
Moritz Klammler

Application of Efficient Matrix Inversion to the
Decomposition of Hierarchical Matrices

Bachelor’s Thesis

Date of Submission: November 11, 2014

Supervisor: Prof. Dr. Peter Sanders
Dipl.-Inform., Dipl.-Math. Jochen Speck

Secondary Supervisor: Prof. Dr. Christian Wieners
Dr. Daniel Weiß

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Institute for Applied and Numerical Mathematics
Department of Mathematics

Karlsruhe Institute of Technology

Copyright © 2014 Moritz Klammler

Permission is hereby granted, free of charge, to any person obtaining a copy of this soft-
ware and associated documentation files (the “Software”), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

The Software is provided “as is”, without warranty of any kind, express or implied, including
but not limited to the warranties of merchantability, fitness for a particular purpose and
noninfringement. In no event shall the authors or copyright holders be liable for any claim,
damages or other liability, whether in an action of contract, tort or otherwise, arising from,
out of or in connection with the Software or the use or other dealings in the Software.

Contents

1 Introduction 1
1.1 Previous Work . 1
1.2 Our Contribution . 2
1.3 Overview . 3

2 Preliminaries 4
2.1 Typographical Conventions . 4
2.2 Complexity . 5

2.2.1 Asymptotic Complexity 7
2.2.2 Floating Point Operations 8
2.2.3 Execution Time . 9

2.3 Linear Systems . 11
2.3.1 LU Decomposition . 11

2.3.1.1 Forward Substitution 12
2.3.1.2 Backward Substitution 13

2.3.2 Cholesky Decomposition 14
2.3.2.1 Inner Product Cholesky 15
2.3.2.2 Gaxpy Cholesky 17
2.3.2.3 Outer Product Cholesky 19

2.3.3 Block LU Decomposition 19
2.3.4 Block LDU Decomposition 20
2.3.5 Matrix Inversion . 20

2.3.5.1 Gauß-Jordan Elimination 21
2.3.5.2 Strassen Inversion 21
2.3.5.3 Newton Inversion 23
2.3.5.4 The NeSt Algorithm 25

2.4 Hierarchical Matrices . 27
2.4.1 Nested Dissection . 28

2.4.1.1 Symmetry . 30

3 Algorithmics 32
3.1 Notation . 33
3.2 Block LLT Decomposition of H-Matrices 34

i

ii CONTENTS

3.2.1 Decomposition . 34
3.2.2 Work-Flow . 36
3.2.3 Complexity . 37
3.2.4 Parallelism . 40

3.2.4.1 Synchronization 40
3.2.4.2 Parallel Efficiency 42

3.2.5 Solving . 42
3.3 Block LDLT Decomposition of H-Matrices 43

3.3.1 Complexity . 46
3.3.2 Parallelism . 46

4 Implementation 48
4.1 Technologies . 48

4.1.1 Programming Languages 48
4.1.2 Libraries . 49

4.1.2.1 BLAS & LAPACK 49
4.1.2.2 Boost uBLAS . 50
4.1.2.3 TNT . 52
4.1.2.4 Eigen . 53
4.1.2.5 Comparison . 55

4.1.3 Tools and Programs . 59
4.2 Algorithms and Data Structures 59

4.2.1 Data Structures for Hierarchical Matrices 60
4.2.1.1 The Abstract HMatrix Class 60

4.2.1.1.1 Visitors 61
4.2.1.2 Leafs: The FullMatrix Class 62
4.2.1.3 Nested Dissection: The BlockMatrix Class . . 62
4.2.1.4 Arbitrary Children: The ArrangedMatrix Class 62
4.2.1.5 Slicing and Transposing: The MatrixView Class 63
4.2.1.6 HVector and FullVector 65

4.2.2 Basic Algorithms for Hierarchical Matrices 65
4.2.2.1 Implementation Strategy 65
4.2.2.2 Sums and Differences 67
4.2.2.3 Products . 69

4.2.2.3.1 Matrix-Vector Products 69
4.2.2.3.2 Matrix-Matrix Products 70

4.2.3 Decompositions . 72
4.3 Parallelization . 73

4.3.1 Synchronization . 75
4.4 Observation . 77
4.5 Quality . 78

CONTENTS iii

5 Experimental 80
5.1 Test Setup . 81
5.2 Hardware . 81
5.3 Decomposition . 82
5.4 Solving . 84
5.5 Accuracy . 84
5.6 Tests on the Smaller ITI-120 . 89

6 Conclusion 91
6.1 Further Work . 92

Bibliography I

List of Algorithms III

List of Code Listings V

List of Figures VII

List of Tables IX

Acknowledgments

I want to thank my parents for their unconditional life-long support during all
the years of my academic career.

Furthermore, I would like to thank Daniel Weiß for giving a great lecture on
numerical mathematics that has attracted me to the subject. I would like to thank
my supervisors Jochen Speck and Daniel Weiß for always having been there for
me during preparation of this work. I’m especially thankful to Daniel Maurer for
many hours of inspiring discussions about the subject. Without his input, this
work would not have been possible.

Last but not least, I would like to thank the hackers from the Eigen project for
having built such a great linear algebra library and releasing it as free software.
Eigen’s clean interfaces and outstanding performance have made implementing
this work much more joyful. In particular, I am thankful to Christoph Hertzberg
form the Eigen project for promptly replying to our inquiries.

Moritz Klammler, November 2014

iv

Chapter 1

Introduction

Solving linear systems – that is, given M ∈ Rn×n and b(1), . . . ,b(k) ∈ Rn for
n,k ∈ N, finding x(1), . . . ,x(k) ∈ Rn such that

Mx(l) = b(l)

for l ∈ {1, . . . ,k } – is one of the fundamental tasks of numerical mathematics
(§ 2.3).

We are studying systems where the coefficient matrix M is symmetric and
positive definite and has a special hierarchical structure that is obtained by per-
forming a procedure known as nested dissection (§2.4.1) that yields a structure like
the following

where the blank regions are known to be zero and the shaded blocks may con-
tain anything. Such hierarchical matrices (H-matrices) are stored as a tree of sub-
matrices with ordinary matrix representations at the leafs. Many operations for
such matrices can be formulated elegantly using recursion.

1.1 Previous Work

Maurer and Wieners have adapted block LU decomposition (§ 2.3.4) to such ma-
trices and presented an implementation closely related to finite-element compu-

1

2 CHAPTER 1. INTRODUCTION

tations for shared memory systems [15].
Meanwhile, Sanders, Speck, and Steffen have presented an algorithm that

combines Newton (§ 2.3.5.3) and Strassen (§ 2.3.5.2) inversion to obtain a work-
efficient matrix inversion algorithm (NeSt, § 2.3.5.4) for symmetric and positive
definite matrices with poly-logarithmic time complexity [20].

1.2 Our Contribution

We have combined block LU decomposition of H-matrices with nested dissection
structure – which is block LLT decomposition for symmetric and positive definite
matrices – (§ 3.2) with matrix inversion to obtain a new scheme that we call block
LDLT decomposition (§ 3.3). It computes a decomposition into a lower triangular
block matrix and a block diagonal matrix where the latter is inverted.

Using NeSt for matrix inversion, this algorithm’s work is dominated almost
exclusively by computing matrix-matrix products for which the most highly op-
timized libraries are available off-the-shelf. Furthermore, it is important that
matrix-matrix multiplication has a logarithmic critical path length if computed
in parallel while Cholesky factorization (§ 2.3.2) and substitution (§ 2.3.1.1) which
are needed for the block LLT version both have a linear critical path. Therefore,
our variant is supposed to take out more of the hardware and scale better to highly
parallel systems. On the down side, the LDLT variant has to perform more work
for the decomposition.

Once the decomposition is computed, both algorithms can solve systems for
the various right-hand sides with equal work required. However, the LDLT vari-
ant has again a shorter critical path and only needs matrix-vector products, which
are again readily available in highly optimized versions.

We have implemented blockLLT andLDLT decomposition for shared-memory
systems using the C++ programming language (§ 4). The source code is available
from the author as free software ¹.

Tests (§ 5) show that for a machine with 32 CPUs and 500GiB memory, the
achieved ratio of effective floating point instructions per unit time is better roughly
by a factor of two which sometimes compensates for the additional work that is to
be done so with regard to overall execution time, there are problems where either
of the algorithms outperforms the other. However, the advantage of block LDLT

is not significant and for smaller systems, the LLT version is much faster.
On the other hand, we could show a significant improvement on the execution

time when it comes to solving individual linear systems, once a decomposition is
computed.

Other than one might expect, the additional errors introduced by computing
the inverse matrix via an iterative procedure – as opposed to a direct Cholesky
factorization – are significant but very moderate (≈ 10%), at least for the well-
conditioned systems we have investigated.

¹http://www.klammler.eu/bsc/

http://www.klammler.eu/bsc/

1.3. OVERVIEW 3

1.3 Overview

In chapter 2 we introduce some fundamental concepts that are required for our
work. Most of this is textbook knowledge and may be skipped by the enlightened
reader. Section 2.3 depends on section 2.2 but section 2.4 is mostly independent.
The reader acquainted with the concept of H-matrices might be interested to hear
that we do not consider low-rank representations [4] in our work but assume all
non-zero blocks be stored as full matrices. The sub-sections describing the various
decompositions in section 2.3 are again mostly independent of each other. All of
this writing depends on the typographical conventions introduced in section 2.1.

Chapter 3 presents the block LLT and block LDLT decomposition of symmet-
ric and positive definite H-matrices with nested dissection structure. The algo-
rithms are discussed on an abstract level.

Then, in chapter 4 we describe our specific implementation. The section 4.1
can be read in isolation but section 4.2 depends on the previous chapter. The
remaining sections in this chapter depend on section 4.2. Some knowledge of the
C++ programming language is assumed for the whole chapter.

In chapter 5 we present some experimental results from tests with running
our implementation on two server machines. It requires a brief understanding of
what we did but might be digestible in isolation for a reader used to the subject
after reading only the present chapter.

Finally, we draw a conclusion in chapter 6.

Chapter 2

Preliminaries

2.1 Typographical Conventions

If all possible, we use upper-case Latin symbols (A,B,C, . . .) for matrices and
lower-case Latin symbols (u,v,w , . . .) for vectors. Symbols denoting matrices or
vectors are printed in bold. We write 1 and 0 for the unit matrix and a matrix of
all zeros respectively where the dimensions will be unambiguous from the context
and likewise for vectors. For real scalar factors, we use lower-case Greek letters
(α ,β ,γ , . . .). The lower-case Latin symbols i, j,k ,l ,m,n, . . . are used for integral
values (mostly dimensions and indices). Variables referring to commonly used
domains (integers, reals, …) are printed in blackboard bold (N,R, . . .). We use the
symbolN for the positive,N0 for the non-negative and Z for the set of all integers.
Unless otherwise mentioned, matrices, vectors and scalars are real.

Here are some examples:

Ax = b

This is the most simple form of a matrix equation. A is a matrix and x and b are
vectors.

(λ1 −A)v = 0

This is the canonical definition of the eigenvalue problem. λ is a scalar, 1 the unit
matrix, A a matrix,v a vector and 0 the zero vector.

Indexing In equations and pseudo-code, we are using 1-based indexing unless
mentioned otherwise. For example,

vi =
m∑
k=1

Aikuk

is the element-wise definition of the matrix-vector productAu = v withv ∈ Kn ,
u ∈ Km and A ∈ Kn×m for field K and n,m ∈ N. The variables are not bolded

4

2.2. COMPLEXITY 5

because the entries in a matrix are scalars (elements in Ai j ∈ K ; of course, there
are also non-scalar fields, but we don’t consider them).

Sub-Matrices & Slicing Syntax If needed, we use the slicing syntax “[i : j]”
found in some high-level programming languages to refer to sub-matrices and
sub-vectors.

For a vectorv , the expressionv[i : j] refers to the sub-vectorwith the elements
vi , . . . ,vj (all inclusive) and is only meaningful if 1 ≤ i ≤ j ≤ n where n is the
size of v . The expression v[:] is the same as v but this verbose syntax is needed
to disambiguate matrix slices. For a matrix A, the expression A[i][:] extracts the
i-th row vector of A while A[:][j] extracts the j-th column vector. The expression
A[:][:] is identical to A and A[i][j] is a 1 × 1 matrix with the only element Ai j .

We write B ⊑ A to express that the matrix B is a sub-matrix of A. That is, if
A ∈ KnA×mA and B ∈ KnB×mB for some field K and nA,mA,nB ,mB ∈ N, then the
expression B ⊑ Ameans that there exist il,iu ∈ {1, . . . ,nA} and jl, ju ∈ {1, . . . ,mA}
such that B = A[il : iu][jl : ju].

Bra-Ket Notation We don’t treat row and column vectors differently, that is,
we use the vectors v and vT interchangeably. It will be clear from the context
how the vector is to be applied. Where this is not clear, we resort to the bra-ket
syntax to disambiguate. If u andv are vectors, then ⟨v | is a row vector and |v⟩ is
a column vector. Therefore, ⟨u |v⟩ is an inner (dot) product and |u⟩ ⟨v | is an outer
(tensor) product.

