S2: two sorted sequences of strings, H1 and H2: the corresponding

LCP arrays; assume S1[|S1|] = S2[|S2|] =∞
1 i0 := 1, i1 := 1, i2 := 1
2 h1 := 0, h2 := 0 // Invariant: hk = lcp(Sk[ik], S0[i0 − 1]), k ∈ {1, 2}
3 while i1 + i2 < |S1|+ |S2| do // Loop over all input elements
4 (w,⊥, l, h′) := LCP-Compare(1, S1[i1], h1, 2, S2[i2], h2)
5 (S0[i0], H0[i0]) := (Sw[iw], hw)
6 iw++, i0++
7 (hw, hl) := (Hw[iw], h′) // re-establish invariant

Output: S0: sorted sequence containing S1
⋃
S2; H0: the corresponding LCP array

Like a usual merging algorithm, the loop in line 3 of Algorithm 2 iterates as long as
there are any elements in S1 or S2 left. During each iteration, the two current strings
of the sequences are compared (line 4), the lexicographically smaller one is written to
the output sequence (line 5) and the indexes of the output sequence and the sequence
with the smaller element are increased (line 6).
In contrast to these common steps, LCP-Merge uses LCP-Compare instead of a usual
string comparison and stores the LCP value of the winner in the output LCP array H0.
This is important for the later LCP-Mergesort implementation, since further LCP-Merge
steps also require valid LCP arrays of their input sequences. The LCP value of the loser,
which is calculated by LCP-Compare, is stored in a local variable and used for the next
iteration.
The loop invariant, given in line 2, ensures that LCP-Compare can be applied. However,
because it can only be applied after the first iteration, LCP-Compare’s preconditions
must be checked for the first iteration. This means, the passed LCP values h1 and h2
need to refer to a common lexicographically smaller string p. As we initialize h1 and h2
with 0 in line 2, setting p = ε fulfills these requirements.
During any iteration, the winner string is written to the output sequence with its
corresponding LCP value being assigned to the equivalent position of the LCP array

Algorithm 3: Binary LCP-Mergesort
Input: S sequence of sorted strings; assume S[|S|] =∞

1 if |S| ≤ 1 then // Base case
2 return (S[1], 0)
3 else
4 l1/2 := |S|/2
5 S1 = {S[1], S[2], ..., S[l1/2]} , S2 := {S[l1/2 + 1], S[l1/2 + 2], ..., S[|S|]}
6 (S ′1, H ′1) := LCP-Mergesort(S1), (S ′2, H ′2) := LCP-Mergesort(S2)
7 return LCP-Merge(S ′1, H ′1, S ′2, H ′2)

Output: S0: sorted sequence containing S1
⋃
S2; H0: the corresponding LCP array
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3 Parallel Multiway LCP-Mergesort

in line 5. In order to restore the invariant, the local LCP values are updated in line 7.
Whereas the winner’s new local LCP value is loaded from the winner’s input LCP array,
the loser’s one is taken from the result of LCP-Compare. Therefore the invariant holds
true for the winner, due to the definition of LCP arrays and for the loser, due to the
postcondition of LCP-Compare.
With the given binary LCP-Merge algorithm, binary LCP-Mergesort can be imple-
mented as shown in Algorithm 3.

3.1.3. Computational Complexity of Binary LCP-Mergesort

Although LCP-Mergesort was introduced first by Ng and Kakehi [NK08], they did not
provide a worst case analysis. However, their average case analysis shows the compu-
tational complexity of LCP-Mergesort to remain O(n log n) on average, whereas the
complexity of standard recursive string Mergesort tends to be greater than O(n log n).
In this section the worst case computational complexity of LCP-Mergesort will be anal-
ysed and shown to be in O(n log n+ L)
Clearly the number of string comparisons of LCP-Mergesort (i.e. calls of LCP-Compare)
is equal to the number of comparisons of Mergesort with atomic keys and therefore in
O(n log n). However, in difference to Mergesort with atomic keys, LCP-Compare needs to
compare strings, which in general requires more than a single comparison to determine
the sort order. In the following the number of comparisons required in each case of
LCP-Compare shall be counted:
Whenever LCP-Compare is called, there need to be integer comparisons of two LCPs to
determine the case to select. The three cases can be determined with a maximum of two
integer comparisons, resulting in an asymptotically constant cost for this step. Following
this, cases two and three do not require any more calculations and can immediately
return the result.
However, in case one, the character comparing loop (line 3 of Algorithm 2) is executed
starting with the character at position h′+ 1. If both characters are found to be equal,
h′ is increased by one and as it is later set to be the new LCP of the loser (line 7) the
overall LCP value is increased by one, respectively. Because of LCP values never getting
dropped or decremented, this case may only occur L times in total, with L being the
sum of all LCPs. If the characters are not equal, the loop is terminated and the result
can be returned. Like before, the three comparisons in lines 3, 5 and 6 are counted as
one ternary comparison. Since this case terminates the loop, it occurs exactly as often
as case 1 is entered. However, this is limited by the times LCP-Compare is called, which
is in O(n log n). But as this is only an upper bound, for most string sets, cases two and
three (see Section 3.1.1) reduce the number of times case one is entered.
In conclusion, LCP-Mergesort’s computational complexity is shown to have the follow-
ing upper bound, where ci is the number of integer and cc the number of character
comparisons:

O((n log n)ci + (L+ n log n)cc))
= O(n log n)ci +O((n log n+ L))cc

= O(n log n+ L) comparisons.

In their average case analysis, Ng and Kakehi [NK08] show, the total number of char-
acter comparisons to be about n(µa − 1) + Pωn log2 n where µ is the average length of
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the distinguishing prefixes and Pω the probability of entering case one in LCP-Compare
(Algorithm 1). Assuming Pω = 1 and µa = D

n
their result matches the worst-case up to

the minor difference between D and L.

3.2. K-Way LCP-Merge

In order to improve cache efficiency and as preliminary work for parallel multiway LCP-
Mergesort and NUMA optimized pS5, a K-way LCP-Merge was developed. A common
and well-known multiway merging method is to use a binary comparison to construct a
tournament tree, which can be represented as a binary tree structure [Knu98]. Although
this allows efficient merging of multiple streams of sorted inputs, no implementation of
a LCP-aware tournament tree was found in literature.

3.2.1. Simple Tournament Tree

Multiway merging is commonly seen as selecting the winner of a tournament of K
players. This tournament is organized in a binary tree structure with the nodes repre-
senting a match between two players. Although there also is the possibility to represent
a tournament tree as winner tree, for our implementations, a loser tree is more intuitive.
Therefore, the “loser” of a match is stored in the node representing the match, whereas
the “winner” ascends to the parent node and faces the next game. With this method
repeatedly applied, an overall winner is found and usually placed on top of the tree in
an additional node. We do not consider the players as parts of the actual tournament
tree, since they are only used here to ease comprehensibility and not needed in actual
code. Therefore the tournament tree has exactly K nodes and the nodes reference every
player exactly once.
Figure 5a shows the structure of a simple tournament tree withK = 4. As visualized, in
a node v of the tournament tree, the index of the input stream n[v] of the corresponding
match’s loser, rather than the actual string, or a reference of it, is stored. In the
exemplary configuration, shown in Figure 5b, the strings aab, aac, bca and aaa compete
to become the overall winner. The winner’s path P from its player’s node to the top is
shown in red colours, because it will be of importance for selecting the next winner.
However, before the first winner can be selected, an initial round needs to be played
with all players starting from the bottom of the tree. Since the winners, in this case the
lexicographically smaller strings, of the first level ascend to the level above, the next
matches are played. After the topmost level is reached, the first overall winner is found
and therefore is the smallest string. During this initial round all matches, represented
by the nodes of the tree, need to be played exactly once. As the tree contains exactly K

Winner (n[1])

(n[2])

(n[3]) (n[4])
Losers

Players (s[1]) (s[2]) (s[3]) (s[4])

(a) Structural view

Winner (4)

(1)

(2) (3)
Losers

Players (aab) (aac) (bca) (aaa)

(b) Example with red winner Path P

Figure 5: Structure of simple tournament tree with K = 4.
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nodes,K comparisons need to be executed. The initialization phase is further illustrated
with an example of a LCP-aware tournament tree in Figures 8 to 11.
After the initial round is finished, only log2 K matches need to be played to determine
the next winner and therefore the next string to be written to the output. This can
be achieved by first replacing the current winner player with the next string on its
corresponding input sequence. In order to find the winner of the new set of players,
all games along the red path P in Figure 5b of the former winner, must be replayed.
Thus the new player needs to play the first match starting at the bottom of the tree
with the former loser of that match. Again, whoever loses the match stays at that node
representing the match, whereas the winner ascends to the next level. Since the binary
tree has dlog2 Ke levels, the new overall winner is found with dlog2 Ke comparisons.
The steps for replaying the tournament after removing the current winner, are also
further illustrated in the example of a LCP-aware tournament tree in Figures 11 to 13.
Repeatedly applying this process until all input streams are emptied, realises the K-way
merge. Assuming sentinels for empty inputs, special cases can be avoided. Further-
more, K can be assumed to be a power of two, since missing sequences can easily be
represented by empty streams. Hence, the tournament tree can be assumed as perfect
binary tree. Due to using one-base arrays, traversing the tree upwards, that means,
calculating the parent p of a node v, can effectively be done by calculating p = dv2e.
This leads to a very efficient implementation to find the path from a player’s leaf to the
root of the tree.

3.2.2. LCP-Aware Tournament Tree

In this section, focus is put on extending the simple tournament tree, described in the
section before, to a LCP-aware tournament tree. First of all, to reduce the number of
character comparisons done during the matches, we use LCP-Compare (see Section 3.1.1)
to exploit input sequences’ LCP arrays. Because we want to prevent character compar-
isons we already know to be equal, we also store a LCP value h[v] in the node alongside
the index to the losers input sequence. The value stored in h[v] is the LCP of the
participants of the match of node v.
Figure 6 visualizes the structure of the new LCP-aware tournament tree. Additionally
to winner, loser and player nodes already shown in Figure 5 the input and output
sequences have been added as well. These will be useful in the example illustrated in
Section 3.2.3.
As pictured in Figure 6, the nodes of the LCP-aware tournament tree now contain the

Output (H0[1], S0[1])
(h[1], n[1] = w)Winner

(h[2], n[2])
(h[3], n[3]) (h[4], n[4])

Losers

Players (h′1, s1) (h′2, s2) (h′3, s3) (h′4, s4)
Inputs (H1[1], S1[1]) (H2[1], S2[1]) (H3[1], S3[1]) (H4[1], S4[1])

(H1[2], S1[2]) (H2[2], S2[2]) (H3[2], S3[2]) (H4[2], S4[2])

