
0 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

Department of Informatics of KIT1 and HANA Core of SAP AG2

Retrieval and Perfect Hashing
using Fingerprinting
Ingo Müller12, Peter Sanders1, Robert Schulze2, and Wei Zhou12

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association www.kit.edu

The Retrieval Problem

1 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

Perfect Hash Function (PHF)
Map each key s P S to unique integer i P ID

Retrieval data structure
Associate value v P V to each s P S

Classical implementation: hash table
Store key/ID or key/value pairs

Optimization: do not store S
Undefined behavior for s R S

Applications
Look-up in dictionaries of in-memory DBMSs (like the SAP HANA database [1])

Many more. . . (see Botelho et al. [2])

pS Ñ Vq � t . . .
flag ÞÑ “noun, verb”,
flare ÞÑ “n, v”,
flask ÞÑ “n”,
flash ÞÑ “n, v”, . . . u

p� Ñ Vq optimization

Known Methods

2 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

Perfect Hash Functions
Practical implementations exist: BPZ [3], CHD [4], etc.
Store only constant, sometimes optimal number of extra bits
Retrieval: use a PHF to index an array of values

Direct Retrieval Data Structures
CHM [5], etc.

Prior work Our solution

Construction complicated simpler
inherently sequential easily parallelizable
ñ slow ñ faster

Dynamic operations no (rebuild) yes
Cache misses per query ¥ 2 1� ε

Fingerprint Retrieval (FiRe)
Overview

3 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

...

Level 1

...

Level 2

� � � ...

Level L

PHF-
based

retrieval
data

structure

Level L� 1

m �

n
b

buckets

fingerprints v1 v2 � � � va

a cells

A bucket

bucket � hash1pkeyq P t1, . . . , mu, fingerprint � hash2pkeyq P t1, . . . , ku
Recursively overflow to next level on fingerprint collision/full bucket
Fingerprints implemented as bit vector for simplicity and speed

Fingerprint Retrieval (FiRe)
Asymptotics

4 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

� � �

L levels

P
H

F
fallback

m
bu

ck
et

s

fingerprints a cells

n elements
m � n

b buckets
a cells per bucket
r-bit values

Expected linear construction time
L FiRe levels, Opnq for each level
Even for L Ñ8: geometric series, as only a constant fraction of the
elements overflow

Constant worst-case query time, since L is constant

Fingerprint Retrieval (FiRe)
Formulae

5 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

� � �

L levels

P
H

F
fallback

m
bu

ck
et

s

fingerprints a cells

n elements
m � n

b buckets
a cells per bucket
r-bit values

Let a1 be the expected number of elements in a bucket

Space overhead per element s � r�pa�a1q�sizepfingerprintsq
a1

bits

Cache misses per query l � b
a1

Calculation of a1: see our paper

Fingerprint Retrieval (FiRe)
Space/Time Trade-Off

6 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

Space overhead s and expected number of cache misses l depend on
a: #cells per bucket
b: average #elements per bucket (� n

m)
k: #possible fingerprint values
r: size of each value

How to choose parameters?
a and k such that a bucket
fits into a cache line
Depending on desired
trade-off

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 1.5 2 2.5 3

s
 -

-
s
p
a
c
e
 o

v
e
rh

e
a
d
 [
b
it
s
]

l -- cache misses

r = 32 bits

opt. encoding a=14, k=149
bit vector a=15, k= 32
bit vector a=14, k= 64
bit vector a=13, k= 96
bit vector a=12, k=128

Fingerprint Retrieval (FiRe)
Dynamization

7 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

Updates and deletions
(easy)

Update associated
value in place
Ignore deletions

� � �

static part

pS Ñ Vq � t . . .
flag ÞÑ “noun, verb”,
flare ÞÑ “n, v”,
flask ÞÑ “n”,
flash ÞÑ “n, v”, . . . u

dynamic part

queries updates

∆

Insertions
Needs a dynamic part with keys + some book-keeping information
Answer queries with the static part (FiRe)
Idea:

Overflow new and old element if fingerprints collide
“Block” fingerprint for future inserts
Rebuild when some stability criterion is violated

Fingerprint Perfect Hashing (FiPHa)

8 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

� � �

L levels

P
H

F
fallback

m
bu

ck
et

s

fingerprints a cells

Fingerprint-Based Perfect Hashing (FiPHa)
Special case with large buckets of “empty” values
Associated ID is calculated as rankbucketpvq � a � rankfingerprintpvq
Very space efficient (2.79 bits overhead with 2.78 cache misses)