Inverse and Transpose Since for any regular square matrix A, the transpose of
the inverse

(
A−1

)T
and the inverse of the transpose

(
AT

)−1
are identical, we use

the shorthand notation A−T to refer to either of them.

2.2 Complexity

The complexity of a procedure describes how the consumption of a precious re-
source (execution time, memory, computation units, …) scales with the size of the
input. Such resource consumption is frequently referred to as cost.

Definition 1 (Cost Function) Let R be a resource that can be measured (or
approximated) by an integral quantity. Let further Σ be an alphabet (without
loss of generality, assume Σ = {0 , 1 }) and p : Σ∗ → Σ∗ a Turing-commutable
function. Finally, let A be an algorithm that computes p and r : N0 → N0.
r is a cost function for A’s consumption of resource R if r(|w |) is the (peak)
consumption of resource R by A while computing p(w).

Naturally, one has an interest in keeping the growth of the cost function, as
well as its magnitude as low as possible. For a given problem, if there is more

6 CHAPTER 2. PRELIMINARIES

than one known algorithm to solve it, the best of these algorithms defines an
upper bound to the theoretical complexity of the problem as a whole. For some
problems, theoretical proofs exist, that the bound is sharp, ie there can be no better
algorithm.

While definition 1 of a cost function is (as) general (as the Turing computation
model), it is often useful to use a somewhat modified definition of input size that
is closer to the problem domain.

As an example, consider an algorithm that operates on a real matrixA ∈ Rn×n
with n ∈ N.

A =

*.....,
a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

+/////-
Since real numbers cannot be represented in general by a finite sequence of digits,
we’ll approximate the matrix entries ai j by fixed-size keys âi j ∈ {1, . . . ,2d } with
constant d ∈ N into a finite lookup-table of some carefully chosen real numbers
that hopefully minimize rounding errors.¹

Â =

*.....,
â11 â12 · · · â1n
â21 â22 · · · â2n
...

...
. . .

...

ân1 ân2 · · · ânn

+/////-
≈ A

Using the alphabet Σ = {0 , 1 , [,] , , , ; }, we can now encode the approximated
input Â as a string s = [s11 , s12 , … , s1n ; s21 , s22 , … , s2n ; … ; sn1 ,

sn2 , … , snn] where the si j ∈ {0 , 1 }d are the binary encoded keys âi j .
It can be readily seen that the length of this encoding is given by |s | = (1 +

d)n2 + 1. However, that’s pretty far from the problem domain (real linear al-
gebra) and depends on unimportant (and arbitrarily chosen) details such as the
exact syntax² of the encoding and the bit size d of the real value type. For most
discussions, it would be much more convenient to measure complexity directly as
a function of n, where the reader will understand that there is a simple mapping
of n to the length of a reasonable encoding. We will use this adapted (loose) defi-
nition of cost functions for the remainder of this work but include some remarks
on encoding where appropriate. It is worth mentioning that the above approach
to encoding is using the Turing computation model whereas all modern hard-
ware uses random access memory. We will discuss complexity in terms of real
hardware, not hypothetical Turing machines.

¹This is just an awkward way to think of fixed-size floating point numbers but this theoreti-
cal approach allows us to discuss lossy encodings of real numbers without taking a stand for any
particular convention such as 32 bit IEEE 754 floating point numbers.

²Which – in this example – “happens” to be the one understood by the user interfaces of some
popular linear algebra software packages.

2.2. COMPLEXITY 7

2.2.1 Asymptotic Complexity

In theoretical computer science, it is often interesting how the cost of an algorithm
scales if the input size approaches infinity. Biases and constant factors are gener-
ally less interesting because they are readily overcome by the steadily increasing
power of computers.

Definition 2 (Asymptotic Growth) Let f : N0 → R be a function (or a
sequence, if you prefer).

The set

O(f) =
{
(д : N0 → R) : ∃α > 0,N ∈ N0 : ∀n ≥ N : | f (n)| ≥ α |д(n)|} (2.1)

is defined to contain all functions д that grow at most as fast as f . We say that all
of the д are asymptotically bounded above by f , ignoring constant factors.

Likewise, the set

Ω(f) =
{
(д : N0 → R) : ∃α > 0,N ∈ N0 : ∀n ≥ N : | f (n)| ≤ α |д(n)|} (2.2)

is defined to contain all functions д that grow at least as fast as f . We say that all
of the д are asymptotically bounded below by f , ignoring constant factors

Finally, the set
Θ(f) = O(f) ∩ Ω(f) (2.3)

is defined as the intersection of the above two. It contains all functions д that
grow as fast as f . We say that all of the д are asymptotically bounded above and
below by f , again ignoring constant factors.

Using the symbols from definition 2 is also known as Landau notation³.
To simplify the notation, we will often write for exampleO(n3) which will be

understood as O(n 7→ n3).
When using asymptotic growth to discuss the complexity of cost functions,

care has to be taken that this ignores (on purpose) any constant factors. For ex-
ample, algorithm A and B might both compute the same function. The peak
amount of memory required to process an input of n bytes size might be given
by αn2 bytes for A and βn3 bytes for B. Clearly, for n > α/β , algorithm A will
use less memory. However, if α/β is so large, that current hardware cannot re-
alistically handle it, algorithm B will perform better for all inputs of feasible size
while algorithm A will have to be abandoned until the hardware of the future
will eventually allow for computing large enough problems.

³In honor of the German mathematician Edmund Georg Hermann Landau (∗ 1877, Berlin, Ger-
many; † 1938, ebenda).

8 CHAPTER 2. PRELIMINARIES

2.2.2 Floating Point Operations

To reason about the amount of work an algorithm has to carry out, we like to
look at the number of floating point operations it has to perform. Since at the
lowest level, most computations basically consist of computing sums of products,
the following definition appears useful.

Definition 3 (Floating Point Operation) An effective floating point opera-
tion (FLOP) is a pair of a multiplication (or division) and addition (or subtraction)
of floating point values that is required by an algorithm in order to compute its
result.

When “counting” the FLOPs in an algorithm, we are generally only interested
in the term that dominates the asymptotic growth. However, we generally do not
use Landau-notation because constant factors usually do matter.

For example, if the exact number of FLOPs for input size n ∈ N were given by

W (n) = c0 + c1n + c2n
2

we will be fine with knowing that for large n, the amount of work is basically
given by W (n) ≈ c2n

2. However, we will not rush to say that W (n) ∈ Θ(n2),
although it is correct, because it does matter in practice how large the constant
factor c2 is.

FLOPs are counted on an abstract algorithmic level without worrying about
implementation specific details. For example, the scalar product of the vectors u
andv

⟨u |v⟩ =
n∑

i=1

uivi (2.4)

with u,v ∈ Rn and n ∈ N takes n FLOPs, when computed directly as in algo-
rithm 2.1.

Even ignoring the machine instructions needed for branching, at the very
least, the computer will have to do n additions of integers to keep track of the
iteration index i . We deliberately did not include them in our estimate, not so
much because it is an integer and not a floating point operation (which are often
faster) but because it is not something that is actually useful from a numeric point
of view. In fact, a concerned programmer or (better) a smart compiler could easily
reduce the number of i-increments needed by any constant factor by trivially
unrolling the loop.

If above algorithm were implemented in some higher-level language, it might
very well take even more machine instructions just to load a value from an array
(eg for bounds checking or dynamic binding). Would we have to take all these
operations into account, it would no longer be possible to reason about the general
idea of an algorithm as an abstract concept. Instead, we would be discussing
implementation details of compilers and hardware that might quickly become
obsolete.

2.2. COMPLEXITY 9

PROCEDURE DotProduct
INPUT

u[1 . . .n] : Real
v[1 . . .n] : Real

OUTPUT
d : Real

VARIABLES
i : Integer

BEGIN
d ← 0 ;; constant term ignored
FOR i ← 1 TO n DO ;; loop control overhead ignored

d ← d + uivi ;; 1 FLOP per iteration
DONE

END

Algorithm 2.1: Example algorithm computing the inner (“dot”) product of two
real vectorsu,v ∈ Rn as in equation 2.4. This algorithm performsn FLOPs in total.
The single instruction for initializing d with 0 is ignored as is the implementation
specific overhead for loop control and the call-return overhead.

By only counting effective FLOPs, we can give a measure of the theoretical
cost of an algorithm that will be applicable to any implementation.

2.2.3 Execution Time

From a user’s perspective, what is even more interesting than the number of op-
erations an algorithm carries out, is how long they will have to wait until it even-
tually completes computation.

Definition 4 (ExecutionTime) The execution time of a program is the amount
of physical time that passes after the program is started until it halts.

We say “physical time” rather than “wall time” or “world time” because we are
referring to the physical quantity time, not the man-made convention of dates and
times that is crippled by leap seconds and clock adjustments.

Measuring physical time – as opposed to counting machine instructions – is
agnostic with regard to any hardware or software details. It will therefore auto-
matically take into account any overhead that is created by cache misses, pipeline
flushes, system calls, thread synchronization and even effects we might not even
be aware of.

To give a measure how well an implementation makes use of the hardware,
we compare the fraction of effective FLOPs per unit execution time.

Definition 5 (FLOP Rate) Let A be a numeric algorithm where the number

10 CHAPTER 2. PRELIMINARIES

of FLOPs for a problem of given size is given by the cost functionW : N0 → N0.
Let further I be an implementation of A where the execution time for an input
of given size on a fixed number c ∈ N of cores is given by tc : N0 → R. The FLOP
rate

Rc(n) =
W (n)

ctc(n)
(2.5)

is a quantity that denotes the number of effective FLOPs that – on average – are
carried out on each core per unit time.

In SI units, the unit of R would be FLOPs per second and core, conveniently
abbreviated to FPS per core.

A high FLOP rate indicates good usage of the hardware and low bookkeeping
overhead. In no way does the FLOP rate have to or will be constant for varying
inputs or numbers of cores.

FLOP count and FLOP rate are orthogonal. While the former measures how
much (or, preferably, how little) numeric work needs to be done by an algorithm,
the latter measures how effective an algorithm is implemented by a program. It
is not uncommon to see implementations of naïve algorithms achieve a higher
FLOP rate than those of sophisticated ones. Often, the more advanced the algo-
rithm, the more bookkeeping is required by the implementation and the smaller
the fraction of the work that is spent doing actual floating point operations. Ide-
ally, the execution time will still be lower since the total number of FLOPs will be
significantly lower, too.⁴

Especially for a multi-threaded program, it is worthwhile to investigate how
the FLOP rate evolves when assigning more cores to the program. While it is
exceptionally unlikely to grow, it would ideally stay the same. If instead the FLOP
rate drops rapidly as more cores are added, this indicates that the program is
unable to distribute the work effectively across the cores.

Sometimes, a somewhat different measure is useful.

Definition 6 (Speedup) Let I be the implementation of an algorithm where
the execution time for an input of given size on a fixed number c ∈ N of cores is
given by the cost function tc : N0 → R. The quantity

Sc(n) =
t1(n)

tc(n)
(2.6)

is called the speedup that is gained by giving more cores to I.

Ideally, Sc(n) = c for every c ∈ N and sufficiently large n ∈ N. In practice,
however, Sc(n) ≤ c due to additional communication overhead. In extreme cases,

⁴As a matter of fact, in this work we will later present an algorithm that has a higher FLOP
count than another one but is still supposed to outperform it (achieve lower total execution time)
due to the fact that under carefully contrived circumstances, it can make more efficient use of the
hardware so to increase the FLOP rate to a level that compensates for the extra work.

2.3. LINEAR SYSTEMS 11

it might even be observed that Sc(n) < 1 that is, the program actually runs slower
if given more cores. This happens if the computation is basically sequential so all
cores except one are waiting and the one that actually computes is further slowed
down by additional coordination overhead.

2.3 Linear Systems

Definition 7 (Linear System) Let n ∈ N andA ∈ Rn×n . A linear system is an
equation of the form

Ax = b (2.7)

where A and b ∈ Rn are given and x ∈ Rn is to be determined.
The matrix A is called coefficient matrix.

If the coefficient matrix A in definition 7 is regular, then there always exists
a x ∈ Rn such that equation 2.7 becomes true. In the remainder of this work, we
are only interested in linear systems where the coefficient matrix is regular.

Often times, many linear systems of the form Ax(k) = b(k) should be solved
for a single coefficientmatrixA ∈ Rn×n andmultiple right-hand sidesb(1), . . . ,b(k) ∈
Rn for n,k ∈ N.

In the following sections, we will introduce some standard procedures for
solving linear systems and discuss some of their properties.