Figure 6: Structure of LCP tournament tree with in and output sequences, K = 4.
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LCP value h[v] alongside n[v], the index to the input sequence of the corresponding
match’s loser. The players of the tournament are the first elements of the remaining
input sequences. Since we now describe the process, which will be summarized in
Algorithm 4, and to emphasize their position as participants of the tournament, they
are referred to as players and kept in an additional array. Just like with the simple
tournament tree of Figure 5, only the winner and loser nodes are actually part of the
tree. Therefore the LCP-aware tournament tree has exactly K nodes.
As well as the standard tournament tree, the LCP-aware tournament tree also needs to
be initialized first. Like mentioned before, LCP-Compare is used to replace the standard
compare operation. However, LCP-Compare does not just need two strings as parame-
ters, but also two LCPs to a common lexicographically smaller string. For the process
of tree initialization, these LCPs are always 0 and the common base string is ε. There-
fore the preconditions of LCP-Compare are fulfilled and it can be applied to compare
the given strings like a normal string comparison procedure.
In order to extract the second winner, we need to make sure, the preconditions of
LCP-Compare are fulfilled after the first initial round has been completed. Let w = n[1]
be the index of the input sequence of the current overall winner, which is to be removed.
Exactly as with the simple tournament tree, it is clear, that w won all matches along
the path P from its leaf to the top. Therefore all LCP values h[v], stored in the nodes
along this path, are given by h[v] = lcp(sn[v], sw) and it is true that sw ≤ sn[v], ∀v ∈ P .
Let s′w be the successor of the input sequence with index w. Then the definition of LCP
arrays specifies the corresponding LCP of the input sequence to be h′w = lcp(sw, s′w)
and sw ≤ s′w. Combining these observations one can determine that all strings that
might get compared by LCP-Compare, i.e. that are along path P , have the common
predecessor sw and all the used LCP values refer to sw. Therefore the correctness of
the preconditions of LCP-Compare is ensured.
Likewise it needs to be shown that after n winners have been removed, the next one
can also be removed and the matches had been replayed as described. However,
the exact same argument can be applied again and so merging K sequences with
K-Way-LCP-Merge works as desired. Pseudo code of K-Way-LCP-Merge can be seen
in Algorithm 4.
To refine the calculations done in Algorithm 4, we will first focus on the implementation
of the initialization phase realized by the loop in line 2. The functionality of the loop
is based on viewing the tournament tree as a perfect binary odd-even-tree like shown
in Figure 7, where the colours visualize the parity of the indexes written in the nodes.
During the initialization phase, the loop iterates over all players, starting from index
v = 1 and lets them play as many matches as there are currently available. Therefore
in the first iteration of the loop the string of player k = 1 is to be positioned in the
tree. Due to line 4, this results in v = K + k being odd. Therefore the inner loop is
not called and the index of the string is directly written to the odd node with index
v = K+k

2 = 5 in Figure 7.
In the second iteration with k = 2, the inner loop in line 5 is played once as v = 10 is
even before the first iteration and odd the next time. However, the comparison is done
with the odd node v = 10

2 = 5. After the inner loop finished, the index of the previous
game’s winner is written to the next parent node.
To sum it up, comparisons need to be done at the parents of all even nodes (this time
including the player nodes). The remaining winner of the last comparison then has to
be written to the next parent node, which is done in line 9. To ensure the correctness
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Algorithm 4: K-Way-LCP-Merge
Input: Sk sorted sequences of strings, Hk the corresponding LCP arrays; assume

sentinels Sk[|Sk|+ 1] =∞, ∀k = 1, ..., K and K being a power of two.
1 ik := 1, hk := 0, ∀k := 1, ..., K
2 while k = 1, ..., K do // Play initial games
3 s[k] := Sk[1]
4 x := k, v := K + k
5 while v is even & v > 2 do
6 v := v

2
7 (x,⊥, n[v], h[v]) := LCP-Compare(x, s[x], 0, n[v], s[n[v]], 0)

8 v := dv2e
9 (n[v], h[v]) := (x, 0)

10 j := 1
11 while j ≤ ∑K

k=1 |Sk| do // Loop over all elements in inputs
12 w := n[1] // Index of the winner of last round
13 (S0[j], H0[j]) := (s[w], h[1]), j++ // Write winner to output
14 iw++, s[w] := Sx[ix]
15 v := K + w, (x, h′) := (w,Hw[iw]) // v index of contested, x index of contender
16 while v > 2 do // Traverse tree upwards and play the games
17 v := dv2e // Calculate index of contested
18 (x, h′, n[v], h[v]) := LCP-Compare(x, s[x], h, n[v], s[n[v]], h[v])
19 (n[1], h[1]) := (x, h′) // Now the tournament tree is complete again

Output: S0: sorted sequence containing S1
⋃
S2; H0: the corresponding LCP array

Winner 1

2

3 4Losers

5 6 7 8

Players 1 2 3 4 5 6 7 8

winner, odd

odd

even

Figure 7: Binary Odd Even Tree with K = 8.

of this procedure, all nodes used for comparisons need to be already initialized and the
last parent node pk of the iteration for player k needs to be empty before the run.
From Figure 7 one can easily see that even nodes are always the right child of their
parents, whereas odd nodes are always the left child, except for node 2 as node 1 is a
special case. Let ve be the even, vo the odd child of the parent node vp. The parent’s
left sub-tree, with vo on its top, must already be fully initialized since the initialization
starts from the left side and all leafs in that sub-tree have a lower player index. Because
the left sub-tree is already initialized, the match of vo was already played and so its
winner’s index has been stored in vp, which therefore is initialized and can be used for
comparison with the winner of ve. When looking at the saving of the last winner in
line 9, we need to check that this node is not initialized yet, as otherwise it would be
overwritten. Here, a similar argument can be used. Since the last node being compared
is an odd node vo (except for node 2), its complete sub-tree is initialized. However, no
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players positioned right of this sub-tree have been worked yet and so the right child of
the parent of vo can not be set yet either.

3.2.3. K-Way LCP Tournament Tree Example

The following example shall be used for further illustration of how a K-Way LCP
tournament tree, implicitly used for K-Way-LCP-Merge (Algorithm 4), is constructed
during the initialization phase and rebuild after the current minimum has been removed.
The example uses a tournament tree with K = 4 input sequences and its structure is
oriented on the structural view of the tree, shown in Figure 6. The four sequences
contain the following strings with corresponding LCPs: Sequence 1: aab and aba with
an LCP of 1; Sequence 2: aac and aad with an LCP of 2; Sequence 3: bca and ca with
an LCP of 0; Sequence 4: aaa and acb with an LCP of 1.
Figure 8 illustrates the state before the initialization of the tree started. The sorted
input sequences with the appropriate LCPs are shown at the bottom, players and the
tree’s nodes are not initialized yet.

Output ()
(⊥,⊥)Winner
(⊥,⊥)

(⊥,⊥) (⊥,⊥)
Losers

Players (⊥,⊥) (⊥,⊥) (⊥,⊥) (⊥,⊥)
Inputs (⊥, aab) (⊥, aac) (⊥, bca) (⊥, aaa)

(1, aba) (2, aad) (0, ca) (1, acb)

Figure 8: LCP-aware tournament tree example: part 1

Figure 9 shows the state after the first iteration of the initialization loop in line 2 the
first player and its parent tree node are initialized. The LCP in the tree node has been
set to 0, because it is the LCP to the string ε, which is a lexicographically smaller
common string to all players.

Output ()
(⊥,⊥)Winner
(⊥,⊥)

(0, aab) (⊥,⊥)
Losers

Players (⊥, aab) (⊥,⊥) (⊥,⊥) (⊥,⊥)
Inputs (⊥, aab) (⊥, aac) (⊥, bca) (⊥, aaa)

(1, aba) (2, aad) (0, ca) (1, acb)

Figure 9: LCP-aware tournament tree example: part 2
.

In Figure 10 the tree’s state after the second run of the initialization loop in line 2 is
visualized. The string aab won the match with aac and moved upwards to the next
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free position, whereas aac stays at the loser position with its current LCP h[3] being
set to 2.

Output ()
(⊥,⊥)Winner
(0, aab)

(2, aac) (⊥,⊥)
Losers

Players (⊥, aab) (⊥, aac) (⊥,⊥) (⊥,⊥)
Inputs (⊥, aab) (⊥, aac) (⊥, bca) (⊥, aaa)

(1, aba) (2, aad) (0, ca) (1, acb)

Figure 10: LCP-aware tournament tree example: part 3

The tournament tree’s state after the third initialization step is shown in Figure 11.
The first string of the third input sequence moved up to its parent node. However, since
the stream’s index is uneven, the string can directly be placed in the match’s node and
does not need to be compared, as no other string can be there, yet.

Output ()
(⊥,⊥)Winner
(0, aab)

(2, aac) (0, bca)
Losers

Players (⊥, aab) (⊥, aac) (⊥, bca) (⊥,⊥)
Inputs (⊥, aab) (⊥, aac) (⊥, bca) (⊥, aaa)

(1, aba) (2, aad) (0, ca) (1, acb)

Figure 11: LCP-aware tournament tree example: part 4

Figure 12 shows the fully initialized tree after the fourth initialization step, which is
the tree’s state, just before the loop in line 11 of Algorithm 4 is entered. During this
last step, the string aaa is first compared with bca. Because aaa is lexicographically
smaller, it ascends the tree to attend the next match, whereas bca stays at the match’s
node with the common LCP lcp(aaa, bca) = h[4] = 0. As aaa also wins the match with
aab, it is written to the root of the tree and aab stays at the loser position with the
new LCP lcp(aaa, aab) = h[2] = 2. The red line illustrates the winner’s path to the
top of the tree.
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Output ()
(0, aaa)Winner
(2, aab)

(2, aac) (0, bca)
Losers

Players (⊥, aab) (⊥, aac) (⊥, bca) (⊥, aaa)
Inputs (⊥, aab) (⊥, aac) (⊥, bca) (⊥, aaa)

(1, aba) (2, aad) (0, ca) (1, acb)

Figure 12: LCP-aware tournament tree example: part 5 with winner path P (red)

The intermediate state after the first winner has been removed and written to the
output stream, is displayed in Figure 13. Since the winner’s input stream has moved
forward, the string acb replaces the former winner aaa. The LCP of acb is taken from
the LCP array of the input stream as it directly refers to aaa. With this steps done up
to line 11 of Algorithm 4, the new set of players is complete and ready to compete with
each other.

Output (0, aaa)
(⊥,⊥)Winner
(2, aab)

(2, aac) (0, bca)
Losers

Players (⊥, aab) (⊥, aac) (⊥, bca) (1, acb)
Inputs (⊥, aab) (⊥, aac) (⊥, bca) (1, acb)

(1, aba) (2, aad) (0, ca) (0,∞)

Figure 13: LCP-aware tournament tree example: part 6

After the inner loop in line 16 of Algorithm 4 finishes, the situation shown in Figure 14 is
achieved. During the iterations, the following matches were played: acb won against bca
and aab won the match with acb. Both matches where determined by the LCP values.
Therefore not a single character comparison was needed and the effect of exploiting the
LCPs in LCP-Compare becomes visible.