Experimental Results
Settings

9 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

Configurations of a, b, k such that
l � 1.05 cache misses: FiRe5
l � 1.25 cache misses: FiRe25
l � 1.50 cache misses: FiRe50
Retrieval data structure with FiPHa as PHF (3.78 cache misses)

Base lines
BPZ, CHD-0.5/0.99 from the C Minimal Perfect Hashing Library [6]
CHM-2/3 from our implementation

Datasets
Keys: 100 million unique random 32-bit integers
Values: integers of size r � 8 bits

Experimental Results
Build Times

10 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

0

500

1000

1500

2000

2500

3000

FiRe5
FiRe25

FiRe50

FiPHa

CHM-2

CHM-3

BPZ
CHD-0.5

CHD-0.99

bu
ild

tim
e

[n
s

/e
le

m
en

t]

r � 8 bits

4–17 times faster sequential construction for FiRe
FiPHa slower, but faster than competitors

Experimental Results
Space Overhead

11 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

0

5

10

15

20

25

30

35

FiRe5
FiRe25

FiRe50

FiPHa

CHM-2

CHM-3

BPZ
CHD-0.5

CHD-0.99

sp
ac

e
ov

er
he

ad
[b

its
/e

le
m

en
t]

r � 8 bits

FiRe50 has comparable overhead to most competitors
FiPHa almost on par with best competitor (CHD-0.99)

Experimental Results
Query Times

12 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

0

50

100

150

200

250

300

350

400

FiRe5
FiRe25

FiRe50

FiPHa

CHM-2

CHM-3

BPZ
CHD-0.5

CHD-0.99

qu
er

y
tim

e
[n

s
/e

le
m

en
t]

r � 8 bits

FiRe has the best query times due to low number of cache misses
FiPHa comparable to CHD-0.99, but has much faster construction

Summary and Future Work

13 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

Fingerprint Retrieval (FiRe) and Perfect Hashing (FiPHa)
Simple concept, easy implementation
Fast evaluation due to low number of cache-misses
Extremely fast construction, even with sequential implementation
Small space overhead
Highly configurable trade-off
Support for updates, insertions, and deletions

Future Work
Find more compact, yet practical representation of fingerprints
Adapt idea of cuckoo-hashing to fingerprinting
Improve trade-off with different settings for each level
Adapt fingerprinting idea to other data structures

14 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

Thank you

References I

15 Müller, Sanders, Schulze, Zhou:
Retrieval and Perfect Hashing using Fingerprinting

Institute for Theoretical Informatics
Algorithms II

[1] F. Färber et al., “SAP HANA Database: Data management for modern business applications,” SIGMOD
Rec., vol. 40, no. 4, pp. 45–51, 2012. [Online]. Available: http://doi.acm.org/10.1145/2094114.2094126

[2] F. C. Botelho and N. Ziviani, “External perfect hashing for very large key sets,” in Proceedings of the
sixteenth ACM conference on Conference on information and knowledge management. ACM, 2007, pp.
653–662.

[3] F. C. Botelho, R. Pagh, and N. Ziviani, “Simple and space-efficient minimal perfect hash functions,” in
Algorithms and Data Structures. Springer, 2007, pp. 139–150.

[4] D. Belazzougui, F. C. Botelho, and M. Dietzfelbinger, “Hash, displace, and compress,” in Algorithms-ESA
2009. Springer, 2009, pp. 682–693.

[5] Z. J. Czech, G. Havas, and B. S. Majewski, “An optimal algorithm for generating minimal perfect hash
functions,” Information Processing Letters, vol. 43, no. 5, pp. 257–264, 1992.

[6] D. de Castro Reis, D. Belazzougui, F. C. Botelho, and N. Ziviani, “CMPH – C Minimal Perfect Hashing
Library.” [Online]. Available: http://cmph.sourceforge.net

http://doi.acm.org/10.1145/2094114.2094126
http://cmph.sourceforge.net

	Intorduction
	The Problem
	Known Methods

	Fingerprint Retrieval (FiRe)
	Structure
	Analysis
	Extensions

	Experimental Results
	Experiment Settings
	Construction Time
	Space Overhead
	Query Times

	Summary and Future Work
	Extras