2.3.1 LU Decomposition

LU decomposition is by far the most popular method for solving general linear
systems. Given a regular coefficient matrix A ∈ Rn×n , a lower triangular matrix
L ∈ Rn×n , an upper triangular matrix U ∈ Rn×n and an orthogonal permutation
matrix P ∈ {0,1}n×n are computed such that

LU = PA . (2.8)

Once this is done, the linear system

Ax = b (2.9)

for x ∈ Rn can be solved by multiplying equation 2.9 from the left with P and
then substituting equation 2.8 for A to obtain

LUx = Pb . (2.10)

Defining c = Pb ∈ Rn andUx = y ∈ Rn , we obtain the linear system

Ly = c . (2.11)

12 CHAPTER 2. PRELIMINARIES

Since L is a lower triangular matrix, c is readily computed by means of forward
substitution (§ 2.3.1.1). Substituting back into the definition of y, we obtain yet
another linear system

Ux = y . (2.12)

Since U is an upper triangular matrix, x can now be computed by performing a
backward substitution (§ 2.3.1.2) which gives us the solution for the original linear
system in equation 2.9.

LU decomposition with pivoting (ie considering P , 1) for a n × n matrix
requires about n3/3 FLOPs [7]⁵ and is P-complete [8]⁶.

The algebraic and numeric properties of the LU decomposition are extremely
well understood and we will not further elaborate on them. Textbook knowledge
may be found in Golub and Loan [7] or Press et al. [19] as well as innumerable
other titles. We won’t even provide the algorithm for obtaining the factors L
and U or the permutation P since we don’t use it in this work. The main reason
we’ve introduced the LU decomposition at all is that it provides a convenient
foundation for introducing the Cholesky decomposition (§ 2.3.2). However, we
do provide algorithms for forward and backward substitution since these play an
important role in our work.

2.3.1.1 Forward Substitution

Letn,k ∈ N andL ∈ Rn×n be a regular lower triangularmatrix. Givenc(1), . . . ,c(k) ∈
Rn , we want to find y(1), . . . ,y(k) ∈ Rn such that

Ly(l) = c(l) (2.13)

for all l ∈ {1, . . . ,k }.
Solving

c
(l)
i =

i∑
j=1

Li jy
(l)
j = Liiy

(l)
i +

i−1∑
j=1

Li jy
(l)
j (2.14)

for y(l)i , we get

y
(l)
i =

1

Lii

*.,c
(l)
i −

i−1∑
j=1

Li jy
(l)
j

+/- (2.15)

for all l ∈ {1, . . . ,k } and i ∈ {1, . . . ,n}. Every result y(l)i only depends on inputs
and other y(l)j with j < i which means we can use equation 2.15 to compute y(l)1

⁵Note that Golub and Loan [7] define a FLOP as a single operation, not a pair of a multiplication
and an addition, therefore, they obtain a value of 2n3/3 FLOPs.

⁶That is, there cannot be a parallelization scheme that solves the problem in sub-polynomial
time while utilizing at most a polynomial (in n) number of computation units unless such a scheme
exists for all problems in P, the class of problems that can be solved sequentially in polynomial
time.

2.3. LINEAR SYSTEMS 13

and then in turny(l)2 and so forth.⁷ It should be clear that the solutions for different
l are all completely independent of each other. This leads to the straight-forward
algorithm 2.2.

An analysis of algorithm 2.2 reveals that it performs about k n2

2 ∈ Θ(kn2)
FLOPs. What is more important for our work is that in the middle loop, every re-
sult depends on the previous one. Therefore, the loop cannot be fully parallelized
which means that the algorithm has a critical path length on the order of Ω(n).

PROCEDURE ForwardSubstitution
INPUT

L[1 . . .n][1 . . .n] : Real
C[1 . . .n][1 . . .k] : Real

OUTPUT
Y [1 . . .n][1 . . .k] : Real

VARIABLES
i, j,l : Integer

BEGIN
FOR l ← 1 TO k DO PARALLEL

FOR i ← 1 TO n DO
Yil ← Cil
FOR j ← 1 TO i − 1 DO PARALLEL

Yil ← Yil − Li jYjl
DONE
Yil ← Yil/Lii

DONE
DONE

END

Algorithm 2.2: Algorithm for solving the multiple real linear systems Ly(l) =
c(l) with c(l) ≡ C[:][l] and y(l) ≡ Y [:][l] for l ∈ {i, . . . ,k } where L is a regular
lower triangular matrix.

2.3.1.2 Backward Substitution

Similar to the problem discussed in the previous section, the set of matrix equa-
tions

x(l)U = b(l) (2.16)

⁷Equation 2.15 is always well-formed because none of the Lii for i ∈ {1, . . . ,n} can be zero or

det(L) =
n∏

i=1

Lii = 0

in contradiction to our requirement that L be regular.

14 CHAPTER 2. PRELIMINARIES

– which have the same solutions as Ux(l) = y(l)⁸ – with vectors x(l),b(l) ∈ Rn
and the regular upper triangular matrixU ∈ Rn×n for l ∈ {1, . . . ,k } and n,k ∈ N
can be solved for x(l) by solving

b
(l)
i =

n∑
j=i

x
(l)
j Ui j = x

(l)
i Uii +

n∑
j=i+1

x
(l)
j Ui j (2.17)

to obtain

x
(l)
i =

1

Uii

*.,b
(l)
i −

n∑
j=i+1

x
(l)
j Ui j

+/- . (2.18)

This is implemented in algorithm 2.3 that also performs k n2

2 ∈ Θ(kn2) FLOPs and
has a critical path of length Ω(n) when executed in parallel.

PROCEDURE BackwardSubstitution
INPUT

U [1 . . .n][1 . . .n] : Real
B[1 . . .k][1 . . .n] : Real

OUTPUT
X [1 . . .k][1 . . .n] : Real

VARIABLES
i, j,l : Integer

BEGIN
FOR l ← 1 TO k DO PARALLEL

FOR i ← n DOWN TO 1 DO
Xl i ← Bl i
FOR j ← i + 1 TO n DO PARALLEL

Xl i ← Xl i −Ui jXl j
DONE
Xl i ← Xl i/Uii

DONE
DONE

END

Algorithm 2.3: Algorithm for solving the multiple real linear systems x(l)U =

b(l) with b(l) ≡ B[:][l] and x(l) ≡ X [:][l] for l ∈ {1, . . . ,k } where U is a regular
upper triangular matrix.

2.3.2 Cholesky Decomposition

LU decomposition is a great black box algorithm because it works for arbitrary
regularmatrices. However, if we have additional information about the coefficient

⁸Remember (§ 2.1) that we don’t distinguish between “row” and “column” vectors.

2.3. LINEAR SYSTEMS 15

matrix, some work can be saved by exploiting these properties.
Let n ∈ N and A ∈ Rn×n be a symmetric⁹ and positive definite¹⁰ matrix.

(We will occasionally abbreviate the property “symmetric and positive definite”
as “spd”.) Such a matrix is always regular.¹¹ Instead of decomposingA as in equa-
tion 2.8, we can compute a simpler decomposition of the form

A = LLT (2.19)

whereL ∈ Rn×n is a regular lower triangularmatrix. This decomposition is known
as Cholesky¹² or LLT decomposition.

Once the factorization is computed, linear systems can be solved for any num-
ber of right hand sides via performing a forward (§ 2.3.1.1) followed by a backward
substitution (§ 2.3.1.2) just as for the LU decomposition.

2.3.2.1 Inner Product Cholesky

A straight-forward formula for the Cholesky decomposition is readily derived by
writing the factorization from equation 2.19 component wise as

*......,

L11 0 · · · 0

L21 L22
. . .

...
...

...
. . . 0

Ln1 Ln2 · · · Lnn

+//////-
*.....,
L11 L21 · · · Ln1
0 L22 · · · Ln2
...
. . .

. . .
...

0 · · · 0 Lnn

+/////-
=

*.....,
A11 A21 · · · An1
A21 A22 · · · An2
...

...
. . .

...

An1 An2 · · · Ann

+/////-
and finding that

Ai j =

j∑
k=1

LikLk j (2.20)

for all i ∈ {1, . . . ,n}, j ∈ {1, . . . ,i}. (For j > i , simply use that A is symmetric,
therefore Ai j = Aji .) Equation 2.20 can be solved for Li j to obtain

Li j =



√
Ai j −

∑j−1
k=1

LikLjk , j = i
1
Lj j

(
Ai j −

∑j−1
k=1

LikLjk
)
, j < i

0, j > i

(2.21)

⁹Let n ∈ N and A ∈ Rn×n . The matrix A is symmetric if and only if Ai j = Aji for all i, j ∈
{1, . . . ,n}.

¹⁰Let n ∈ N and A ∈ Rn×n . The matrix A is positive definite if λi > 0 for all of its eigenvalues
λ1, . . . ,λn .

¹¹Let n ∈ N and A ∈ Rn×n be spd. Then

det(A) =
n∏

i=1

λi > 0

where λ1, . . . ,λn are the positive (by definition) eigenvalues (repeated by their algebraic multiplic-
ities) of A. Therefore, det(A) , 0 so A is regular.

¹²In honor of the French mathematician André-Louis Cholesky (∗ 1875, Montguyon, France;
† 1918, Bagneux, France).

16 CHAPTER 2. PRELIMINARIES

for all i, j ∈ {1, . . . ,n}. By carefully looking at the dependencies in the above
equation, one can see that if the entries in L are computed top-down and left-
right, only values are used that have already been computed. This is implemented
in algorithm 2.4; see Press et al. [19] for details.

Algorithm 2.4 performs n3/6 FLOPs. This textbook version of the Cholesky
decomposition only requires elementary linear algebra but, as written, has an out-
rageous quadratic critical path length. By rearranging the loops, we can derive an
algorithm (§ 2.3.2.2) that only has a linear critical path length and a more desirable
memory access pattern.

PROCEDURE CholeskyInnerProduct
INPUT

A[1 . . .n][1 . . .n] : Real
OUTPUT

L[1 . . .n][1 . . .n] : Real ;; may alias A for in−place update
PRECONDITIONS

A is symmetric and positive definite
VARIABLES

i, j,k : Integer
d : Real

BEGIN
FOR i ← 1 TO n DO

FOR j ← 1 TO i DO
d ← Ai j
FOR k ← 1 TO j − 1 DO PARALLEL

d ← d − LikLjk
DONE
IF i = j THEN

Li j ←
√
d

ELSE
Li j ← d/Lj j

FI
DONE

DONE
END

Algorithm 2.4: Algorithm for computing the Cholesky decomposition LLT = A
of a symmetric and positive definite matrix A ∈ Nn×n . The essential step of this
algorithm is the computation of the inner product in the innermost loop.
It would be admissible for A and L to refer to the same storage location since in
no event, Ai j is loaded after Li j has been stored. The structure of the matrix is
implicit, that is, we don’t ever look at the upper half ofA nor do we ever write to
the upper half of L (not even the zeros).

2.3. LINEAR SYSTEMS 17

2.3.2.2 Gaxpy Cholesky

Golub and Loan [7] derive a version of the Cholesky decomposition that is based
on so-called “gaxpy” operations.¹³

In equation 2.19, consider how the j ∈ {1, . . . ,n}-th columnA[:][j] ofA is given
by

A[:][j] = L[:][1 : j](LT)[:][j] = L[:][1 : j]L[j][:]T . (2.23)

The matrix-vector product on the right side can be re-written as the vector sum

A[:][j] =
j∑

k=1

L[:][k]L[j][k]T =

j∑
k=1

LjkL[:][k] = Lj jL[:][j] +
j−1∑
k=1

LjkL[:][k] (2.24)

and this equation can be rearranged to

Lj jL[:][j] = A[:][j] −
j−1∑
k=1

LjkL[:][k]︸ ︷︷ ︸
=:v

. (2.25)

The vector to the left is the j-th column of L scaled by the factor Lj j . If equa-
tion 2.25 should hold, vj had better be L2j j . Therefore,

L[:][j] =
1
√
vj

v (2.26)

gives us a formula for computing the the j-th column of L. Of course, L[1 : j−1][j]
will always be zero. The square root is always real sinceLmust be positive definite
so Lj j > 0.

Equation 2.26 is implemented in algorithm 2.5. Like algorithm 2.4, it performs
about n3/6 FLOPS [7] but it only has a critical path of lengthΩ(n). This is a major
improvement. In addition, the “gaxpy” operations can be implemented very effi-
ciently on real hardware which makes this variant of the Cholesky factorization
the algorithm of choice for parallel implementations [6].

¹³“Gaxpy” is a jargon term used by some people who have become (over-)used to the Basic Lin-
ear Algebra Subprograms (BLAS) to mean computing a vector as the sum of other vectors, each
multiplied by a scalar factor. In BLAS, a vector y is overwritten with αx + y where α is a scalar
and x is some other vector by calling one of the _axpy routines, to be read as “alpha times x plus
y”. These overly terse function names were enforced by the draconian limits that early versions of
the Fortran programming language set for the maximum allowed length of identifiers strings. The
author admits that he is not entirely sure what the “g” in “gaxpy” is supposed to stand for.