Output (0, aaa)
(2, aab)Winner
(1, acb)

(2, aac) (0, bca)
Losers

Players (⊥, aab) (⊥, aac) (⊥, bca) (1, acb)
Inputs (⊥, aab) (⊥, aac) (⊥, bca) (1, acb)

(1, aba) (2, aad) (0, ca) (0,∞)

Figure 14: LCP-aware tournament tree example: part 7
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3.3. Parallelization of K-Way LCP-Merge
This section focuses on parallelization of K-Way LCP-Merge, merging K sorted input
sequences of strings with their corresponding LCP arrays. When trying to solve prob-
lems in parallel, a common approach is to split-up the work into sub-tasks, process the
sub-tasks in parallel and in the end, put the pieces back together. Applying this to
sorting, one can let any sequential sorting algorithm work on parts of the input in par-
allel. However, merging the resulting sorted sequences can not be parallelized without
significant overhead needed to split up the work into work disjoint subtasks [Col88]. In-
stead of being able to simply cut the input sequences into pieces, the merging problem
needs to be divided into disjoint parts, as commonly done in practical parallel merge
sort implementations [AS87], [SSP07].
One well-known way to accomplish a partitioning for atomic merge sort, is to sample
the sorted input sequences to get a set of splitters. After they have been sorted, they
can each be searched (e.g. via binary search) in all the input sequences. The positions
found for a splitter define splitting points, separating disjoint parts of the merging
problem. This approach is directly adapted to our LCP-aware multiway string merging
algorithm in Section 3.3.1. In the following we refer to this splitting method, creating
multiple work disjoint parts in a single run, as classical splitting.
As a simplification of classical splitting, binary splitting, creating only two jobs in a
run, is introduced. Here we do not sample and split for several splitters, but for just a
single splitter. This approach is explained in more detail in Section 3.3.2.
In Section 3.3.3 a new splitting algorithm is defined. By exploiting LCP arrays of
the input sequences to find splitting points, it is possible to almost fully avoid random
memory accesses to characters of strings normally causing a significant amount of cache
faults.
Another way to split the input sequences of an atomic merge into exactly p equal-sized
range-disjoint parts was proposed by Varman et al. [PJV91]. Although their algorithm
allows to create equally-sized parts with atomic keys, this approach is not sufficient for
string merging. Static load balancing is not an efficient solution, due to the varying cost
of an equal number of string comparisons, depending on the length of distinguishing
prefixes. Therefore, oversampling (creating more tasks than processing units available)
and dynamic load balancing is required. Since the benefit of exact splitting only appears
with atomic keys, the algorithm has not been considered any further in this work.
Instead, the same lightweight dynamic load balancing framework as for pS5 [BS13] is
used. Every thread currently executing a merge job, regularly checks if any threads are
idle as no jobs are left in the queue. In order to reduce balancing overhead the threads
execute this check only about every 4000 outputted strings. If an idle processing unit is
detected by a thread, its K-way merge job is further split up into new jobs by applying
the heuristic above.

3.3.1. Classical Splitting with Binary Search for Splitters

As described in the previous section, the merge problem can not easily be divided
into disjoint sub-tasks. One widely used approach to create range-disjoint parts is to
separate the elements of the input sequences by sampled splitters. After sorting these
splitters, a binary search can be used to find the splitting positions.
The basic principle behind this algorithm is that an arbitrary string can be used to
split up a sequence of strings into two range-disjoint pieces. To do so with given splitter
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Sequence 1 aa ab bad c cad cdd da

Sequence 2 bad bba cab cc cda daa db

Sequence 3 aaa ab aba ac add dba dc

< ac < bba < cdd

Figure 15: Splitting of three input sequences with splitters ac, bba and cdd.

string s, we define the splitting position of sequence k to be

pk = arg min
1≤n≤|Sk|

{s ≤ Sk[n]} − 1,∀1 ≤ k ≤ K

Then, the complete merge operation can be split up into two disjoint parts, the first
containing all sequences S ′k = (Sk[0], ..., Sk[pk]), the second containing the sequences
S ′′k = (Sk[pk + 1], ..., Sk[|Sk|]). By definition, all strings of sequences S ′k are lexicograph-
ically smaller than the splitter string s. Therefore a job can be created to merge input
sequences S ′k and write the output directly to the positions 1 ≤ n ≤ ∑K

k=1 |S ′k| of the
output sequence. Another independent job can be created to merge the sequences S ′′k
and write the output to positions ∑K

k=1 |S ′′k |+ 1 ≤ n ≤ ∑K
k=1 |Sk|. As these job’s input

and output data is range-disjoint, it can easily be parallelized.
As modern multi-core systems have many cores, we need to create more than just two
jobs. This can be achieved by sampling multiple splitters from the input sequences
and sorting them. Binary search can then be used to find all splitting positions and
so multiple range disjoint jobs can be created in a single run. Figure 15 illustrates the
splitting of three input sequences by the three splitters ac, bba and cdd. As the figure
shows, the new merge jobs may also contain empty input sequences. More on practical
optimizations resulting from this can be found in Section 4.2.
Algorithm 5 shows an implementation of the classical splitting algorithm taking K
sorted input sequences to createM independent merge jobs. The loop in line 2 samples
splitters from every input sequence which are sorted in line 6. Because the input
sequences are already sorted, the splitters can be sampled equidistantly. As a result of
that, the splitters of the different streams only need to be merged, instead of completely
sorted.
The foreach loop in line 8 creates the actual merge jobs. To do so, the inner loop in
line 10 iterates over all input sequences and searches the splitting position p. After-
wards, the found splitting position is used to split the input sequence into two disjoint
sequences. Whereas the first sequence is used to create a new merge job, the second
is to be split up further in the next iteration. In line 13, the separated sequences S ′k
are combined to one merge job that is completely independent from the others. After
all splitters have been found, the remaining parts of the input sequences build the last
merge job in line 14.
In order to discuss the runtime of Algorithm 5, the three main steps of the algorithm
need to be considered. Since the splitter sampling done in lines 2 to 5 generates exactly
M − 1 splitters, each sampled in O(1), this step can be accomplished in O(M) time.
Merging the K sorted sequences of splitters in line 6 can be done with simple multiway
string merging in O(∆D) time, with ∆D being the sum of the distinguishing prefixes of
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Algorithm 5: Classical Splitting
Input: Sk sorted sequences of strings with 1 ≤ k ≤ K and N the number of desired

merge jobs; assume M = x ·K + 1
1 m′ := bM/Kc // Calculate number of splitters per input sequence
2 for 1 ≤ k ≤ K do // Loop over all input sequences
3 dist := d|Sk|/(m′ + 1)e
4 for 1 ≤ i ≤ m′ do // Sample m′ splitters from sequence k
5 splittersk[m] := Sk[i ∗ dist] // Build array of equidistant splitters

6 splitters := merge(splitters1, ..., splittersK) // Merge sorted arrays of splitters
7 m := 1
8 for 1 ≤ i < M do // For each splitter create a disjoint job
9 s := splitters[i]

10 for 1 ≤ k ≤ K do // Search splitter s in all input sequences
11 p := Binary-Search(Sk, s)− 1 // Binary search position, so that Sk[p] < s
12 S ′k := (Sk[1], ..., Sk[p]), Sk := (Sk[p+ 1], ..., Sk[|Sk|]) // Create new sequences
13 Jm = {S ′1, ..., S ′K}, m++ // Create merge job containing the new sequences
14 JM = {S1, ..., SK} // Create merge job with remaining sequences

Output: M merge jobs Jn = {Sm,k} with 1 ≤ m ≤M and 1 ≤ k ≤ K so that
Sk = ∪Mm=1Sm,k and ∅ = ∩Mm=1Sm,k, ∀1 ≤ k ≤ K

all splitters. In the last step in lines 8 to 14, binary search is used to find the splitters in
all input sequences. AsM−1 splitters need to be found in K input sequences of length
|Sk|, the runtime is limited by O(K ·M · log |Smax|), where Smax = arg max

Sk

|Sk| is the

longest input sequence. Combining these observations, the runtime of Algorithm 5 is
shown to be in O(∆D +K ·M · log |Smax|).

3.3.2. Binary Splitting

Binary splitting follows the same principle as classical splitting by using a splitter string
to separate the sequences into work disjoint parts. In contrast to classical splitting, only
one splitter string is sampled and therefore only two jobs are created in one splitting
run.
However, to utilize all processing units, we need to create more than just two jobs. To
achieve this, every merge job checks, if there are any idle threads and splits itself up
further whenever more jobs are needed. For fast job creation on start-up, this check is
executed directly when a merge job’s execution is started. Moreover, for fast reaction
during later execution, the check is repeated regularly.
In comparison to classical splitting, binary splitting introduces more overhead because
more splitting runs need to be executed. However, a run of binary splitting finishes
much faster than a run of classical splitting, because much less work is required. This
enables binary splitting to respond faster to idling threads, reducing wasted processing
time. Moreover, since the merge jobs of binary splitting immediately start splitting
up further, the splitting process is inherently parallelized, whereas classical splitting is
mostly sequential.
Another aspect is that binary splitting can directly react to the need for new jobs,
whereas classical splitting produces more jobs than initially required to reduce the
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number of splitting runs. This results in binary splitting producing less jobs than
classical splitting, partly compensating the higher splitting costs per created job.

3.3.3. Splitting by LCP Level

Although classical splitting is shown to have good theoretical runtime and low constant
runtime factors, in practice, it might hit performance penalties, as it uses mostly random
memory accesses. Almost all memory accesses are made by binary search for splitters
where strings of a very wide range of memory are accessed. Furthermore, access of
string characters also incurs costly cache faults resulting in unpredictable access times,
especially on NUMA architectures. Additionally, classical splitting currently does not
exploit the LCP arrays of the input sequences. Therefore we developed a splitting
algorithm trading random memory accesses against linear scanning memory accesses
of the LCP array to reduce the number of character comparisons to a minimum. The
basic principle of LCP splitting is to find independent areas by merging the top of the
LCP interval trees [AKO04] of the K input sequences.
For LCP splitting, we consider all occurrences of a global minimum l of the LCP
array. For sequence Sk we define the M positions pi, i ∈ {1, ...,M} to be the positions
having the minimum LCP l. When additionally defining p0 = 1 and pM+1 = |S| + 1,
these positions divide the input sequence into disjoint areas ak,i = [pi, pi+1) with i ∈
{0, 1, ...,M}. Due to the definition of LCP arrays, all strings in the input sequence must
have a common prefix of length l and within the areas ak,i, there is a common prefix
of at least length l + 1 (as otherwise the area would have been splitted). Therefore
splitting the input sequence at positions with global minimum LCP l generates disjoint
areas containing only strings with a distinct common prefix with a length of at least
l + 1. The only remaining task is to match these areas of all K input sequences to
create merge jobs. Following the previous observations, all strings in such a region,
have an equal character at position l + 1. Furthermore, between any strings of two
different regions, those characters are the distinguishing characters. Therefore only the
characters at position l + 1 need to be compared to find matching regions between
different input sequences.
Figure 16 shows a sorted sequence of strings with its corresponding LCP array visualized
as red lines on appropriate height. In the example, the minimum LCP is l = 2 and can
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Figure 16: String sequence with LCP level (red line).
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be found at the four positions 4, 6, 11 and 17, dividing the sequence into the five disjoint
areas [0, 4), [4, 6), [6, 11), [11, 17) and [17, 20]. As described before, the minimum LCP
in these areas is at least of height l + 1 = 3 and all strings in an area have a common
character at index l + 1 = 3.
Depending on the input data and alphabet, splitting only at positions of global LCP
minimum, might not yield enough independent merge jobs. However, the same approach
can be applied to sub-areas of already splitted regions, since they can be considered
to be independent sequences of their own. Due to the fact, that the independent sub-
regions created in the first run, have a minimum LCP of at least l + 1, the minimum
LCP in these areas will also be at least l + 1.
Combining these ideas, a splitting heuristic is developed, which creates merge jobs by
scanning the LCP arrays of the K input sequences sequentially once. The algorithm
starts with reading w characters from the first string of the K input sequences and
selects the sequences with the lowest character block c̄. The LCP array of the selected
inputs is then scanned skipping all entries greater than w. Entries equal to w need to
be checked for equal character blocks. When an entry smaller than w or an unequal
character block is found, the scanning is stopped. This forward scan skips all strings
with prefix c̄ and an independent merge job can be started. The algorithm starts again
with reading the w characters of the first strings of all remaining sequences.
However, simply applying the above process can result in very different amounts of
created merge jobs. When used on input sets with large average common prefixes, only a
few jobs may get created, whereas to many will be produced when used on sets with low
average LCP, e.g. on random data. To be able to adapt to input characteristics, we use
a heuristic adjusting w, the number of inspected characters. Before the heuristic starts,
we calculate an estimated number of jobs to be produced by the splitting algorithm,
depending on input length and number of available processing units. The heuristic
starts with w = 8 (loading a complete 64-bit register of characters) and keeps track of
the number of produced jobs in correlation to the number of already used strings of the
input sequences, to adjust w accordingly. Whenever too many jobs are created, w gets
decreased and vice versa. This prevents a flood of too small merge jobs but ensures
creation of enough independent work packages.
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4. Implementation Details
We implemented LCP-Mergesort and K-way LCP-Merge in C++, parallelized K-way
LCP-merge and used it to implement a fully parallel LCP-Mergesort, as well as to im-
prove performance of pS5 on NUMA architectures. Our implementations are available
from http://tbingmann.de/2013/parallel-string-sorting. Detailed experimen-
tal results and discussion can be found in Section 5. In this section focus is set on
implementation and practical refinements to improve performance.

4.1. Tournament Tree and K-Way LCP-Merge

The LCP-aware K-way tournament tree described in Section 3.2 is a basic part of the
further work. It is used to build an independently working parallel top level K-way
LCP-Merge (Section 4.2), a fully parallel LCP-Mergesort (Section 4.3) and to optimize
pS5 for NUMA systems (Section 4.4). Therefore improving this basic component has
major impact on all of these algorithms. Additionally, specific challenges of the different
applications need to be considered.
As modern many-core architectures have a strong memory hierarchy with dramatically
differing memory access times between each level, cache-efficiency is a key aspect to be
considered. This becomes even more important on NUMA systems, where there is an
additional level in this hierarchy as NUMA nodes have fast access to local memory, but
only slow access to the remote NUMA node’s memories.

4.1.1. Ternary Comparison

The LCP-Compare operation introduced in Section 3.1.1 requires to select one of three
cases by comparing two integer values. In order to do so, the algorithm needs to find
out, which of the LCPs is smaller or if they are equal. A simple way to achieve this, is to
execute two comparisons as shown in Algorithm 1. The first comparison checks if both
LCPs are equal. Depending on the result, case 1 is executed or a second comparison
finds the smaller LCP of both candidates, hence deciding between case 2 and case 3.
However, a more advanced solution uses only one comparison and detects the cases
depending on CPU flags set during the internal compare operation. When executing a
CMP assembly operation with parameters a and b, the following CPU flags are set: the
ZF flag determines if the compared values are equal and the SF flag gives the ordering
of the two parameters [Int14]. Evidently, these two flags contain all the information
required to decide the three cases. Moreover, the assembly instruction sets contain
special jump commands directly using those flags.

4.1.2. Memory Layout of LCP Tournament Tree

In Section 3.2 the LCP-aware tournament tree is described to store the index to the
player that lost the match of node i inside the node as n[i]. The LCP value h[i] of the
player is stored in the node as shown in Figure 6 on page 24, resulting in the memory
layout visualized in Figure 17a. The node’s index i is used to index n[i] = j, pointing
to the loser of the match, and the corresponding LCP h[i], whereas index j indexes the
pointers in s. Both, n and h are arrays of integers, s is an array of pointers to the start
of the string sequence. In Figure 17, another array of pointers to the start of the string
sequence’s LCP array is omitted for better comprehensibility.
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i 1 2 3 4
n[i] 4 1 2 3
h[i] 0 2 2 0

j 1 2 3 4
s[j] 0x... 0x... 0x... 0x...

aabS ... aac ... bca ... aaa ...

(a) LCP information stored in nodes.

i 1 2 3 4
n[i] 4 1 2 3

j 1 2 3 4
h[j] 0 2 2 0
s[j] 0x... 0x... 0x... 0x...

aabS ... aac ... bca ... aaa ...

(b) Nodes only contain index of loser.

Figure 17: Different memory layouts of an LCP-aware tournament tree.

In contrast to that memory layout, one could also think of storing the current LCP
value outside the tree, in the player’s LCP value h′i, whose memory is already allocated.
Doing so reduces the memory footprint of the tournament tree by K∗64 bit, since 64 bit
are used for LCP values. But much more importantly, this reduces the number of swap
operations required when a player wins a match and therefore has to be exchanged with
its challenger. The design shown in Figure 17a requires to exchange both, the index
n[i] as well as the LCP value h[i], whereas only the index swap would be needed, if the
LCP value is not stored in the tree node.
Although the reduced number of swap operations can improve performance, practical
analysis showed that the write operations to the player’s possibly non-local LCP val-
ues, have great performance impact. Storing the current LCP value in the sequences,
potentially having their memory located on another memory node, introduces great
penalties, especially on NUMA systems.
As a result, the memory layout shown in Figure 17b is proposed. Here, the intermediate
LCP values of the nodes are stored in a separate local array h in the tournament tree’s
data structure. In order to not store the LCP value in the tree’s nodes, we index
the array h with the player index j instead of the node index i. Therefore, when
the player at node i changes its position in the tree, we only need to update n[i] as
the current LCP value, stored in h[n[i]] = h[j], does not need to be moved. The
minor calculation ‘overhead’ caused by the further indirection to access the LCP, has
no impact, because memory access times dominate runtime. This approach allows us
to combine the improvements achieved by reducing the number of swap operations and
by storing the LCPs locally in low cache levels, which greatly improves performance.

4.1.3. Caching Distinguishing Characters

Further improvements can be achieved by exploiting the observation that it is possible
to predict the first character to be compared by the character comparison loop of
LCP-Compare. This character is the former distinguishing character, that means, the
character at position h+ 1, where h = ha = hb is the common LCP value. By caching
the distinguishing character, we again improve cache efficiency and reduce the number
of accesses to remote memory nodes on NUMA systems. As the distinguishing character
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Algorithm 6: LCP-Compare with Character Caching
Input: (a, sa, ha, ca) and (b, sb, hb, cb), with sa, sb two strings, ha, hb corresponding

LCPs and ca, cb cached characters; assume ∃ string p with p ≤ si,
hi = lcp(p, si) and ci = si[hi + 1], ∀i ∈ {a, b}.

1 if ha = hb then // Case 1: LCPs are equal
2 h′ := ha + 1
3 c′a := ca, c′b := cb // Assign cached characters to local variables
4 while c′a 6= 0 & c′a = c′b do // Execute character comparisons
5 c′a := sa[h′], c′b := sb[h′], h′++ // Increase LCP and load next characters
6 if c′a ≤ c′b then return (a, ha, ca, b, h′, c′b) // Case 1.1: sa ≤ sb
7 else return (b, hb, cb, a, h′, c′a) // Case 1.2: sa > sb

8 else if ha < hb then return (b, hb, cb, a, ha, ca) // Case 2: sa > sb
9 else return (a, ha, ca, b, hb, cb) // Case 3: sa < sb

Output: (w, hw, cw, l, hl, cl) where {w, l} = {a, b} with p ≤ sw ≤ sl, hi = lcp(s, i) and
ci = si[hi + 1], ∀i ∈ {w, l}

is always retrieved in the last step of the character comparison loop, it can directly be
cached for the next time, the loop is called.
Algorithm 6 shows the new LCP-Compare procedure with character caching. The input
arguments have been extended to supply the already cached characters. Likewise the
output got additional parameters returning the new cached characters. In line 3 the
cached characters are assigned to local variables, as only one LCP and therefore only
one character can change during an execution of LCP-Compare. In addition, the loop
in line 4, as well as the conditional statement in line 6 have been adapted to use the
current cached characters.
In order to reuse the cached characters in further merges, the LCP tournament tree has
been extended to take string sequences annotated with an LCP array and an array of
corresponding cached characters. Furthermore the algorithm creates an array of cached
characters for the output sequence.
Character caching becomes especially valuable in top-level merges on NUMA architec-
tures. In the top-level merge most times only one character needs to be inspected to
decide, which of both strings is lexicographically smaller. In these cases, accessing the
string can completely be replaced by only accessing the cached characters.
Figure 18 shows the scheme of the extended LCP-aware tournament tree. The nodes

Output (H0[1], C0[1], S0[1])
(n[1] = w)Winner

(n[2])
(n[3]) (n[4])

Losers

(h[1], c[1], s1) (h[2], c[2], s2) (h[3], c[3], s3) (h[4], c[4], s4)

(H1[1], C1[1], S1[1]) (H2[1], C2[1], S2[1]) (H3[1], C3[1], S3[1]) (H4[1], C4[1], S4[1])
(H1[2], C1[2], S1[2]) (H2[2], C2[2], S2[2]) (H3[2], C3[2], S3[2]) (H4[2], C4[2], S4[2])

Figure 18: LCP-aware tournament tree with K = 4 plus LCP and character caching.
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have been reduced to only contain n[i], the index to the player that lost the game at
that node. In contrast, input and output sequences have been extended to additionally
contain an array Ci of cached characters. The players are extended to keep the current
cached character as well as the current LCP. Although the players LCP and cached
character are not stored in the nodes, they are part of the tournament tree’s data
structure, whereas the player’s string is still only kept in its input sequence, as it is
never changed.

4.2. Parallelization of K-Way LCP-Merge
In order to parallelize K-way LCP-Merge the merge problem will be split up into sub-
tasks by either classical, binary or the LCP splitting algorithm described in Sections
3.3.1, 3.3.2 and 3.3.3. All three algorithms can easily be exchanged with each other or
even a further one. Because the amount of work of a merge job depends on the number
of strings and the length of the distinguishing prefixes, the required processing time can
not be calculated beforehand. Therefore, dynamic load balancing is required to achieve
good utilization of all processing units.
For easier combination of parallel K-way LCP-Merge with pS5, we apply the same
lightweight load balancing framework. It consists of a job queue, supplying associated
threads with available tasks. To improve load balancing and reduce the number of
splitting runs, classical and LCP splitting create more jobs than available threads at
the start. In contrast, binary splitting creates only the needed number of jobs but is
able to react more dynamically to idling threads. For all algorithms, working threads
regularly check if another one is idling as the queue got empty. If such a situation is
detected, a thread having enough work, starts splitting itself up into smaller sub-tasks
and adds them to the queue. As trade-off between overhead of checking for idle threads
and response time to idling threads, checking is only done about every 4000 outputted
strings.
To prevent generation of too few and too small jobs resulting in a frequent need for
splitting, only large jobs should be split. One way to find the biggest job in a distributed
system, is to use an atomic variable storing the size of the largest one. All currently
processed jobs regularly check if their remaining work is larger than the one in the
counter. Only the biggest job decrements the counter when it finishes a part of its
work, to adjust its remaining work size. If now an idle thread is detected, only the
biggest job will split itself up.
However, this method requires an atomic variable, which is already expensive on multi-
core systems, not to mention on NUMA architectures. Yet, the above method can be
applied to a non-atomic variable with small adaptions. Since we do not require the
biggest job to be split, but rather a fairly large one, the heuristic result achieved with
this method works perfectly in practice.
When splitting the sequences of a merge job with either one of the splitting procedures,
arbitrary numbers of non-empty sequences will occur in sub-tasks. For example, an
initial merge job might have eight input sequences, whereas a subtask sometimes even
consists of just one non-empty sequence. Clearly one could always apply a K-way
LCP-Merge with K being the number of initial input sequences. However, merging
overhead can be reduced by creating specialized merge jobs for different numbers of
input sequences. Therefore a dedicated copy job is used whenever only one sequence
remains. As the name predicts, it only copies the data of the input sequence to the
output sequence. For two sequences, binary LCP-Mergesort is used, because it does not
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require the overhead of the tournament tree. For every further number of sequences,
a K-way LCP-Merge is used with K being the next larger power of two. To reduce
splitting overhead, only K-way LCP-Merge jobs can be split up further, since copy and
binary merge jobs tend to have smaller sizes.
We currently need parallel K-way LCP-Merge solely as top level merger to combine the
separated work done by multiple instances of another sorting algorithm. Therefore we
were able to optimize it by only outputting the sorted string sequences. The creation
of the final LCP and cached character arrays are omitted because they are not needed
after the merge. However, generating the LCP and cached character array would not
require great modifications, since the contained algorithms already supply the needed
data. Only one additional step would be needed at the end. During this step, the
LCPs and cached characters of the connection points between different jobs need to be
calculated separately. Due to time limitations, we leave this to future work.