As an important case for the following discussion, consider how the product of a matrix A ∈
Rn×m and a vectorv ∈ Rm for n,m ∈ N can be computed via

Av =
m∑
k=1

vkA[:][k] . (2.22)

18 CHAPTER 2. PRELIMINARIES

PROCEDURE CholeskyGaxpy
INPUT

A[1 . . .n][1 . . .n] : Real
OUTPUT

L[1 . . .n][1 . . .n] : Real ;; may alias A for in−place update
PRECONDITIONS

A is symmetric and positive definite
VARIABLES

v[1 . . .n] : Real
i, j,k : Integer

BEGIN
FOR j ← 1 TO n DO

FOR i ← j TO n DO PARALLEL
vi ← Ai j

DONE
FOR k ← 1 TO j − 1 DO PARALLEL

FOR i ← j TO n DO PARALLEL
vi ← vi − LjkLik

DONE
DONE

DONE
END

Algorithm 2.5: Algorithm for computing the Cholesky decomposition LLT = A
of a symmetric and positive definite matrixA ∈ Nn×n . The algorithm is dominated
by the “gaxpy” operations that accumulate the vectorv .
It would be admissible for A and L to refer to the same storage location since in
no event, Ai j is loaded after Li j has been stored. The structure of the matrix is
implicit, that is, we don’t ever look at the upper half ofA nor do we ever write to
the upper half of L (not even the zeros).

2.3. LINEAR SYSTEMS 19

2.3.2.3 Outer Product Cholesky

There is yet another approach to the Cholesky decomposition that we’ll onlymen-
tion very briefly for the sake of completeness. Please refer to Golub and Loan [7]
for details.

Let α = A11 > 0, a = A[2 : n][:]
¹⁴
= A[:][2 : n] and Ã = A[2 : n][2 : n], then

A =

(
α ⟨a |
|a⟩ Ã

)
=

(
α1/2 ⟨0|

α−1/2 |a⟩ 1

) (
1 ⟨0|
|0⟩ Ã − α−1 |a⟩ ⟨a |

) (
α1/2 α−1/2 ⟨a |
|0⟩ 1

)
(2.27)

where the first equality simply states the definition and the second can easily be
proved by multiplying out. The matrix A(1) = Ã − α−1 |a⟩ ⟨a | ∈ R(n−1)×(n−1)
is again symmetric and positive definite so if L(1)(L(1))T = A(1) is a Cholesky
factorization of A(1), then

L =

(
α1/2 ⟨0|

α−1/2 |a⟩ L(1)

)
. (2.28)

Therefore, after n−1 steps of recursive application, we have the Cholesky decom-
position LLT = A of A.

This approach also performs n3/6 FLOPs [7] and has a critical path of Ω(n).
However, the outer product Cholesky decomposition has a less favorable memory
access pattern compared with the “gaxpy” version which makes it a little less
appealing in practice [7, 6].

2.3.3 Block LU Decomposition

In section 2.3.1 we have introduced the general LU decomposition and then elab-
orated on the important case that the coefficient matrix is symmetric and positive
definite in section 2.3.2. In this section, we’ll present a variant of the LU factor-
ization that constitutes the fundamental building block in our contribution. We
discuss it for the general LU decomposition here but it can likewise be applied to
the Cholesky decomposition with the additional simplification that a few compu-
tations become obsolete thanks to symmetry.

Let n ∈ N and M ∈ Rn×n be regular. Now pick a k ∈ {1, . . . ,n} and block
M into M11 = M[1 : k][1 : k], M12 = M[1 : k][k : n], M21 = M[k : n][1 : k]
and M22 = M[k : n][k : n] where we shall assume that M11 is regular¹⁵. If
L11U 11 = M11 with a regular lower triangular matrix L11 ∈ Rk×k and a regular
upper triangular matrixU 11 ∈ Rk×k is a LU decomposition of M11, then we can
perform n − k forward substitutions to solve L11U 12 = M12 for U 12 ∈ Rk×(n−k)

¹⁴Remember (§ 2.1) that we do not distinguish between row and column vectors.
¹⁵A sufficient condition forM11 to be regular is thatM has an LU factorization without permut-

ing (pivoting). This should be clear from the fact that the LU decomposition (without permutations)
of a regular matrix, if one exists, is unique.

20 CHAPTER 2. PRELIMINARIES

and n − k backward substitutions to solve L21U 11 = M21 for L21 ∈ R(n−k)×k .
Introducing M̃ = M22 − L21U 12, we get

M =

(
M11 M12

M21 M22

)
=

(
L11 0
L21 1

) (
1 0

0 M̃

) (
U 11 U 12

0 1

)
(2.29)

which can be easily proven by multiplying out. The matrix M̃ ∈ R(n−k)×(n−k) is
sometimes called the Schur complement¹⁶ of M . If L22U 22 = M̃ with a regular
lower triangular matrix L22 ∈ R(n−k)×(n−k) and regular upper triangular matrix
U 22 ∈ R(n−k)×(n−k) is the LU decomposition of M̃ , then(

L11 0
L21 L22

) (
U 11 U 12

0 U 22

)
=

(
M11 M12

M21 M22

)
(2.30)

is the LU decomposition of M . This is again proved by simply multiplying out.
Therefore, the factorization ofM can be computed recursively. This approach

to the LU decomposition does not change (for dense matrices) the amount of
FLOPs required but makes matrix products become the dominant operation [7]
which is good because it can be fully parallelized and there are highly optimized
implementations available for it. The overall critical path length of the algorithm
remains on the order of Ω(n), however. Once again, please refer to Golub and
Loan [7] for details.¹⁷

2.3.4 Block LDU Decomposition

The block LU decomposition can be modified to yield a decomposition into three
factors.

Let n ∈ N and M ∈ Rn×n be regular. Let further k ∈ {1, . . . ,n} and M11 =
M[1 : k][1 : k] be regular as well¹⁸. Equation 2.29 can be modified to

M =

(
M11 M12

M21 M22

)
=

(
1 0
L21 1

) (
M11 0

0 M̃

) (
1 U 12

0 1

)
(2.31)

with L21 = M21M
−1
11 , U 12 = M−111M12 and M̃ = M22 −M21M

−1
11M21. Note that

the definitions of L21, U 12 and M̃ are exactly the same as for equation 2.29. The
only difference is really that M11 is not factored.

2.3.5 Matrix Inversion

Definition 8 (Inverse Matrix) Let n ∈ N and M ∈ Rn×n be regular. The
matrix M−1 ∈ Rn×n such that

MM−1 = 1 . (2.32)
¹⁶In honor of the mathematician Issai Schur (∗ 1875, Mogilev, Russian Empire; † 1941, Tel Aviv,

then Mandatory Palestine) who spent most of his working life in Germany.
¹⁷Unfortunately, there is a typo in § 3.2.10 of our copy of Golub and Loan [7] where they erro-

neously write Ã instead of 1n−r (in their typographical conventions).
¹⁸See footnote 15 on page 19.

2.3. LINEAR SYSTEMS 21

is called the inverse of M .

If n,k ∈ N, M ∈ Rn×n and b1, . . . ,bk ∈ Rn , then we can solve the linear
systems

Mx l = bl

for x1, . . . ,xk ∈ Rn by computing the inverse matrixM−1 ∈ Rn×n and then using

x i = M−1b (2.33)

for l ∈ {1, . . . ,k }.
This matrix-vector product requires n2 FLOPs and has a critical path of length

Ω(log(n)).

2.3.5.1 Gauß-Jordan Elimination

The textbook algorithm for computing the inverse of a regular matrix– known as
Gauß-Jordan Elimination¹⁹ with partial pivoting – constructs the inverse matrix
by applying a sequence of row transformations to the matrix and the identity
matrix. After the original matrix has been transformed into the identity matrix,
the identity matrix has been transformed into the inverse matrix. Since neither
identity matrix needs not be stored explicitly, the process can be done in-place,
successively overwriting the original matrix with its inverse as it goes. Please
refer to Press et al. [19] for details.

If the right hand sides are known in advance, the Gauß-Jordan algorithm can
be adapted to solve the linear systems as it inverts the matrix. This is preferred
over inverting the matrix first and then multiplying with the right sides since it
has better numerical stability. [19] We are not using this in our work so we’ve
merely mentioned it.

The algorithm performs n3 FLOPs (three times as much as a straight-forward
LU decomposition) and has a critical path on the order of Ω(n). If the matrix is
known to be symmetric and positive definite, some work can be saved since no
pivoting will be needed and only half of the matrix needs to be computed.²⁰

2.3.5.2 Strassen Inversion

In 1969, Strassen²¹ presented a way to compute the product of two n ×n matrices
with n = 2k for k ∈ N using only O(nω) FLOPs where ω ≤ log

2
(7) ≈ 2.8 [21].

¹⁹In honor of the German mathematician Johann Carl Friedrich Gauss (∗ 1777, Brunswick, then
part of the Holy Roman Empire; † 1855, Göttingen, then Kingdom of Hanover) and the German
geodesist Wilhelm Jordan (∗ 1842, Ellwangen, then Kingdom of Württemberg; † 1899, Hanover,
then a province of Prussia).

²⁰The inverse of a symmetric matrix is symmetric. Proof: Let n ∈ N and M ∈ Rn×n be regular
and symmetric, then MM−1 = 1. Transpose on both sides to get

(
MM−1

)T
= 1T and further

M−TMT = 1T which – since both, M and 1 are symmetric – is equivalent to M−TM = 1. Now
multiply from the right with M−1 and obtain M−TMM−1 = 1M−1 equivalent to M−T = M−1

which was to be shown.
²¹Volker Strassen (∗ 1936, Düsseldorf-Gerresheim, Germany) is a German mathematician.

22 CHAPTER 2. PRELIMINARIES

The naïve approach takes Θ(n3) FLOPs. Since then, much research effort was
invested in lowering the upper bound forω. The current-best (as of 2014) result is
ω ≤ 2.3728639 [12] but it is widely suspected that for every ϵ > 0 an algorithm
with ω < 2+ϵ exists [1]. As already mentioned by Strassen, whatever the bound
on ω for matrix-matrix multiplication is, matrix inversion can be done with the
same asymptotic complexity.

Let k ∈ N andA ∈ Rn×n with n = 2k be regular and have an LU factorization
without permuting. Then block A and A−1 into 2k−1 × 2k−1 sub-matrices

A =

(
A11 A12

A21 A22

)
and A−1 =

(
C11 C12

C21 C22

)
(2.34)

and computeC11,C12,C21 andC22 via

S Ⅰ = A−111 (2.35)
SⅡ = A21S Ⅰ (2.36)
SⅢ = S ⅠA12 (2.37)
SⅣ = A21SⅢ (2.38)
SⅤ = SⅣ −A22 (2.39)
SⅥ = S−1Ⅴ (2.40)
C12 = SⅢSⅥ (2.41)
C21 = SⅥSⅡ (2.42)
SⅦ = SⅢC21 (2.43)
C11 = S Ⅰ − SⅦ (2.44)
C22 = −SⅥ (2.45)

where the inversions in step 2.35 and 2.40 enter the algorithm recursively until
n = 1 (ie k = 0) when matrix inversion degenerates to scalar inversion²². [21]

Equations 2.35 to 2.45 can be combined into the closed expression

*..,
A11 A12

A21 A22

+//-
−1

=
*..,
A−111 +A−111A12S̃

−1
A21A

−1
11 −A−111A12S̃

−1

−S̃−1A21A
−1
11 S̃

−1
+//- (2.46)

with S̃ = A22−A21A
−1
11A12. This is quite similar to the blocking schemes we have

already seen (§§ 2.3.4, 2.3.2.3) and can also be proved simply by multiplying out,
except that it takes more ink and paper this time. We mention this to signify that
the approach works for any matrix size n, not only powers of two.

²²Alternatively, the recursion is aborted at a larger fixed n ∈ N at which point a traditional
inversion algorithm (eg Gauß-Jordan, § 2.3.5.1) is used to invert the sub-matrices. This doesn’t
affect the asymptotic complexity but can greatly reduce the computational overhead in practice.
See § 2.3.5.4 for an alternative to a fixed-size limit.

2.3. LINEAR SYSTEMS 23

If A is symmetric, equation 2.46 can be somewhat simplified by using that
A12 = AT

21 as well as A−T11 = A−111 and S̃−T = S̃
−1.

Strassen inversion of an n×n matrix for n ∈ N performsΘ(nω) FLOPs where
ω is the exponent for matrix-matrix multiplication and has a critical path length
bounded by Ω(n). [20]

2.3.5.3 Newton Inversion

Unlike the previously discussed direct algorithms, the algorithm discussed in this
section is iterative. That is, it starts with an initial guess for the inverse that is
refined iteratively in each step. Once the current result is “good enough”, the
iteration is aborted. This approach will always yield an inexact result, not only
because of numeric round-off errors and instabilities but due to the very nature
of the procedure.