4.3. Parallel K-Way LCP-Mergesort
With parallel K-way LCP-Merge described before, a parallel K-way LCP-Mergesort
can be implemented. The work done by K-way LCP-Mergesort is divided into two
steps as shown in Figure 19. In the first step, the unsorted input sequence is split into p
equal-sized parts, with p being the number of available hardware threads. Each thread
is then sorting one part of the input with sequential LCP-Mergesort. The second step
is to apply the parallel K-way LCP-Merge with K = p to combine the p sorted parts
to one complete sorted sequence. Note, that the LCP-Mergesort used in step one can
either be binary LCP-Mergesort or K-way LCP-Mergesort with an arbitrary K, as it
is completely independent from the parallel K-way LCP-Merge applied in step two.
This approach requires top-level K-way LCP-Merge to merge a large number of se-
quences, clearly making the optimizations to the tournament tree important. Analysis
showed that sequential K-way LCP-Mergesort performs best with K = 64 and becomes
worse with higher numbers of input streams. This effect, explicable by cache behaviour,
implies some limitations to the current approach, since it is not ideal to further increase
the number of sequences.
During the first step, equal-sized parts are created, which is in fact a static load bal-
ancing strategy. As described in Section 4.2, this does not imply equal problem sizes
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Figure 19: Scheme of Parallel K-way LCP-Mergesort.
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and therefore some threads will probably finish sooner than others. Because the second
step with parallel top-level K-way LCP-Merge can not start before all threads finished
step one, some threads will have idling time.

4.4. NUMA Optimized pS5

Parallel Super Scalar String Sample Sort (pS5) [BS13] is a fast parallel sorting algorithm
considering L2 cache sizes, word parallelism and super scalar parallelism. However, new
architectures having large amounts of RAM are now mostly non uniform memory ac-
cess (NUMA) systems. In these systems, RAM chips are separated onto different RAM
banks called NUMA nodes. A processor now only has direct access to its local node,
whereas access to remote nodes is achieved via an interconnection bus as shown in Fig-
ure 1 on page 15. Preliminary synthetic experiments showed memory access to remote
NUMA nodes being 2-8 times slower than local memory access. These differences in
latency and throughput, can be handled well by algorithms for external and distributed
memory models.
To improve pS5 on NUMA systems, a similar two-step approach is used like with par-
allel K-way LCP-Mergesort (Section 4.3). As visualized in Figure 20, the given input
sequence is split up into m equal-sized parts, where m is the number of NUMA nodes.
In step one, each part is sorted in parallel with pS5 by p

m
threads. During data loading,

it is possible to segment the data as equal-sized parts onto the different NUMA nodes.
We now pin the threads of every pS5 execution to the node, where its part of the input
sequence is located. Therefore only local memory accesses are done by pS5 preventing
remote access penalties.
The second step is to merge the m sorted sequences and can be accomplished by ap-
plying a K-way merge with K = m. Hence, the top-level merge inherently requires
memory accesses to remote NUMA nodes, those accesses should be minimized for max-
imizing performance. K-way LCP-Merge like described in Section 4.2 achieves that
by exploiting known LCPs and caching of the distinguishing character. Moreover, by
applying parallel K-way LCP-Merge we exploit parallelism.
Because K-way LCP-Merge requires not only the sorted sequences, but also the LCP
and cached character arrays, pS5 needs to be adapted. Since the LCPs and distin-
guishing characters are already retrieved internally, no significant performance penalty
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Figure 20: Scheme of NUMA optimized pS5.
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is introduced. Additionally, due to the fact that the LCPs can be stored in an already
required array, only the array for cached characters increases the memory footprint.
In comparison to K-way LCP-Mergesort the number of sequences to be combined by
the top level merge is much smaller, as only m instead of p streams need to be merged
(our systems have m ∈ {4, 8}). Resulting from this, the special cases for merging just
two sequences or copying only one sequence occur more often, which leads to faster
merging performance. Moreover, since runtime of the job splitting and the merging
done by the tournament tree, increases with K, there is an even bigger difference.

4.5. Further Improvements
Besides the optimizations presented before, some more came up during development.
However, due to time constraints and scope limitations, not all of them were fully imple-
mented. Therefore not all of the following proposals have been properly implemented
and tested yet. We leave it to future work to optimize the implementations further.

4.5.1. Improved Binary Search

Binary search is an important algorithm used by classical and binary splitting. In order
to divide a large merge job, splitter strings are searched in every input sequence, thus,
separating work disjoint parts. Since the sequences are already sorted, binary search
can be applied to find the splitting positions, as described in Section 3.3.1. Although
binary splitting requires only a logarithmic number of string comparisons, those can
still be very expensive for long strings. Moreover, the number of searches and therefore
string comparisons increases linearly with the number of sequences to be merged and
the number of jobs to be created. The combination of these aspects makes optimizing
binary search an important task.
A way to improve performance of binary string search is to reuse LCPs calculated during
the search [Ohl13]. The basic idea is that the minimum LCP of any string of an interval
to the searched one, can be calculated from the LCPs of the strings at the borders of
that area. Therefore, for a sorted sequence S, an interval [a, b] with 1 ≤ a ≤ b ≤ |S|
and the searched string p, we have lcp(S[i], p) ≥ min(lcp(S[a], p), lcp(S[b], p)) for all
a ≤ i ≤ b.

Algorithm 7: Improved Binary Search
Input: Sorted Sequence S and searched string p

1 l := 1, r := |S|
2 (hl, f) := String-Compare(p, S[l], 0) // Compare first string with searched one
3 if f ≤ 0 then return 1 // If search string is smaller than all in S
4 (hr, f) := String-Compare(p, S[r], 0) // Compare last string with searched one
5 if f > 0 then return |S|+ 1 // If search string is larger than all in S
6 while r − l > 1 do // Run binary search
7 m := r+l

2 , h′ := min(hl, hr) // Calculate middle position and known LCP
8 (hm, f) := String-Compare(p, S[m], h′) // Compare strings, starting at h′ + 1
9 if f ≤ 0 then (hr, r) := (hm,m) // Searched string is in left half

10 else (hl, l) := (hm,m) // Searched string is in right half
11 return r

Output: Index i, so that S[j] < p for all 1 ≤ j < i.
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Algorithm 8: String-Compare
Input: sa, sb and h, with h ≤ lcp(sa, sb)

1 while sa[h] 6= 0 & sa[h] = sb[h] do // Execute character comparisons
2 h++ // Increase LCP
3 return (h, sa[h]− sb[h]) // Return difference of distinguishing characters

Output: (h, f), with h = lcp(sa, sb) and f(x)


< 0, sa < sb

= 0, sa = sb

> 0, sa > sb

This can directly be applied to binary string search. As usual, the search starts with
a = 1 and b = |S|. There LCPs ha = lcp(S[a], p) and hb = lcp(S[b], p) can directly be
calculated in a first check, if the search string is lexicographically smaller or larger than
any string of the sequence. After that, checking the middle position m = a+b

2 can be
done by starting at the characters at position min(ha, hb) + 1. The new LCP calculated
by this string comparison will then be assigned to the either ha or hb, depending on
which half is to be inspected further. Algorithm 7 implements this strategy to create a
faster binary search and is used in our implementations of classical and binary splitting.

4.5.2. K-Way LCP-Merge with Multi-Character Caching

In order to optimize cache and NUMA transfer-efficiency, character caching for K-way
LCP-Merge was introduced in Section 4.1. By extending character caching to multi-
character caching, the gain can be increased in exchange for linearly increased memory
usage.
Instead of caching only a single character (one byte in size), a super-character, consisting
of w single characters, is read, compared and cached for further usage. To extend
LCP-Compare with character caching, shown in Algorithm 6, loading of characters in
line 5 needs to be adapted to load w characters as one super-character. This means,
the w characters starting from h′ need to be loaded, with the first character stored in
the most significant byte, the second in the second-most significant byte and so on. If
a string does not have enough characters to fill the super-character, it is filled up with
zeros instead. Additionally, the current LCP h′ needs to be increased by w instead
of just one. Doing so makes it possible to execute the equality check in the loop like
before.
However, if the two super characters c′a and c′b are not equal, the LCP of them needs
to be calculated. The LCP of two super characters x and y is given by lcpsuper(x, y) =
min(high_zero_bytes(x ⊕ y), w − low_zero_bytes(x)). Whereas the first part, of
the min clause counts the number of equal characters at the beginning of the super-
character, the second part ensures that the LCP of two equal strings is not too long
(this case might occur, when equal strings reach their ends).
Whenever the mentioned LCP of the first unequal super-characters is greater than
zero, they can not directly be returned as new cached characters. Since we compare
the cached super-characters, we need to ensure the correct contained characters are
compared with each other. Therefore the first cached character always needs to be the
distinguishing character, that means, the character at position h+ 1 of the string. An
easy way to accomplish this would be to just load the correct super-character when ex-
iting LCP-Compare, if required. However, this increases the number of memory accesses
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Algorithm 9: LCP-Compare Caching w Characters
Input: (a, sa, ha, ca) and (b, sb, hb, cb), with sa, sb two strings, ha, hb corresponding

LCPs and ca, cb cached characters; assume ∃ string p with p ≤ si,
hi = lcpsuper(s, si), ∀i ∈ {a, b}.

1 if ha = hb then // Case 1: LCPs are equal
2 h′ := ha // Variable with current LCP
3 mask0Bytes := max(low0Bytes(ca), low0Bytes(cb)) // Number of unused Bytes
4 mask := maskw(mask0Bytes) // Mask: #mask0Bytes low 0 Bytes, rest 0xFF
5 c′a := ca & mask, c′b := cb & mask // Mask cached with common mask
6 isEnd := false // Due to masking, cached can not contain end of string byte
7 while isEnd & c′a = c′b do // Execute super character comparisons
8 h′ := h′ + lcpsuper(c′a, c′b) // Increase current LCP value
9 c′a := loadCharactersw(sa, h′) // Load next super character from sa at h′

10 c′b := loadCharactersw(sb, h′) // Load next super character from sb at h′
11 isEnd := (low0Bytes(c′a) > 0) // Is at least one low byte 0?
12 ∆lcp := lcpsuper(c′a, c′b) // Calculate LCP of last super characters
13 h′ := h′ + ∆lcp // Increase LCP value accordingly
14 if c′a ≤ c′b then // Case 1.1: sa ≤ sb
15 c′b = c′b � (∆lcp ∗ 8) // Remove equal characters from super character
16 return (a, ha, ca, b, h′, c′b)
17 else // Case 1.2: sa > sb
18 c′a = c′a � (∆lcp ∗ 8) // Remove equal characters from super character
19 return (b, hb, cb, a, h′, c′a)

20 else if ha < hb then return (b, hb, cb, a, ha, ca) // Case 2: sa > sb
21 else return (a, ha, ca, b, hb, cb) // Case 3: sa < sb

Output: (w, hw, cw, l, hl, cl) where {w, l} = {a, b} with p ≤ sw ≤ sl, hi = lcpsuper(p, i),
∀i ∈ {w, l}

to almost the same amount as without character caching.
Like shown in Algorithm 9, another way is to use bit-shifting and bit-masking to be able
to use a cached super-character until its last contained character is used up. Although
this requires more calculations to be executed, the number of memory accesses can be
decreased significantly. In combination with the fact that bit operations are executed
very fast, the given algorithm improves performance of K-Way LCP-Merge especially
on NUMA architectures. Please note that the implementation of Algorithm 9 can still
be optimized, but is kept simpler to ease comprehensibility.
Lines 3 to 5 of Algorithm 9 ensure the cached super-characters have equal length and
can be compared at all. Due to the reuse of non-complete super-characters (see lines
15 and 18), an arbitrary number of lower bytes of cached super-characters may be zero.
In order to compare the two cached super characters, their number of low zero bytes
must be equal. Therefore the low zero bytes are counted and the maximum is selected
to create a bit mask, used to shorten the longer super-character to the length of the
shorter one.
Because this shortened implementation results in losing the information if a super-
character contained an end of string character (also a zero byte), isEnd must be set to
false in line 6. In the character comparison loop, the current LCP h′ is increased by
the LCP of the super-characters (line 8), the new super-characters are loaded (lines 9
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and 10) and it is checked, if string sa reached its end (line 11).
The LCP of the last super-characters (∆lcp) is calculated in line 12. It is first added to
the current LCP h′ to calculate the complete length of the LCP. Afterwards, in lines 15
and 18, it is used to remove the first ∆lcp equal characters ensuring the first character
of the super-character to be the distinguishing character.
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5. Experimental Results

We implemented NUMA-aware pS5 and parallel versions of K-way LCP-Mergesort.
Both can be run with the three described splitting algorithms for the top-level K-way
LCP-Merge. Additionally, the original pS5 implementation is included in the test set,
as fastest parallel reference algorithm. The performance of the various algorithms is
discussed in Section 5.4. The implementations, the test framework and most input sets
can be downloaded from http://tbingmann.de/2013/parallel-string-sorting.

5.1. Experimental Setup

Our implementations have been tested on a IntelE5 platform having four NUMA nodes
and an AMD48 platform with eight NUMA nodes. The exact properties of the hardware
are listed in Table 1. Both systems are running Ubuntu 12.04 LTS with kernel version
3.2.0 and all programs have been compiled using gcc 4.6.3 with optimizations -03 -
march=native.

Name Processor Clock Sockets × Cache: L1 L2 L3 RAM
[GHz] Cores × HT [KiB] [KiB] [MiB] [GiB]

IntelE5 Intel Xeon E5-4640 2.4 4× 8× 2 32× 32 32× 256 4× 20 512
AMD48 AMD Opteron 6168 1.9 4× 12 48× 64 48× 512 8× 6 256

Name Codename Memory NUMA Interconnect
Channels Nodes

IntelE5 Sandy Bridge 4 × DDR3-1600 4 2 × 8.0 GT/s QP
AMD48 Magny-Cours 4 × DDR3-667 8 4 × 3.2 GHz HT

Table 1: Hardware characteristics of experimental platforms, see [BES14].

In order to separate different runs, the test framework forks each execution as a child
process. Especially the influences caused by heap fragmentation and lazy deallocation,
made this step important. The input data is loaded before forking the actual sort
process and allocates exactly the specified amount of RAM. It is shared with the child
process as read-only dataset. In contrast, the string pointer array is generated in the
forked process by linearly scanning the input data for end of string characters.
Time measurement is done via clock_gettime() and only includes execution of the
sorting algorithm. Since some algorithms have deep recursion depths, stack size has
been increased to 64 MiB. When executing NUMA-aware algorithms, the input sequence
has been split up into equal-sized parts, with each of them located on one NUMA
memory bank. Sorting threads are then pinned to the NUMA node holding the memory
they are processing, which enables node-local memory accesses. Further allocations are
also done on node-local memory. Due to the distribution of used memory onto all
NUMA nodes, no executions with less threads than NUMA nodes are considered for
these algorithms.
In contrast, for executing non NUMA-aware algorithms, memory allocation was inter-
leaved across all memory banks by using the default allocation method. Threads are
not pinned to specific nodes. Instead, the default Linux task scheduling system is used.
For verifying the outputted list of string pointers, generated by a sorting algorithm,
a first check ensures that the output is a permutation of the input. Afterwards, a
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validation of the sort order is achieved by checking that strings are in non-descending
order.
However, because only the direct algorithm execution times are measured, it arises the
question, if this is a valid decision. The main concern is that memory deallocation and
defragmentation is done lazily in heap allocators and kernel page tables, most notable
when running two algorithms consecutively. Running the sorting algorithms in isolated
forked processes effectively prevents that. Yet, for real applications, these aspects also
need to be considered in future work.
Table 2 lists the analysed algorithms with their name used in the following plots, as
well as a short description of them.

Name Description
pS5-Unroll Original parallel super scalar string sample sort im-

plementation with interleaved loop over strings, un-
rolled tree traversal, caching multikey quicksort and
insertion sort as base sorter as introduced by Timo
Bingmann [BS13].

pS5-Unroll + BS-Merge Modified pS5-Unroll implementation, outputting LCP
array and cached characters, made NUMA aware as
described in Section 4.4, using either binary, classical
or LCP splitting (BS, CS or LS).

pS5-Unroll + CS-Merge
pS5-Unroll + LS-Merge

pLcpMergesort + BS-Merge Parallel LCP-Mergesort, as described in Section 4.3,
using either binary, classical or LCP splitting (BS,
CS or LS).

pLcpMergesort + CS-Merge
pLcpMergesort + LS-Merge

Table 2: Name and Description of tested parallel string sorting algorithms.

5.2. Input Datasets

For our tests, we selected the following datasets, all having 8-bit characters. Their most
important characteristics can be found in Table 3.
URLs contains all URLs found on crawled web pages via breadth-first search starting
from our institute’s website. The protocol name is included.
Random from [SZ04] is a set of strings of length [0, 20). The characters are taken from
a subset of the ASCII alphabet in [33, 127). Length and characters are both chosen
uniformly at random.
GOV2 is a TREC test collection containing 25 million HTML pages, MS Word and
PDF documents retrieved from websites, having a .gov top-level domain. For our string
sorting, we consider the whole content for line-based string sorting, concatenated by
document id.
Wikipedia is an XML dump obtained from http://dumps.wikimedia.org on the
2012-06-01. Since the XML data is not line-based, suffix-sorting is performed on this
input.
Sinha DNA is a test set used by Ranjan Sinha [SZ04] to test burst sort. It contains
genomic strings of a length of nine characters from the DNA alphabet. Although its
size of 302 MiB is rather small in comparison to our other test sets, we include it, due
to its extremely small alphabet of just four characters.
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The chosen inputs represent real-world datasets, but also generate extreme results when
sorted. Whereas Random has a very small average LCP, both URLs and Sinha’s DNA
have large ones. On the other hand, GOV2 is a test set with general text containing
all ASCII characters. In contrast, Sinha’s DNA has a very small alphabet. By suffix-
sorting the Wikipedia test set, we get a very large sorting instance needing only little
memory for characters.
As our large input sets do not fit into the main memory of all our machines, we only
sort a large prefix of the input containing the strings [1, n]. This allows us to sort parts
of the input sequences matching the available RAM and time.

Name n N D
N

(D) L
n
|Σ| avg. |s|

URLs 1.11G 70.7Gi 93.5% 62.0 84 68.4
Random ∞ ∞ − − 94 10.5
GOV2 11.3G 425Gi 84.7% 32.0 255 40.3
Wikipedia 83.3G 1

2n(n+1) (79.56T) 954.7 213 1
2(n+1)

Sinha DNA 31.6M 302Mi 100% 9.0 4 10.0

Table 3: Characteristics of the selected input instances, see [BES14].

5.3. Performance of Splitting Methods
In Section 3.3, parallel K-way LCP-Merge has been introduced, which can be used with
the classical splitting, binary splitting or LCP splitting algorithms. In this section, we
report on our experiments, regarding the three splitting methods, to evaluate differ-
ences and advantages. The measurements were executed on the IntelE5 and AMD48
platforms, shown in Table 1 on page 45.
Since this section focuses on comparing the three splitting algorithms, parallel LCP-
Mergesort (described in Section 4.3) is used as base sorter, leaving all parts, but the
splitting algorithm, the same between executions. All graphs in Figures 21, 22, 23 and
24 visualize the median of five executions of parallel LCP-Mergesort with the respective
splitting algorithm. In Figures 21 and 22 Sinha’s complete DNA test set has been
sorted, one time with the IntelE5 and the other time with the AMD48 platform. In
addition, Figures 23 and 24 display the results of sorting 20 GiB of the URLs on both
test systems.
These two test sets have been chosen due to their greatly differing characteristics. In
contrast to Sinha’s DNA test set, whose strings are all ten characters long and of a
small alphabet, the URLs test set has much longer strings, longer average LCPs, a
usual alphabet and is more extensive. Especially the input size is an important factor,
since parallel top-level LCP-Merge is to be used for making pS5 NUMA-aware. However,
NUMA awareness is only important for larger input sets, requiring NUMA systems at
all.
In all four figures, the values of the graphs are displayed over the number of threads
available for sorting, allowing to evaluate the scaling qualities of the different splitting
algorithms. Whereas graph a) of Figures 21, 22, 23 and 24 shows the overall runtime,
the plot b) displays only the runtime of the top-level merge, which itself contains the
total time consumed by the splitting algorithm, visualized in graph c). Plot d) shows
the number of merge jobs created by the splitting algorithm and graph e) draws the
time required to create a job, which is calculated as the total splitting time over the
number of created jobs.
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5.3.1. Splitting Analysis on Sorting 302 MiB Sinha DNA

The effects of the special properties of Sinha’s DNA test set, can be seen in Figures 21
and 22. Here, almost no dynamic load balancing is required. This is caused by the fact
that D, the sum of the distinguishing prefixes, contains all characters and each string
has the exact same length of ten characters. Moreover, the small alphabet contains
only four characters. However, because of the high costs of splitting runs with classical
splitting and LCP splitting, more jobs than available processing units are created. This
strategy is very important for other test sets, requiring dynamic load balancing and is
the cause for the roughly linearly increasing number of created jobs, as observed in the
fourth graph. In contrast, binary splitting is able to directly adapt to the little need
for additional merge jobs, resulting in less time required by the splitting algorithm, a
faster top-level merge and the difference in the overall sorting runtime.
Likewise, the sorting runtime difference between classical splitting and LCP splitting
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Figure 21: Analysis of splitting algorithms on IntelE5 sorting 302 MiB Sinha DNA.
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Figure 22: Analysis of splitting algorithms on AMD48 sorting 302 MiB Sinha DNA.