Newton’s²³ general root finding algorithm can also be applied to matrix in-
version. Let A ∈ Rn×n for n ∈ N be regular. Given an initial guess X (0) on the
inverse A−1, the sequence

X (k+1) = 2X (k) −X (k)AX (k) (2.47)

converges quadratically to X (k) k→∞−−−−→ A−1 if the norm of the residual

∥R(0)∥ = ∥1 −X (0)A∥ < 1 . (2.48)

Pan and Reif [16] have shown that this is guaranteed if X (0) is chosen as

X (0) = λ−1AT with λ = ∥A∥∥AT∥ (2.49)

for an arbitrary matrix norm ∥·∥. For example,

λ =
n∑

i=1

n∑
j=1

A2
i j . (2.50)

If A is symmetric and positive definite,

X (0) = λ−11 with λ = ∥A∥ (2.51)

is an appropriate choice, too [20].
For more details, please refer to Press et al. [19] for general information or

Pan and Reif [16, 17] for an in-depth discussion.
Algorithm 2.6 shows a high-level implementation of the process. Note that all

steps can be fully parallelized. Pan and Reif show that if X (0) is chosen like they
say, the iteration will converge afterO(log(n)) steps for a fixed tolerated residual
ϵ > 0. Therefore, the algorithm achieves a critical path length of Ω(log(n)2). [16]

²³In honor of the British scientist Sir Isaac Newton (∗ 1643, Woolsthorpe, then England; † 1727,
Kensington, Great Britain).

24 CHAPTER 2. PRELIMINARIES

The amount of work to be done in each iteration is dominated by computing
matrix-matrix products and therefore on the order of Θ(nω). Combined with the
bound for the number of iterations, we get an estimated number of FLOPs on the
order of O(nω log(n)) [16]. Note that if the algorithm is chosen for its critical
path, plugging a matrix multiplication algorithm that destroys this path length is
probably not desirable so a more conservative bound for the number of FLOPs
might be appropriate [20].

PROCEDURE InverseNewton
INPUT

A[1 . . .n][1 . . .n] : Real
OUTPUT

A−1[1 . . .n][1 . . .n] : Real
PRECONDITIONS

A is regular
POSTCONDITIONS

A−1 is an approximate inverse of A
CONSTANTS

δtol : Real← tolerance for refinement
ϵtol : Real← tolerance for residual

VARIABLES
D[1 . . .n][1 . . .n] : Real
λ : Real

BEGIN
λ ← ∥A∥∥AT∥
A−1 ← AT/λ
REPEAT DO

D ← A−1A
A−1 ← (21 − D)A−1

WHILE ∥D∥ ≥ δtol DONE
IF ∥1 −A−1A∥ ≥ ϵtol THEN

ERROR desired accuracy not reached
FI

END

Algorithm 2.6: High-level algorithm for inverting a matrix A iteratively using
Newton’s method and the starting matrix suggested by Pan and Reif [16]. Those
who feel lucky enoughmight hard-code a fixed number of iterations instead of us-
ing an adaptive stopping criterion. The norm ∥·∥ could be any convenient matrix
norm.

2.3. LINEAR SYSTEMS 25

2.3.5.4 The NeSt Algorithm

Sanders, Speck, and Steffen have combined Strassen Inversion (§ 2.3.5.2) and New-
ton’s algorithm (§ 2.3.5.3) to obtain a work-efficient matrix inversion algorithm
– called “NeSt” for “Newton & Strassen” – for symmetric and positive definite
matrices²⁴ with poly-logarithmic time complexity [20]. This algorithm forms the
foundation of our contribution.

Given a fixed number p ∈ N of computing cores and a sufficiently large n ∈ N,
a symmetric and positive definite input matrix A ∈ Rn×n is split into smaller
matrices by applying Strassen’s algorithm h ∈ {0, . . . , ⌊log

2
(n)⌋} times. Each of

these sub-matrices is then inverted using Newton’s algorithm.
To increase the numerical stability of the algorithm, the result of Strassen’s

algorithm can further be processed by a single Newton iteration at each recursive
step. This only increases the algorithm’s complexity by a constant factor (since
Strassen’s algorithm requires matrix multiplications anyway). [20]

The choice of the recursion parameter h allows tuning the algorithm between
the two extremes of

• pure Newton inversion (h = 0) providing maximum parallelization at the
cost of a logarithmic factor of additional work and

• pure Strassen inversion (h = ⌊log
2
(n)⌋) providing maximum efficiency (de-

pending only on the fast matrix multiplication exponent ω) at the price of
a critical path length on the order of Ω(n).

Sanders, Speck, and Steffen show that for any ϵ > 0, if the recursion depth is
chosen as

h = (1 + ϵ)
log(log(n))

ω − 1 (2.53)

then NeSt performs 4
2ω−2 + C (where C is a small constant) times the work and

has a critical path length bounded byO
(
log(n)

ω+ϵ
ω−1

)
times the critical path length

of the plugged matrix-matrix multiplication algorithm. For the naïve algorithm
withω = 3 and a critical path length ofΘ(log(n)) this gives (1+C)n3 FLOPs and
critical path of Θ

(
log(n)5/2+ϵ

)
. [20] More informally, h should be chosen small

enough to keep all p computing cores busy but large enough to keep the total
amount of work small.

Equipped With these algorithmic building blocks, we are now turning to the
problem we have studied and present our own contribution.

²⁴It should become clear from the following discussion that the concept is easily extended to
matrices that are not symmetric and positive definite but do have an LU factorization without
permuting. On the other hand, there is a more general solution, realizing that for every regular
matrix A ∈ Rn×n and n ∈ N, the matrix B := ATA is symmetric and positive definite and

A−1 = A−11 = A−1
(
A−TAT) = (

A−1A−T
)
AT =

(
ATA

)−1
AT = B−1AT . (2.52)

See Sanders, Speck, and Steffen [20] for more information.

26 CHAPTER 2. PRELIMINARIES

PROCEDURE InverseNeSt
INPUT

h : Integer
A[1 . . .n][1 . . .n] : Real

OUTPUT
A−1[1 . . .n][1 . . .n] : Real

PRECONDITIONS
A is symmetric and positive definite

POSTCONDITIONS
A−1 is an approximate inverse of A

CONSTANTS
ω : Real← fast matrix−matrix multiplication exponent
ϵ : Real← a small positive constant

VARIABLES
A−111 [1 . . .n/2][1 . . .n/2] : Real
S̃
−1
[1 . . .n − n/2][1 . . .n − n/2] : Real

BEGIN

IF h < 0 THEN h ← ⌊(1 + ϵ)
log(log(n))

ω−1 ⌋ FI ;; provide default
IF h = 0 THEN

CALL InverseNewton(A, A−1)
ELSE

;; Invert the sub−matrices.
CALL InverseNeSt(h − 1, A11, A−111)
CALL InverseNeSt(h − 1, A22 −A21A

−1
11A12, S̃

−1)
;; Combine the results.

A−111 ← A−111 +A−111A12S̃
−1
A21A

−1
11

A−112 ← −A−111A12S̃
−1

A−121 ← −S̃
−1
A21A

−1
11

A−122 ← S̃
−1

;; Perform a single Newton iteration as stabilization (optional).
A−1 ←

(
21 −A−1A

)
A−1

FI
END

Algorithm 2.7: The NeSt algorithm for matrix inversion. If called withh < 0, the
theoretical optimum is substituted as default. The code is of course to be taken
with a grain of salt. It is intended to give the basic idea of the algorithm but
even ignores obvious optimization like common sub-expression elimination. It
also ignores the fact that A and A−1 are symmetric. For better readability and to
make it fit inside the page’s margins, the above listing uses the shorthand aliases
A11 := A[1 : n

2][1 : n
2], A12 := A[1 : n

2][
n
2 + 1 : n], A21 := A[n2 + 1 : n][1 : n

2],
A22 := A[n2 + 1 : n][n2 + 1 : n] and likewise A−111 := A−1[1 : n

2][1 : n
2], A

−1
12 :=

A−1[1 : n
2][

n
2+1 : n],A−121 := A−1[n2+1 : n][1 : n

2],A
−1
22 := A−1[n2+1 : n][n2+1 : n].

2.4. HIERARCHICAL MATRICES 27

2.4 Hierarchical Matrices

Definition 9 (Hirachical Matrix) A hierarchical matrix (H-matrix) is a ma-
trix that is represented as a cluster tree of sub-matrices.

At the lowest level, the sub-matrices of an H-matrix may be represented by
any suitable matrix format, such as a full (dense) matrix, a compressed sparse
matrix format or a special low-rank representation [4].

The H-matrix representation is worthwhile especially if the structure of a ma-
trix is known a priori to consist of blocks with non-zero elements and large zero
blocks in between.

As an example, consider the following matrix

M =

A
B

C

D

0
0 0

0

0 0

0
0

0

(2.54)

where we know that the blank blocks are all-zero but don’t know much about the
inner structure of the shaded blocks.

Storing M as as plain full matrix is not optimal. Not only would we waste
a lot of memory for storing all the redundant zeros, we would also throw away
the structural information about M . Once this information is lost by choosing
an inappropriate data structure, it can no longer be exploited in subsequent algo-
rithms that operate on the matrix without rediscovering it first (potentially at a
high price).

On the other hand, storing M in a general sparse matrix format wouldn’t be
optimal either. Compressed matrix formats avoid saving the zeros but this comes
at the price of (usually) tripled storage requirements for the non-zero elements.²⁵
Also, iterating over the non-zero entries will incur constant overhead. If the ma-
trix is very sparse, this will be worthwhile. However, while M has large zero
blocks, it is not particularly sparse. Also, as for the full matrix representation, the
sparse format loses the structural information.

As the graphic already suggests, an attractive data structure for M might be
based on quad-trees. If a sub-tree consists only of zeros, we need not store it at
all but instead represent it by a special NIL value. If a sub-tree consist only of
non-zero blocks, we store it using a classical full or sparse matrix format.²⁶ If a

²⁵This is plausible since effectively, most of these formats somehow (usually implicitly) have to
store the row and column index along with each entry.

²⁶Many articles on H-matrices also discuss storing blocks (especially those with a low rank) in
a decomposed form. Since we don’t need this for our application, we will not further discuss that
possibility.

28 CHAPTER 2. PRELIMINARIES

M

A

NIL

NIL NIL B NIL

NIL NIL

NIL

C NIL NIL D

Figure 2.1: The hierarchical matrix M from equation 2.54 represented as a quad-
tree.

sub-tree contains both, zero and non-zero blocks, we divide it further until we
reach one of the above two cases. Obviously, since the number of elements in a
matrix is finite and a single element is always either zero or non-zero in a trivial
sense, this procedure always terminates. The representation of M as a quad-tree
is sketched in figure 2.1.

H-matrices need not be represented as quad-trees, if there is another tree for-
mat that is more appropriate to model the inner structure of the matrix. In the
next section, we will investigate a class of matrices that are elegantly represented
as sept-trees.

2.4.1 Nested Dissection

Discovering the structure of an H-matrix can be a challenging task; especially if
permuting rows and columns should be considered in order to obtain blocks as big
as possible. Fortunately, for some applications, the structure appears naturally as
part of the problem.

Every square matrixM ∈ Rn×n withn ∈ N can be interpreted as the adjacency
matrix of a conductivity graph G = (V ,E,ω) with vertices V = {1, . . . ,n}, edges
E =

{
(i, j) ∈ (V ×V) : Mi j , 0

}
and edge weight function

ω : (V ×V) → R

(i, j) 7→ Mi j .

Definition 10 (Row&Column Index) Letn ∈ N andG = (V ,E,ω) be an edge-
weighted graph with n vertices V , edges E ⊆ (V × V) and edge weight function
ω : (V ×V)→ R. Let further A ∈ Rn×n be an adjacency matrix of G.

2.4. HIERARCHICAL MATRICES 29

The functions rowA : V → {1, . . . ,n} and colA : V → {1, . . . ,n} shall map
each vertex to its respective row and column index in A. That is

∀u,v ∈ V : ArowA(u), colA(v) = ω
(
(u,v)

)
. (2.55)

Consider now the case whereG is a regular conductivity grid. In such a grid,
every vertex has a constant number of neighbors. Importantly, the average degree
(number of neighbors) of a vertex does not scale with the size of the grid. It is also
the case that vertices are only adjacent to vertices “close” to them.²⁷ It is therefore
trivial to obtain a good partitioning of the graph, simply by cutting the grid into
two equally large halvesΠA ⊂ V andΠB ⊂ V withΠA∪ΠB = V andΠA∩ΠB = ∅.
The vertices can then be classified into three categories.

• The vertices

VA =
{
v ∈ ΠA : ∀(u,w) ∈ E : v < {u,w } ∨ u ∈ ΠA ∧w ∈ ΠA

} (2.56)

in ΠA that have only neighbors in ΠA,

• the vertices

VB =
{
v ∈ ΠB : ∀(u,w) ∈ E : v < {u,w } ∨ u ∈ ΠB ∧w ∈ ΠB

} (2.57)

in ΠB that have only neighbors in ΠB and

• the remaining vertices

VC =
{
v ∈ V : ∃(u,w) ∈ E : v ∈ {u,w } ∧ (u ∈ ΠA ⇔ w ∈ ΠB)

} (2.58)

that have incident intra-cluster edges.