is also based on the difference of the splitting runtime seen in Figure 21c. Due to the
small size of Sinha’s DNA test set, linearly scanning the LCP array, like it is done by
LCP splitting, is more efficient than doing a binary search for splitters.
Moreover, the runtime of LCP splitting does not grow much with an increased number
of created merge jobs and available threads. Like shown in the graph e), the time per job
of LCP splitting decreases with a growing number of threads, whereas the durations rise
for classical and binary splitting. This can be explained by the fact, that LCP splitting
always has to scan the exact same number of LCP values, independent of the number
of threads and therefore the number of input sequences of the top-level merge. More
precisely, LCP splitting has high constant costs, and experiences only little increases
depending on the number of created jobs or available input sequences.
In contrast, binary and classical splitting need to use binary search to find every splitter
in an increased number of sequences. Although these sequences are shorter and the over-
all length remains the same, the runtime increases, since the binary search only takes
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logarithmic time depending on the length of the input. Due to p · log(n/p) > log(n),
with p being the number of processing elements and n the overall number of strings, p
searches on sequences of length n

p
are more expensive than one search on a sequence of

length n.
To sum up the observations of Figures 21 and 22, binary splitting has an advantage,
because it does not need to work with fixed oversampling factors, but adjusts fully
dynamically to the input set’s requirements. LCP splitting works well with small input
sizes and can easily create a large number of jobs in test sets with low average LCP. In
contrast, classical splitting shows an increasing runtime with a growing number of jobs
to be created. Although its costs for creating jobs are much smaller compared to the
ones of binary splitting, its fixed oversampling factor causes the creation of too many
jobs, resulting in an increased runtime.
Another important observation is that the runtime behaviour of the three splitting
algorithm’s is very similar on both, the IntelE5 and the AMD48 platforms. Even
though the two platforms have highly differing specifications and memory performances
between local and remote NUMA memories, the splitting performance is not effected
significantly.

5.3.2. Splitting Analysis on Sorting 20 GiB URLs

In contrast to Sinha’s DNA, the URLs test set is much larger, has an alphabet of
84 characters and an average LCP length of 62. With the input being more skewed,
dynamic load balancing is much more important and therefore more independent merge
jobs will need to be created.
The graph a) of Figures 23 and 24 shows that classical and binary splitting outperform
LCP splitting. On the IntelE5 platform, there is a gap of about 5 seconds in the overall
sorting time, which is even larger on the AMD48 system. Moreover, the distance
between the algorithms remains nearly constant with increasing number of threads.
Like plot b) shows, the gap is primarily caused by the difference of the top-level merge
runtimes, which themselves are mainly determined by the runtimes of the splitting
algorithms. Thus, the runtime differences can be explained by the the high fixed costs
of LCP splitting, caused by linearly scanning the LCP arrays with a combined length
of 325 million entries. This induces high constant costs that are not changing with
increasing number of threads and sequences, seen in graph c).
In contrast, binary and classical splitting have almost equal overall sorting performance.
Because the input set requires real dynamic load balancing, binary splitting needs to
create more jobs. This is why the difference in the number of created jobs between
both methods is much smaller now. However, the fixed oversampling rate of classical
splitting still yields about twice as much merge jobs as required. But since the costs
of the actual merging part are much larger now, the small difference in splitting time,
seen in the graph c), shows no effect to the resulting overall sorting time.
Again, both evaluated platforms show about the same behaviour, regarding the split-
ting algorithms. Thus suggesting, mostly the input set’s characteristics determine the
splitting algorithm’s performance. Moreover, the difference between classical, binary
and LCP splitting between these two very differing test sets reinforces the need to select
an appropriate splitting method for the considered test set.

50



5.4 Performance of Parallel Algorithms

1 8 16 32 48 64
5

10
15
20
25
30
35
40

tim
e
[s]

a) Sorting Runtime

1 8 16 32 48 64

1
2
3
4
5
6

tim
e[
s]

b) Runtime of Top-Level Merge

1 8 16 32 48 64
0
1
2
3
4
5
6

tim
e
[s]

c) Total Time for Splitting

1 8 16 32 48 64
0
5

10
15
20
25
30

·103

number of threads

cr
ea
te
d
jo
bs

d) Number of Created Merge Jobs

1 8 16 32 48 64
0

0.2
0.4
0.6
0.8

1
1.2
1.4
·10−3

number of threads

tim
e
pe

r
jo
b
[s]

e) Time per Created Merge Job

pLcpMergesort + BS-Merge
pLcpMergesort + CS-Merge
pLcpMergesort + LS-Merge

Figure 23: Analysis of splitting algorithms on IntelE5 sorting 20 GiB URLs.

5.4. Performance of Parallel Algorithms

In this section, focus is put on comparing an unmodified pS5-Unroll [BES14] implemen-
tation with our newly presented parallel K-way LCP-Mergesort (see Section 4.3) and
our NUMA optimized pS5 (see Section 4.4).
The graphs plotted in Figures 25 and 26 show the speedup of the algorithms over the
best sequential execution of pS5-Unroll. Whereas Figure 25 shows the results for all
test sets listed in Table 3 on the IntelE5 machine, Figure 26 visualizes the results for
the AMD48 system. The hard- and software specifications of both platforms are listed
in Section 5.1.
In the first graph of Figures 25 and 26, the speedups, when sorting 20 GiB of the
URLs test set, are shown. It is clearly visible that NUMA-aware pS5, as well as par-
allel LCP-Mergesort with classical and binary splitting outperform the original pS5

implementation by almost a factor of two. Although NUMA-pS5 performs better than
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Figure 24: Analysis of splitting algorithms on AMD48 sorting 20 GiB URLs.

parallel LCP-Mergesort with less than 64 threads, the latter one is able to catch up
with an increased number of threads. The observations of Section 5.3.2 become visible
again, since classical and binary splitting perform equally well and LCP splitting hits
great penalties for scanning the large LCP array. Especially the last effect can be seen
with most of the longer input sizes.
For the Random test set, shown in the second graph, we get a partly different situation.
Again, NUMA-pS5 performs very well with speedups of 25 compared to 17 achieved by
the original implementation. However, parallel LCP-Mergesort performs much worse
than the pS5 implementations. This is mainly caused by the low average LCP of a
random test set, making it impossible for LCP-Mergesort to effectively exploit the
LCPs. Classical and binary splitting perform quite similar again.
When looking at the third plot, kind of a mix of the Random and URLs result can
be observed. Whereas NUMA-pS5 dominates again with significantly higher speedups,
parallel LCP-Mergesort is just slightly better than the original pS5 implementation.
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Figure 25: Speedup of parallel algorithm implementations on IntelE5.

Once more, this can be explained by the average LCP of the input set, since GOV2 has
an average LCP of 32, which is about half as long as the one of URLs. Although, this
is enough for parallel LCP-Mergesort to outperform the original pS5, NUMA optimized
pS5 performs way better.
The Wikipedia test set, is very different from the others, because we do suffix sorting
for a set of strings with an average length of about 955 characters. As explained
before, LCP splitting experiences great penalties for linearly scanning very long LCP
arrays. However, although the suffix sorted Wikipedia test set has 4 Gi strings, LCP
splitting performs way better than binary splitting. In fact, classical splitting performs
so bad, that it can not be shown in this plot (for 64 threads, classical splitting required
about 50 times longer than LCP splitting). The bad performance of classical and
binary splitting is mainly caused by the long average string length of the input set.
The binary search for splitters used by these splitting methods, requires to execute
many string compare operations, which are seriously slow for strings of such lengths.
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Figure 26: Speedup of parallel algorithm implementations on AMD48.

Moreover, since suffix sorting is done, the binary search needs to compare a lot of almost
equal strings, requiring to compare almost all characters of those strings.
Furthermore, the Wikipedia test set is the only one showing a real difference in the
algorithm’s performances between the IntelE5 and the AMD48 platform. Whereas
NUMA-pS5 is able to slightly outperform original pS5 on IntelE5, the latter one is
slightly better on the AMD48 system. However, as all the splitting methods have
troubles with either the large number of strings, like LCP splitting, or the great length
of the strings, like classical and binary splitting, parallel top-level LCP-Merge spends
large amounts of time on splitting, instead of actual merging.
The speedup plots of Sinha’s DNA test set are very similar to the ones of the Random
test set, with NUMA-pS5 outperforming the original pS5, which itself is better than
parallel LCP-Mergesort. Again, the short average length of the LCPs is handled better
by pS5 than parallel LCP-Mergesort. Regarding the performance of different splitting
methods, we see LCP splitting to be much better for parallel LCP-Mergesort than for
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NUMA-pS5. This is caused by the fact that the top-level merge for NUMA-pS5 only
has to merge 4 sorted sequences. In contrast, for parallel LCP-Mergesort, the number
of sequences to be merged is equal to the number of available threads. As an increased
number of sequences increases the costs for classical and binary splitting, LCP splitting
becomes competitive for parallel LCP-Mergesort.
All graphs have in common that the growth of the speedup is reduced for increas-
ing number of threads. This is caused by the limited memory bandwidth, restraining
performance for high numbers of threads. Therefore not the processing power, but
memory bandwidth is the restricting aspect to our algorithms. Moreover, as our test
platforms are NUMA architectures, the graphs also show their dramatic influence to
sorting performance. This can be seen from two aspects. The first one is the large
impact our NUMA improvements have to pS5. Although pure LCP-Mergesort is worse
than original pS5 in some test sets, NUMA-aware pS5, utilizing the parallel LCP-Merge,
is much faster than the original one in exactly those tests. The second aspect is visible
in the speedup plots of the AMD48 platform, shown in Figure 26. As this system has
8 NUMA nodes, the performance of the illustrated algorithms is only slightly improved
when adding four more threads to a thread count dividable by eight. For example, the
speedup of ‘pS5-Unroll + BS-Merge’ is not improved much when using 20 instead of 16
threads, which leads to the stairs in the graphs of NUMA-aware algorithms. In con-
trast, ‘pS5-Unroll’, run with interleaved memory allocation, has a continuous speedup
curve.
The absolute runtimes of all our speedup experiments are shown in Appendix A.
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6. Conclusions
In this bachelor thesis, Ng’s binary LCP-Mergesort [NK08] has been extended to in-
troduce a K-way LCP tournament tree, multiway LCP-Mergesort, as well as a parallel
top-level multiway LCP-Merge and therewith a parallel LCP-Mergesort. Moreover, the
parallel top-level LCP-Merge has been used to optimize Timo Bingmann’s pS5 [BS13]
for NUMA architectures.
Our experiments with various test sets, each emphasizing different important aspects,
demonstrate that parallel LCP-Merge can be utilized for easy parallelization of most
sequential string sorters. To be able to apply the same parallelization scheme as with
parallel LCP-Mergesort, the sequential string sorter only needs to provide the LCP
array. However, most times, this information is already calculated during sorting and
thus, no big changes or extra calculations are required to gain great speedups with this
method. Furthermore, as shown by our NUMA optimized pS5 implementation, parallel
algorithms can also be made NUMA-aware with little effort but huge wins.
As parallelization of K-way LCP-Merge requires not only a fast merging implementa-
tion, provided by our K-way LCP tournament tree, but particularly a good method to
split the work into disjoint tasks, three splitting methods have been considered. Be-
sides the classical splitting algorithm, binary splitting and LCP splitting have been
introduced. Experimental analysis of the different splitting procedures showed that
splitting performance highly depends on the characteristics of the input data. Whereas
classical splitting works fine for most of our test sets, binary splitting inherently par-
allelizes the splitting work and is able to adapt directly to the input’s characteristics.
Although LCP splitting has high costs depending on the input size, it has its benefits
when string comparisons become very expensive, due to very long strings.
We further want to highlight that the principle of our NUMA-aware pS5 implementation
can straight forwardly be extended for external string sorting with short strings (≤ B).
As already observable in our experiments, memory throughput is the limiting aspect.
Here, the combination of the LCP saving pS5 and parallel multiway LCP-Merge can
efficiently save memory accesses and therefore bandwidth.
Implementing further refinements, including but not limited to the ones discussed in the
next section, will probably gain even more performance improvements. However, be-
cause of our algorithms already requiring additional space for storing LCP information,
some optimizations, like character caching, may not be applicable to real-world appli-
cations like databases. Here, future challenges arise to reduce the memory footprint,
while maintaining or even gaining additional performance.

6.1. Future Work
Although our algorithms already show great performance and especially NUMA-aware
pS5 achieves great wins in comparison to the original version, further improvements
might be possible. In the following, potentially beneficial suggestions are presented and
left for future work.
Adapting Job Sizes: As seen in the splitting analysis in Section 5.3, the performance of
the splitting methods highly depends on characteristics of the input set. One advantage,
binary splitting has over classical and LCP splitting, is that it inherently causes the
merge to work on large jobs at the beginning and smaller jobs at the end. This reduces
the number of required splittings clearly. Hence preventing unnecessary splitting over-
head, while ensuring good dynamic load balancing. Applying this idea to classical and
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LCP splitting is not trivial, since the size of the created merge jobs can not be adapted
easily during a splitting run. However, it is important to note that a job’s number of
strings gives only a loose estimation of the real work to be done by the merge operation.
Caching More Characters: Due to the improvements achieved with caching the dis-
tinguishing character, caching more characters, like proposed in Section 4.5.2, is likely
to further accelerate the top-level merge. However, this comes at the expense of an
increased memory footprint, as well as a greatly increased need for adaptions in the
base sorter, creating the sorted sequences. Often, the underlying algorithm normally
would not have to access the additionally cached characters, which can lead to increased
runtimes. Hence, evaluating the trade-off will be of importance.
Improved Load Balancing: ParallelK-way LCP-Mergesort can probably be improved by
making it fully dynamically load balanced. However, this requires a K-way LCP-Merge
outputting not just the combined strings, but also the LCP and cached character arrays,
achievable as described in Section 4.2. This allows to apply the job queue framework
of pS5, with merge sort jobs regularly checking for idle threads and splitting up their
work as needed. Exactly like with K-way LCP-Mergesort, NUMA-pS5 applies a partly
static load balancing scheme, since the unsorted input sequence is split into m parts
up front. To optimize load balancing, the implementation of an extended NUMA-pS5

prototype has been started. As soon as a thread group finishes the execution of its pS5

instance, its threads start assisting another thread group until all groups are finished.
Although, first experiments showed performance wins with highly scattered inputs,
loses were experienced in more common use cases. Reducing synchronization overhead
and improving decision making on which instances to be assisted first, is left for future
work.
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A. Absolute Runtimes of Parallel Algorithms

PEs 1 2 4 8 12 16 24 32 48 64
URLs (complete), n = 325.7M, N = 20Gi

pS5-Unroll 164 76.8 37.7 22.2 16.8 13.6 11.3 10.5 9.74 10.0
pS5-Unroll + BS-Merge 28.2 14.6 10.7 8.52 7.54 6.28 5.67 5.33
pS5-Unroll + CS-Merge 29.4 15.0 11.7 9.29 7.46 6.28 5.59 5.20
pS5-Unroll + LS-Merge 32.5 19.2 15.7 12.9 9.93 8.87 8.65 8.67
pLCPMergesort + BS-Merge 35.8 20.4 15.2 11.2 8.70 7.17 6.09 5.30
pLCPMergesort + CS-Merge 35.7 20.7 15.2 11.4 8.70 7.26 6.29 5.43
pLCPMergesort + LS-Merge 39.7 24.9 19.9 16.5 12.2 10.8 10.2 9.67

Random, n = 2.045G, N = 20Gi
pS5-Unroll 649 322 156 87.9 66.5 55.1 43.4 39.7 38.4 37.4
pS5-Unroll + BS-Merge 162 90.2 64.2 50.9 38.1 31.6 28.1 25.6
pS5-Unroll + CS-Merge 158 85.0 61.5 49.0 36.3 30.4 27.5 24.7
pS5-Unroll + LS-Merge 181 99.4 72.2 58.1 44.5 39.3 39.6 41.6
pLCPMergesort + BS-Merge 350 186 137 106 76.9 64.2 57.8 56.1
pLCPMergesort + CS-Merge 349 184 137 105 76.6 64.3 57.1 54.7
pLCPMergesort + LS-Merge 375 195 144 113 83.0 70.7 66.5 64.4

GOV2, n = 410M, N = 20Gi
pS5-Unroll 154 71.6 34.4 23.2 19.3 16.2 12.8 11.6 10.4 9.77
pS5-Unroll + BS-Merge 27.3 14.9 10.7 8.53 6.69 6.22 6.13 5.64
pS5-Unroll + CS-Merge 28.8 15.6 11.0 9.27 7.10 6.49 6.10 5.50
pS5-Unroll + LS-Merge 28.5 16.2 12.4 10.3 8.79 8.39 9.11 9.32
pLCPMergesort + BS-Merge 48.4 26.5 19.6 15.3 10.8 8.85 8.96 8.48
pLCPMergesort + CS-Merge 49.0 26.9 19.6 15.2 10.9 8.97 8.74 9.01
pLCPMergesort + LS-Merge 49.9 27.9 21.0 16.7 12.8 11.3 11.2 11.0

Wikipedia, n = N = 4Gi, D = 249G
pS5-Unroll 2641 1244 581 318 234 190 138 115 105 97.2
pS5-Unroll + BS-Merge 602 359 273 233 198 170 181 188
pS5-Unroll + CS-Merge
pS5-Unroll + LS-Merge 575 311 223 176 126 106 96.8 91.5
pLCPMergesort + BS-Merge 947 512 392 318 254 217 227 244
pLCPMergesort + CS-Merge
pLCPMergesort + LS-Merge 919 473 334 269 194 155 137 121

Sinha DNA (complete), n = 31.6M, N = 302Mi
pS5-Unroll 5.77 2.84 1.43 0.85 0.66 0.58 0.48 0.45 0.43 0.43
pS5-Unroll + BS-Merge 1.22 0.70 0.52 0.44 0.34 0.31 0.34 0.37
pS5-Unroll + CS-Merge 1.21 0.69 0.52 0.45 0.35 0.33 0.33 0.39
pS5-Unroll + LS-Merge 1.26 0.72 0.57 0.48 0.42 0.43 0.43 0.48
pLCPMergesort + BS-Merge 3.77 2.00 1.44 1.12 0.83 0.71 0.64 0.56
pLCPMergesort + CS-Merge 3.81 2.00 1.43 1.13 0.85 0.81 0.85 0.98
pLCPMergesort + LS-Merge 3.85 2.03 1.45 1.15 0.88 0.79 0.81 0.84

Table 4: Absolute runtime of parallel algorithms on IntelE5 in seconds, median of 1–5
runs. See Table 2 for a short description of each.
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PEs 1 4 8 12 16 24 28 32 40 48
URLs (complete), n = 325.7M, N = 20Gi

pS5-Unroll 267 72.1 36.9 27.1 23.0 18.5 16.6 15.7 14.4 13.5
pS5-Unroll + BS-Merge 28.5 26.6 15.3 11.6 11.3 9.63 9.06 8.43
pS5-Unroll + CS-Merge 28.6 26.7 15.4 11.5 11.4 10.7 9.20 8.52
pS5-Unroll + LS-Merge 36.4 35.0 23.8 17.3 16.9 15.3 14.3 14.0
pLCPMergesort + BS-Merge 33.2 24.4 17.4 12.6 11.5 10.1 8.32 7.97
pLCPMergesort + CS-Merge 33.2 24.3 17.5 12.7 11.5 10.1 8.34 8.06
pLCPMergesort + LS-Merge 41.0 32.5 26.5 18.2 17.3 15.9 14.3 13.9

Random, n = 2.045G, N = 20Gi
pS5-Unroll 1075 292 159 114 92.3 70.8 64.8 60.7 54.2 50.6
pS5-Unroll + BS-Merge 158 145 84.2 59.7 57.8 47.5 40.2 36.7
pS5-Unroll + CS-Merge 158 145 84.0 59.6 57.8 47.2 40.2 36.0
pS5-Unroll + LS-Merge 166 153 91.9 68.1 68.2 59.1 54.1 51.7
pLCPMergesort + BS-Merge 273 203 144 101 92.7 81.2 68.7 62.5
pLCPMergesort + CS-Merge 270 203 144 101 92.9 81.1 69.1 60.8
pLCPMergesort + LS-Merge 278 211 152 110 102 90.5 79.0 71.4

GOV2, n = 410M, N = 20Gi
pS5-Unroll 241 64.1 39.4 31.7 25.5 20.2 18.6 17.6 15.2 14.3
pS5-Unroll + BS-Merge 25.8 24.3 13.9 10.1 10.0 8.26 7.22 7.40
pS5-Unroll + CS-Merge 25.9 24.4 14.0 10.1 9.71 8.17 7.26 7.08
pS5-Unroll + LS-Merge 28.1 26.9 17.0 13.5 13.4 11.9 11.0 10.8
pLCPMergesort + BS-Merge 41.5 31.1 22.4 15.5 14.0 12.4 11.8 10.9
pLCPMergesort + CS-Merge 41.6 31.1 22.3 15.6 14.1 12.4 10.8 13.9
pLCPMergesort + LS-Merge 43.8 33.6 25.2 18.9 17.7 15.9 16.5 15.0

Wikipedia, n = N = 4Gi, D = 249G
pS5-Unroll 1729 433 230 163 130 96.5 87.3 80.4 70.8 64.3
pS5-Unroll + BS-Merge 320 309 196 159 151 139 119 116
pS5-Unroll + CS-Merge
pS5-Unroll + LS-Merge 275 257 145 104 102 84.1 72.5 65.7
pLCPMergesort + BS-Merge 385 287 232 186 154 152 138 140
pLCPMergesort + CS-Merge
pLCPMergesort + LS-Merge 339 235 179 124 105 95.9 81.3 76.2

Sinha DNA (complete), n = 31.6M, N = 302Mi
pS5-Unroll 9.18 2.63 1.52 1.15 0.97 0.80 0.75 0.72 0.69 0.68
pS5-Unroll + BS-Merge 1.30 1.24 0.77 0.60 0.59 0.56 0.55 0.49
pS5-Unroll + CS-Merge 1.30 1.24 0.79 0.62 0.62 0.59 0.55 0.50
pS5-Unroll + LS-Merge 1.34 1.29 0.86 0.73 0.74 0.71 0.72 0.69
pLCPMergesort + BS-Merge 2.86 2.11 1.53 1.10 1.05 0.90 0.77 0.70
pLCPMergesort + CS-Merge 2.87 2.13 1.54 1.13 1.13 1.05 0.93 0.98
pLCPMergesort + LS-Merge 2.90 2.13 1.58 1.17 1.15 1.01 0.92 0.90

Table 5: Absolute runtime of parallel algorithms on AMD48 in seconds, median of 1–5
runs. See Table 2 for a short description of each.
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