We define nA = |VA |, nA = |VA | and nA = |VA |. The rows and columns of M
are now permuted to yield M̃ such that for each vertex v ∈ V

rowM̃ (v) = colM̃ (v) (2.59)

and

v ∈ VA ⇒ 1 ≤ rowM̃ (v) ≤ nA (2.60)
v ∈ VB ⇒ nA < rowM̃ (v) ≤ nA + nB (2.61)
v ∈ VC ⇒ nA + nB < rowM̃ (v) ≤ n . (2.62)

We obtain a matrix with seven non-zero blocks.

M̃ =
*..,
A 0 X
0 B Y
U V C

+//- (2.63)

30 CHAPTER 2. PRELIMINARIES

block origin destination

A VA VA
B VB VB
C VC VC
U VC VA
V VC VB
X VA VC
Y VB VA

Table 2.1: After one step of nested dissection, the permuted matrix M̃ contains
seven non-zero blocks (see eq 2.63) that hold the weights for specific edges (u,v)
in the graph. This table shows for each of the blocks into what partition the
vertices u (origin) and v (destination) belong. The sets VA, VB and VC are defined
in equations 2.56 to 2.58.

Table 2.1 details how these blocks are to be interpreted.
The procedure is now repeated recursively on the sub-graphs induced by VA

andVB . The required permutations never destroy the structure on the higher lev-
els. This procedure, known as nested dissection, is shown graphically in figure 2.2.

The appealing data structure to represent such a matrix is a tree where each
node has five children for the respective blocks and it will be implicit what sub-
matrix is represented by each child.

2.4.1.1 Symmetry

If the matrix M is symmetric, the graphG can be replaced by an undirected edge-
weighted graphG ′ and the procedure carried out as above. Note that in this case,
the blocks A, B and C will again be symmetric and X = U T as well as Y = V T.
A smart data structure would then represent the H-matrix as a quint-tree with a
special representation for the diagonal blocks that only stores the lower half of
the blocks A, B and C . Access to the upper half of the matrix would then either
be prohibited or mapped to the equivalent lower part.

If thematrix comes from a finite-element problemwhere “conductivity”means
some real physical quantity, it is not unlikely for the matrix to be symmetric since
many physical quantities are undirected (such as thermal conductivity).

²⁷This is the opposite of a “small world graph” (often found in social networks) where the di-
ameter of the graph only grows logarithmically in the number of vertices even though the average
node degree is also constant. This is due to few but important distant links that connect remote
regions of the graph.

2.4. HIERARCHICAL MATRICES 31

Π(0)

Π
(1)
A Π

(1)
B

VA VBVC

A

B

CU V

X

Y

Π
(2)
AA

Π
(2)
AB

Π
(2)
BA

Π
(2)
BB

Π
(3)
AAA

Π
(3)
AAB

Π
(3)
ABA

Π
(3)
ABB

Π
(3)
BAA

Π
(3)
BAB

Π
(3)
BBA

Π
(3)
BBB

Figure 2.2: Nested dissection shown for a regular 2D-grid with (except for the
margins) degree 8 (every “tile” in the grid represents a vertex). The 512 vertices
of the 32 × 16 grid form a 512 × 512 adjacency matrix (sketched on the right).
In each step l of the recursive process, the grid is split in two parts Π(l)

A and Π
(l)
B

which leads to the classification of the vertices into the sets VA, VB and VC . The
adjacency matrix is permuted such that it has the seven non-zero blocks defined
in equation 2.63 and explained in table 2.1.

Chapter 3

Algorithmics

Let n ∈ N and M ∈ Rn×n be a symmetric and positive definite H-matrix with a
structure as if obtained by applying nested dissection (§ 2.4.1). Let further k ∈ N
and b(1), . . . ,b(k) ∈ Rn . We want to solve the linear systems Mx(l) = b(l) for
x(1), . . . ,x(k) ∈ Rn and l ∈ {1, . . . ,k }.

We focus on symmetric and positive definite systems because they are a well-
defined class of problems for which we know a unique LU factorization (that is,
an LLT factorization) without the need for permuting the coefficient matrix will
always exist. This might seem to be a drastic assumption but it is justified by the
fact that many real-world problems – for example those that originate from finite-
element problemswith symmetric interactions – are known to produce symmetric
and positive definite systems¹. The algorithms we present are easily extended to
the more general case that M is not symmetric and positive definite but only
regular and does have an LU factorization without permuting, if this should be
required².

In section 3.2 we present an algorithm to compute the block-wise decompo-
sition M = LLT efficiently, exploiting the special structure of M . The obtained
factorization will look like this:

M

=

L

·

LT

(3.1)

OnceM is decomposed, a linear system is solved by performing a forward substi-
tution on L and a backward substitution on LT.

¹Also see footnote 24 on page 25.
²Note however, that the sheer fact that an LU factorization without permutation exists (in a

mathematical sense) does not imply that it can be computed in a way that is numerically stable. In
general, we should only assume this property for symmetric and positive definite matrices.

32

3.1. NOTATION 33

In section 3.3, we will show how this algorithm can be modified to compute
a block-wise decomposition M = LDLT where D is a block-diagonal matrix, for
which the inverse D−1 is known. This factorization looks like this:

M

=

L

·

D

·

LT

(3.2)
Given this decomposition ofM , a linear system is solved by a block-wise forward
substitution on L followed by a multiplication with D−1 and finally a forward
substitution on LT. All three steps are mostly matrix-vector products which can
be done very efficiently.

3.1 Notation

Let us denote the blocks of M with

M = M(0) =

*.....,
A(1) 0 U (1)T

0 B(1) V (1)T

U (1) V (1) C(1)

+/////-
(3.3)

and the blocks of A(1) and B(1) with

A(1) =

*.....,
A
(2)
A 0 U

(2)
A

T

0 B
(2)
A V

(2)
A

T

U
(2)
A V

(2)
A C

(2)
A

+/////-
and B(1) =

*.....,
A
(2)
B 0 U

(2)
B

T

0 B
(2)
B V

(2)
B

T

U
(2)
B V

(2)
B C

(2)
B

+/////-
. (3.4)

The blocks of A(2)
A would be named A(3)

AA
, B(3)

AA
, C(3)

AA
and so forth and analogously

A
(3)
BA

, B(3)
BA

, … for B(2)
A . In general, the child at position Z of blockW (l)

R is named
Z
(l+1)
WR

. Using English prose: the symbol on the base line denotes the position
of the block in its parent block and the subscript names the parent block. The
superscript merely counts the recursion depth. This syntax is redundant so we
will optionally either drop the subscript part and only write A(3) to refer to any
level-3 block at “position A” but don’t care where it is in the matrix or else write
AAA if we want to be specific which block we mean. (Obviously, the superscript
can be easily reconstructed by counting the number of recursive identifiers.) If we
don’t even care about the recursion level, wewill drop both, sub- and superscripts.
Note that the blocks U , V and consequently their transposes as well as C never

34 CHAPTER 3. ALGORITHMICS

have children. If we want to refer to the parent block of any block at level l but
don’t care where it is, we simply write M(l−1).

We don’t make any special assumptions about the sizes of the sub-blocks at
any level. In particular, we shall allow for n not to be a power of two, and the
relative sizes of the blocks A, B and C may be different in each block. We do
assume thatA and B are “roughly the same size” andC be “considerably smaller”,
though. We also assume that the tree is “balanced”, that is, at each level l , the sub-
blocksA(l+1) and B(l+1) have the same number of children. This is not important
for the correctness of the algorithms but otherwise some reasoning about their
efficiency might not be appropriate.

We shall require the following from an algorithm to solve the systems:

• The total amount of work (FLOPs) should be as low as possible.

• The numeric errors should be kept below a fixed tolerance on the order of√
ϵfloat, where ϵfloat is the machine precision.

• The algorithm should scale well to massively parallel systems in the parallel
random-access machine (PRAM) model. Ideally, it will keep a user-defined
number of processing units busy with useful work for its entire execution
time.

3.2 Block LLT Decomposition of H-Matrices

The algorithm described in this section is based on previous work by Maurer
and Wieners for a distributed computing environment [15] and private discus-
sion with the author.

3.2.1 Decomposition

The structure of M can be exploited by using the block variant of the LU decom-
position (§ 2.3.4). At level l , we first block the matrix M(l) to obtain

M(l) =

*.....,
A(l+1) 0 U (l+1)T

0 B(l+1) V (l+1)T

U (l+1) V (l+1) C(l+1)

+/////-
=

*..,
M

(l)
11A

M
(l)
21A

T

M
(l)
21A

M
(l)
22A

+//- . (3.5)

We re-enter the algorithm recursively to factor

L
(l)
11A

L
(l)
11A

T
= M

(l)
11A
, (3.6)

solve the multiple triagonal linear systems

L
(l)
21A

L
(l)
11A

T
= M

(l)
21A

(3.7)

3.2. BLOCK LLT DECOMPOSITION OF H-MATRICES 35

and then compute
M̃

(l)
A = M

(l)
22A
− L(l)

21A
L
(l)
21A

T
(3.8)

which gives us the following intermediate result.

M(l) =
*..,
L
(l)
11A

0

L
(l)
21A

1

+//-
*..,
1 0

0 M̃
(l)
A

+//-
*..,
L
(l)
11A

T
L
(l)
21A

T

0 1

+//- (3.9)

The key observation is now that since the r topmost rows ofM(l)
21A

and hence the

r leftmost columns of M(l)
12A

T
– where r is the size of B(l+1) – are all zero,

M̃
(l)
A = *, B(l+1) V (l+1)T

V (l+1) C(l+1) −∆(l)
A

+- . (3.10)

Therefore, we can independently block M
(l)
22A

into

*....,
B(l+1) V (l+1)T

V (l+1) C(l+1)

+////-
=

*....,
M

(l)
11B

M
(l)
21B

T

M
(l)
21B

M
(l)
22B

+////-
(3.11)

and concurrently re-enter our algorithm to analogously factor

L
(l)
11B

L
(l)
11B

T
= M

(l)
11B
, (3.12)

solve the multiple triagonal linear systems

L
(l)
21B

L
(l)
11B

T
= M

(l)
21B

(3.13)

and compute

M̃
(l)
B = M

(l)
22B
− L(l)

21B
L
(l)
21B

T
= C(l+1) −∆(l)

B . (3.14)

Combining our intermediate results, we get

M(l) =

*.........,

L
(l)
11A

0

L
(l)
21A

L
(l)
11B

0

L
(l)
21B

1

+/////////-

*.........,

1 0

0
1 0

0 M̃
(l)

+/////////-

*.........,

L
(l)
11A

T
L
(l)
21A

T

0
L
(l)
11B

T
L
(l)
21B

T

0 1

+/////////-
(3.15)

with M̃
(l)

:= C(l+1) − (∆(l)
A +∆

(l)
B). Last, we factor

L
(l)
11L

(l)
11

T
= M

(l)
11 (3.16)

36 CHAPTER 3. ALGORITHMICS

M(l) = L(l)L(l)T

∆
(l)
A ⊑ L

(l)
21A

L
(l)
21A

T

L
(l)
21A

L
(l)
11A

T
= M

(l)
21A

L
(l)
11A

L
(l)
11A

T
= M

(l)
11A

recursion M(l+1)

∆
(l)
B ⊑ L

(l)
21B

L
(l)
21B

T

L
(l)
21B

L
(l)
11B

T
= M

(l)
21B

L
(l)
11B

L
(l)
11B

T
= M

(l)
11B

recursion M(l+1)

L
(l)
11L

(l)
11

T
= M

(l)
11

Figure 3.1: Data dependencies at level l for the block LLT factorization of an H-
matrix obtained via nested dissection. The arrows indicate dependencies. That is,
“X → X ” means “Y needs to be known for X to be computable”.

and finally get the complete factorization

M(l) =

*.........,

L
(l)
11A

0

L
(l)
21A

L
(l)
11B

0

L
(l)
21B

L
(l)
11

+/////////-︸ ︷︷ ︸
:=L(l)

*.........,

L
(l)
11A

T
L
(l)
21A

T

0
L
(l)
11B

T
L
(l)
21B

T

0 L
(l)
11

T

+/////////-︸ ︷︷ ︸
=L(l)T

. (3.17)

Note that the last factorization is computed directly and does not re-enter the
algorithm recursively. This is because we know nothing about the structure of
C(l+1) and therefore treat it as a single dense matrix. Recursion also ends if the
matrices A(l+1) and B(l+1) do not have block structure.

3.2.2 Work-Flow

Let us now investigate the dependencies in the algorithm a bit further. Figure 3.1
illustrates the data dependencies between the various steps explained in the pre-
vious section.

3.2. BLOCK LLT DECOMPOSITION OF H-MATRICES 37

At each level l of recursion and at each nodeM(l), the algorithm forks two in-
dependent dependency sub-trees for the decomposition of the sub-matricesA(l+1)

and B(l+1) that are joined again via the final decomposition of the updated sub-
matrixC(l+1) − (∆(l)

A +∆
(l)
B).

To formulate a simple yet effective recursive algorithm, we have it model the
dependency tree. Each computation is performed as soon as all dependencies can
be satisfied. As soon as the factorization of the top-left block (eq 3.6) is ready, we
are able to solve the linear systems (eq 3.8) and compute the Schur complement
(eq 3.7). Realizing that only leaf nodes (where the structure of the H-matrix does
not further recurse) ever factorize, we can move all computation into the leafs.
(Note that C(l) is always a leaf, at any level l .) Because the value of M(l)

22 is never
needed again, once M̃

(l) is computed, we can update (overwrite) the matrix in-
place instead of keeping the Schur complements in separate storage.

Algorithm 3.1 sketches out the basic framework for the recursive decompo-
sition while algorithm 3.2 is the work-horse that actually decomposes the leaf
nodes, writes the results into L and computes the Schur complements. The work-
flow is also illustrated more informally in figure 3.2.

3.2.3 Complexity

To be able to reason about the work that needs to be done, we need to introduce
some parameters to describe the structure of the matrix. In equations 3.5 and 3.11
at level l , let the size ofM(l) be n(l). For the blocksM(l)

i jX with i, j ∈ {1,2} and X ∈
{A,B}, let n(l)i jX and m

(l)
i jX denote their number of rows and columns respectively

and

ρ
(l)
i jX :=

NZC
(
M

(l)
i jX

)
n
(l)
i jXm

(l)
i jX

∈ [0,1] (3.18)

their respective sparsity factor where NZC denotes the number of entries in a
matrix for which we don’t know a priori (ie through the structure of the matrix)
that they must be zero³. Since all work is done in the leaf nodes, we will drop the
sub- and superscripts in the following discussion without ambiguity.

Table 3.1 summarizes the required FLOPs.

³To re-emphasize: If an entry inside a non-zero block just happens to have the value 0, it still
counts as a non-zero entry since we’d first have to look at it to find out. For example, the 3 × 3
block diagonal matrix

X =

(
Y 0
0 Z

)
with Y =

(
5 0
3 4

)
and Z = (5)

has NZC(X) = 5 non-zero entries if the structure of Y is unspecified on input.

38 CHAPTER 3. ALGORITHMICS

PROCEDURE NDBlockLLT
INPUT

M : HMatrix⟨Real⟩
OUTPUT

L[1 . . . size(M)][1 . . . size(M)] : Real
PRECONDITIONS

M is symmetric and positive definite
BEGIN

Make a copy of M if it must not be destroyed during the process.
CALL NDBlockLLTRecursive(M , M , 0, L)

END

PROCEDURE NDBlockLLTRecursive
INPUT

M : HMatrix⟨Real⟩
M(l) : HMatrix⟨Real⟩
d(l) : Integer

OUTPUT
L[1 . . . size(M)][1 . . . size(M)] : Real

VARIABLES
A(l+1),B(l+1),C(l+1) : HMatrix⟨Real⟩
n
(l+1)
A ,n

(l+1)
B : Integer

BEGIN
IF the matrix M has children THEN

Extract children A(l+1), B(l+1) andC(l+1) out of M(l).
n
(l+1)
A ← size(A(l+1))

n
(l+1)
B ← size(B(l+1))
ASYNC BEGIN

CALL NDBlockLLTRecursive(M , A(l+1), d(l), L)
CALL NDBlockLLTRecursive(M , B(l+1), d(l) + n

(l+1)
A , L)

END

CALL NDBlockLLTLeaf(M ,C(l+1), d(l) + n
(l+1)
A + n

(l+1)
B , L)

ELSE
CALL NDBlockLLTLeaf(M , M(l), d(l), L)

FI
END

Algorithm 3.1: The procedure NDBlockLLTRecursive is the skeleton for the re-
cursive block LLT decomposition of an H-matrix with nested dissection structure.
NDBlockLLTmerely provides a clean interface that hides the implementation de-
tails from the user. The work horse NDBlockLLTLeaf is shown in algorithm 3.2.

3.2. BLOCK LLT DECOMPOSITION OF H-MATRICES 39

PROCEDURE NDBlockLLTLeaf
INPUT

M : HMatrix⟨Real⟩
M

(l)
11 [1 . . .n

(l)
11][1 . . .n

(l)
11] : Real

d(l) : Integer
OUTPUT

L[1 . . . size(M)][1 . . . size(M)] : Real
PRECONDITIONS

M is symmetric and positive definite
M

(l)
11 is a main diagonal block of M

VARIABLES

L
(l)
11 [1 . . .n

(l)
11][1 . . .n

(l)
11] : Real

M
(l)
21 [1 . . . size(M) − d − n(l)11][1 . . .n

(l)
11] : Real

L
(l)
21 [1 . . . size(M) − d − n(l)11][1 . . .n

(l)
11] : Real

M
(l)
22 [1 . . . size(M) − d − n(l)11][1 . . . size(M) − d − n(l)11] : Real

BEGIN
;; Create views for the blocks; these shall read and write through.

L
(l)
11 ← L[d + 1 : d + n

(l)
11][d + 1 : d + n

(l)
11]

M
(l)
21 ← M[d + n

(l)
11 + 1 : size(M)][d + 1 : d + n

(l)
11]

L
(l)
21 ← L[d + n

(l)
11 + 1 : size(M)][d + 1 : d + n

(l)
11]

M
(l)
22 ← M[d + n

(l)
11 + 1 : size(M)][d + n

(l)
11 + 1 : size(M)]

CALL Cholesky(M(l)
11 , L

(l)
11)

CALL BackwardSubstitution(L(l)
11

T
, M(l)

21 , L
(l)
21)

M
(l)
22 ← M

(l)
22 − L

(l)
21L

(l)
21

T

END

Algorithm 3.2: Implementation of the NDBlockLLTLeaf routine called from
algorithm 3.1. It decomposes a single dense block M

(l)
11 on the main diagonal of

M , writes the respective results L(l)
11 and L

(l)
21 into L and overwrites M(l)

22 to be-
come the Schur complement M̃(l). Note that this implementation assumes atomic
arithmetic and sequential consistency. Please see the text (§ 3.2.4.1) for a detailed
discussion and how the algorithm can be adapted to mitigate race conditions.

40 CHAPTER 3. ALGORITHMICS

Task Operation Required FLOPs

L11L
T
11 = M11 factorization 1

6n
3
11

L21L
T
11 = M21 backward substitution 1

2ρ21n21n
2
11

∆ ⊑ L21L
T
21 multiplication (ω = 3) ρ221n

2
21n11

Table 3.1: Work to be done in leaf nodes. Note that n12 = n11 =m11 = n21 and
m12 = m22 = n22 = n21. Also note that ρ11 = 1 and that all rows in M21 are
either all-zero or all-non-zero, hence, ρ21n21 is the number of non-zero rows in
M21.

3.2.4 Parallelism

3.2.4.1 Synchronization

Note how the recursive formulation of the algorithm elegantly models the data
dependencies. As usual, we have not cluttered our algorithms (algo 3.1 and 3.2)
with synchronization mechanisms but assumed atomic arithmetic and sequential
consistency. This is of course an oversimplification if it comes to real hardware.
Synchronization is expensive and partially destroys concurrency so it might be
worthwhile to examine the possible race conditions and discuss modifications to
the algorithm that mitigate them without the need for locking.

The first and pleasuring observation is that there are no possible race condi-
tions on L. Each entry in L is computed and written to exactly once at a well-
defined point in the algorithm. Therefore, the results can be written to them just
as shown in the listings.

Unfortunately, there is a race condition on the updates for the Schur comple-
ment as we subtract ∆(l)

A and ∆
(l)
B and then later also ∆

(l)
C – which actually is

either ∆(l−1)
A or ∆(l−1)

B of the caller, we just don’t happen to know – from M
(l)
22 .

The first race occurs between the children of a node when when the two asyn-
chronous calls to NDBlockLLTRecursive for factoring A(l+1) and B(l+1) write
simultaneously to apply their respective updates. The second race takes place be-
tween the node and its sister node as it writes the update obtained from factoring
C(l+1). Fortunately, a closer look revels that not all of the update participates in
the race. While the code in NDBlockLLTLeaf cannot possibly avoid the race, the
caller in NDBlockLLTRecursive knows that after block A(l+1) and B(l+1) have
been factored, not only is it safe but actually required to write the updates – one
after each other – to C(l+1) or the algorithm could not continue. Likewise, it is
equally safe to write to regions ofM that are located on the same column or on the
same row as an entry in C(l+1). Put another way, the only region that is subject
to races is the “south east” corner belowC(l+1).

This suggests a slight re-design of algorithm 3.1 and 3.2. There is no way

3.2. BLOCK LLT DECOMPOSITION OF H-MATRICES 41

C(1)

C
(2)
A

A
(2)
A B

(2)
A

C
(2)
B

A
(2)
B B

(2)
B

Figure 3.2: Call tree for the block LLT decomposition of an H-matrix with nested
dissection structure. The two matrices shown at each node indicate the affected
regions that have read (left) and write (right) dependencies. Printed below the
matrices is the block that is factorized at the current node. The colors mark the
following blocks: “ ” for the blockM(l)

11 that is factorized, “ ” for the blockM(l)
21

that is substituted for and its respective transpose, “ ” for the parts of M(l)
22 that

have pending updates (passed up by child functions) and may safely be written to
and “ ” for the regions that are subject to data races and must not be written to.
Instead, their updates have to be propagated up the call tree.

42 CHAPTER 3. ALGORITHMICS

to write safely from within NDBlockLLTLeaf so instead of having it write the
update directly, we introduce an additional output parameter that references some
temporary storagewhere it may place the update. We also add such a parameter to
NDBlockLLTRecursive but this time, it only needs to cover the region south east
of C(l). The other parts of the updates from factoring A(l) and B(l) we subtract
from M . The other parts, of ∆(l)

A and ∆
(l)
B we add together with ∆

(l)
C that is

passed up to our caller and then release the temporary storage allocated for the
children. This way, the unhandled updates propagate up the call tree until the root
node writes the last update and factorizes C(1) at which point there is no more
update and the algorithm has completed its work. Figure 3.2 visualizes these data
dependencies on the call tree.

This modified algorithm allows for a fully lock-free implementation even on
real hardware.

3.2.4.2 Parallel Efficiency

The results from section 3.2.4.1 are pleasing. However, let us consider what hap-
pens if the matrix is decomposed on a shared-memory machine with p ∈ N in-
dependent processing units. For simplicity – and also because that’s what most
hardware actually provides – let’s assume that p is a power of two. As long as the
recursion is operating at a level l ∈ N such that 2l ≥ p, each unit can process one
branch of recursion at a time and all hardware will be made optimal use of. Since
the descent in the tree does not require any actual work to be done, it is negligible
and computation starts almost instantly at the leaf-level. The expensive part is the
ascent that carries up the dependencies to the callers. However, as the recursion
returns up to higher levels, the number of concurrently processed nodes at some
point will drop below the number of available cores. It now depends on how well
the algorithms used for the work that has to be done at every node (mostly dense
factorization, substituting and matrix multiplication) are able to utilize the spare
cores. Note that it are exactly those nodes very near to the root of the tree that
have the largest blocks and therefore take the longest to process.

For the matrix-matrix products, this is not a problem as it can be done fully
parallel. However, factorization and substitution both have a critical path length
on the order of Ω(n(l)). Therefore, in a massively parallel environment, the algo-
rithm might not be able to make efficient use of all processing units.

3.2.5 Solving

Once the decomposition is computed, any number of linear systems can be solved
by performing a forward substitution on L followed by a backward substitution
on LT. However, for the procedure doing this to exploit the special structure of L,
the substitution algorithm has to be reformulated for H-matrices.

Let us have a look at the structure of L. Every time a main diagonal blockM11

is factored, a triangular block L11 is inserted on the main diagonal and a “column”

3.3. BLOCK LDLT DECOMPOSITION OF H-MATRICES 43

L21 is inserted below it. Note that L21 is again hierarchical containing blocks of
non-zero rows. Using the picture from equation 3.1, we can visualize this as

L

·

y(l)

=

b(l)

and

LT

·

x(l)

=

y(l)

(3.19)

for l ∈ {1, . . . ,k }. (Wewill drop the superscripts for the following discussion since
they don’t matter as each system is completely independent of the others.)

Carefully looking at the pictures suggests that we solve the equations piece-
wise. For each triagonal main diagonal block L11 in L, let n11 := size(L11) and
d11 ∈ {1, . . . ,n} such that L11 = L[d11 + 1 : d11 + n11][d11 + 1 : d11 + n11].
Then the “piece” y[d11 + 1 : d11 + n11] can be computed by an ordinary forward
substitution to solve

b[d11 + 1 : d11 + n11] = L11ŷ11 (3.20)

where

ŷ11 := b[d11 + 1 : d11 + n11] − L[d11 + 1 : d11 + n11][1 : d11] y[1 : d11] . (3.21)

The cost for this is 1
2n

2
11 FLOPs for the substitution and ρ11n11d11 FLOPs for

the matrix-vector products where ρ11 is the sparsity factor of L[d11 + 1 : d11 +
n11][1 : d11]whichmight be 0. The critical path is determined by the substitutions,
which means that it remains on the order of Ω(n), even though the matrix-vector
products can be computed fully parallel.

The procedure for the backward substitution to solve LTx = y is analogous
(and hence also has the same cost and critical path).

3.3 Block LDLT Decomposition of H-Matrices

In this section, we present an application of matrix inversion to a modification of
the algorithm described in the previous section to yield a block LDU decomposi-
tion of M (or a block LDLT decomposition, that is).

The required changes are relatively small so we will refer to the detailed dis-
cussion in the previous section except for the parts that are different. In particular,
the recursive framework of the algorithm stays the same. Only at the leaf nodes,
we do not factor L(l)

11L
(l)
11

T
= M

(l)
11 but instead compute the inverse M(l)

11

−1
. Once

this is done, instead of doing substitutions, we compute

L
(l)
21 = M

(l)
21M

(l)
11

−1
(3.22)

44 CHAPTER 3. ALGORITHMICS

and
M̃

(l)
= M

(l)
22 −M

(l)
21M

(l)
11

−1
M

(l)
21

T
= L

(l)
21M

(l)
21

T
. (3.23)

Of course, the inverse is not thrown away but kept for when we’ll need it later to
actually solve a linear system.

Without any further ado, let us present in algorithm 3.3 a modification of
algorithm 3.2 that implements the above. The only change required in the code
that calls it (cf algo 3.1) is the introduction of the additional output parameter for
D−1. Since this is a rather trivial change, we do not duplicate all of the rest of the
code for it.

With the block LDLT decomposition at hand, we can solve the linear systems

Mx(l) = b(l)

equivalent to
LDLTx(l) = b(l)

for l ∈ {1, . . . ,k } in three steps.
First, we solve

Lz(l) = b(l) (3.24)
for z(l) ∈ Rn by means of a block forward substitution. Next, we solve

Dy(l) = z(l) (3.25)

for y(l) ∈ Rn by using y(l) = z(l)D−1 (note that we already have the inverse D−1
handy). Finally, we solve

LTx(l) = y(l) (3.26)
to obtain the wanted x (l) ∈ Rn via a backward substitution.

Let us view equations 3.24 to 3.26 graphically. First, the solution for

D

·

y(l)

=

z(l)

(3.27)

is obtained by a straight-forward matrix-vector multiplication with the inverse
D−1 that has the same block diagonal structure as D. The substitutions

L

·

z(l)

=

b(l)

and

LT

·

x(l)

=

y(l)

(3.28)

3.3. BLOCK LDLT DECOMPOSITION OF H-MATRICES 45

PROCEDURE NDBlockLDLTLeaf
INPUT

M : HMatrix⟨Real⟩
M

(l)
11 [1 . . .n

(l)
11][1 . . .n

(l)
11] : Real

d(l) : Integer
OUTPUT

L[1 . . . size(M)][1 . . . size(M)] : Real
D−1[1 . . . size(M)][1 . . . size(M)] : Real

PRECONDITIONS
M is symmetric and positive definite
M

(l)
11 is a main diagonal block of M

VARIABLES

D
(l)
11

−1
[1 . . .n

(l)
11][1 . . .n

(l)
11] : Real

M
(l)
21 [1 . . . size(M) − d − n(l)11][1 . . .n

(l)
11] : Real

L
(l)
21 [1 . . . size(M) − d − n(l)11][1 . . .n

(l)
11] : Real

M
(l)
22 [1 . . . size(M) − d − n(l)11][1 . . . size(M) − d − n(l)11] : Real

BEGIN
;; Create views for the blocks; these shall read and write through.

D
(l)
11

−1
← D−1[d + 1 : d + n

(l)
11][d + 1 : d + n

(l)
11]

M
(l)
21 ← M[d + n

(l)
11 + 1 : size(M)][d + 1 : d + n

(l)
11]

L
(l)
21 ← L[d + n

(l)
11 + 1 : size(M)][d + 1 : d + n

(l)
11]

M
(l)
22 ← M[d + n

(l)
11 + 1 : size(M)][d + n

(l)
11 + 1 : size(M)]

CALL InvertSPD(M(l)
11 , D

(l)
11

−1
)

L
(l)
21 ← M

(l)
21D

(l)
11

−1

M
(l)
22 ← M

(l)
22 − L

(l)
21L

(l)
21

T

END

Algorithm 3.3: Modification of the NDBlockLLTLeaf routine called from al-
gorithm 3.1. It inverts a single dense block M

(l)
11 on the main diagonal of M , and

writes the resultsM(l)
11

−1
and L(l)

21 intoD−1 and L respectively. M(l)
22 is overwritten

to become the Schur complement M̃(l). Note that this implementation assumes
atomic arithmetic and sequential consistency. The discussion in section 3.2.4.1
about race conditions applies equally.

46 CHAPTER 3. ALGORITHMICS

Task Operation Required FLOPs

M−111 symmetric inversion 1
2n

3
11

L21 = M21M
−1
11 multiplication (ω = 3) ρ21n21n

2
11

∆ ⊑ L21L
T
21 multiplication (ω = 3) ρ221n

2
21n11

Table 3.2: Work to be done in leaf nodes for the blockLDLT decomposition. Com-
pared with the block LLT factorization (tab 3.1), the inversion is three times more
expensive than the Cholesky factorization and the matrix-matrix product to com-
pute L21 costs twice the number of FLOPs for the substitution. The computation
of the update ∆ is identical.

are also “easy” in the sense that the corresponding linear systems fall apart into
sets of equations such that all equations in a set can be solved independently of
each other. Therefore, they are computed like in equations 3.20 and 3.21 except
that since L11 = 1, no substitution is needed and b[d11 + 1 : d11 + n11] = ŷ.

3.3.1 Complexity

Let us now compare the complexity and efficiency of the block LDLT decompo-
sition with that of the block LLT decomposition. Table 3.2 details the cost for the
decomposition. Compared to the block LLT decomposition, the additional work is
significant. When solving, the only difference is that where a forward and back-
ward substitution for the triangular main diagonal blocks on L – accounting for
1
2n

2
11 FLOPs each – is performed in the block LLT case, a single equally expensive

(n211 FLOPs) matrix-vector product is computed in case of the block LDLT decom-
position. Since the multiplication is “simpler”, we expect it to be computable with
less overhead.

3.3.2 Parallelism

The distinguishing feature of the presented block LDLT decomposition is that
if an appropriate matrix inversion algorithm – NeSt (§ 2.3.5.4), for example – is
plugged, the complete decomposition as well as the procedure for solving is par-
allelized very well.

To see this for the decomposition, recall that the height of the dependency
tree (fig 3.2) is logarithmic in the matrix size. At each node in the tree, only
matrix inversion and multiplication is performed, both of which can be done fully
parallel. This yields an overall critical path on the order of Ω(log(n)Tinv(n)) for
the entire algorithm where Tinv is the critical path for matrix inversion and can
also be made logarithmic.

In case of solving, the number of blocks in L that define sets of independent

3.3. BLOCK LDLT DECOMPOSITION OF H-MATRICES 47

equations, is identical to the number of main diagonal blocks inM . Unfortunately,
this is not logarithmic but still somehow linear in n. However, if we assume that
nmin is the size of the smallest such block, then we will have reduced the critical
path by at least a factor of nmin compared to block LLT decomposition. Usually,
the smallest block will be chosen “quite large” in order for library functions to
operate efficiently. Therefore, the improvement might be quite considerable.

Chapter 4

Implementation

We have implemented the algorithms for block LLT (§ 3.2) and block LDLT (§ 3.3)
decomposition for a shared memory system. The block LDLT decomposition uses
the NeSt algorithm (§ 2.3.5.4) for matrix inversion.

In this chapter we present the basic concepts of our implementation. The im-
plementation is Free Software. The source code may be obtained from the author.¹
The package is a research project and not industry-strength software. However,
we did try to follow best practices for programming high-quality software.

4.1 Technologies

4.1.1 Programming Languages

We have implemented our algorithms in C++. This choice was made because
of the excellent combination of high performance and abstractions the language
provides, especially since the C++11 revision of the standard. Our code makes
heavy use of C++11 features.

The decision for using C++ was further influenced by the fact that Sanders,
Speck, and Steffen have implemented their NeSt algorithm in C++ too so we could
re-use it more easily.

In the remainder of this chapter, we will assume that the reader has a fairly
intermediate level of knowledge about the C++ programming language, in partic-
ular, the features introduced in C++11. In case of doubt, please refer to Stroustrup
[22].

¹http://www.klammler.eu/bsc/ – Unfortunately, we cannot release the source code of
the NeSt algorithm due to its unclear copyright status. Please try writing to its authors to obtain
a copy of NeSt’s source code for private use. You can compile and run our software without NeSt
but then a less parallel library function for matrix inversion will be used. While it is possible and
legal (but in no way required) to link our software to Intel’s Math Kernel Library, doing so makes
the resulting program non-free software.

48

http://www.klammler.eu/bsc/

4.1. TECHNOLOGIES 49

4.1.2 Libraries

Routines for dense linear algebra operations are among the best understood and
most heavily optimized pieces of software. It follows that we wanted to dele-
gate as much work as possible to off-the-shelf libraries and not implement our
own versions of standard algorithms. Therefore, we have considered a number of
libraries to base our work upon. Our requirements were that the library shall be

• fast — so we can compare our results to the current industry standard,

• concurrent — because we are interested how algorithms scale in a highly
parallel context,

• flexible — meaning that ideally we can program against a stable interface
and plug different kernels without having to change our code,

• elegant —providing clean abstractions and powerful high-level syntax lever-
aging C++’ operator overloading and template meta-programming capabil-
ities,

• mature — so we can be reasonably sure it works correctly on major plat-
forms and will still do so in the future and

• free software — because we did not want our research to be locked in by a
single vendor and wanted to give everyone the possibility to reproduce our
results without the need to buy a certain proprietary product first. We also
consider it important for a research project (and other projects as well) to be
able to study the internals of the mission-critical third-party components.

4.1.2.1 BLAS & LAPACK

The low-level Basic Linear Algebra Subprograms (BLAS) [2] with the more high-
level Linear Algebra Package (LAPACK) [13] built on top are a collection of For-
tran library interfaces that have for many decades built the foundation of high-
performance numeric computing. Fairly standard bindings for the C program-
ming language (CBLAS)² exist so the libraries can be used from C and C++ code
as well.

²The cblas.h header file as well as a thin compatibility layer written in C is available as free
software form the Netlib repository (http://www.netlib.org/blas/#_cblas). The wrapper
library can be compiled into a small archive that can be statically linked into the application. It is
then possible to link an application written in C or C++with a BLAS library just as if the application
were natively written in Fortran in the first place. (The “as if” is to be taken literally. It is required
to link with the Fortran run-time and on some systems, a Fortran-style “dummy main” function
(that does nothing) must be included in the C program. The GNU Autotools can greatly help with
these portability issues.)

http://www.netlib.org/blas/#_cblas

50 CHAPTER 4. IMPLEMENTATION

There is a mostly unoptimized reference implementation available as free soft-
ware from the Netlib repository³ as well as a number of highly optimized imple-
mentations as both, free and proprietary software. Since the application program-
ming interface (API) has become a de facto standard, these implementations may
be exchanged without the need to edit (or even re-compile) the application’s code.
On the machines we have used to test our code, a copy of Intel’s proprietaryMath
Kernel Library (MKL) [14] was installed. This library is famous for its speed but
being non-free, there is no way to figure out how exactly its internals are work-
ing. Some BLAS implementations are multi-threaded and others are not. Except
for execution time, this fact is transparent to the user. Intel’s MKL comes in two
flavors, sequential and multi-threaded.

On the other hand, the API is a relic of the Fortran area and barely provides
any abstractions beyond arrays, numbers and functions. This design is also inca-
pable to make use of compile-time optimizations that are enabled by the use of
modern template meta-programming. Instead, the programmer who is using the
BLAS has to do what could otherwise be done by a high-level template library
and an optimizing compiler.

Let n,k ,m ∈ N,A ∈ Rn×k , B ∈ Rm×k ,C ∈ Rn×m and α ,β ∈ R. To compute the
expression

αABT + βC (4.1)

and store the result in C , overwriting its previous contents, one would use the
CBLAS interface like shown in listing 4.1. While the intent of the program will
be obvious to experienced BLAS programmers, it is not immediately clear sim-
ply from reading the source code. What is probably most disturbing is that the
programmer has to carry around the dimensions in separate variables. This is
tedious and error prone. Of course, one could wrap a pointer to the matrix data
together with its dimensions into a C++ class and provide overloaded operators
that call into the BLAS. We did consider this option but refrained from using it
since for any but the most trivial expressions, it would either have to introduce
significant abstraction overhead or else be very hard to implement. Most impor-
tantly, there already exist libraries that provide better abstractions than we could
have implemented in an ad hoc manner.

4.1.2.2 Boost uBLAS

Boost [3] is a collection of high-quality peer-reviewed free software C++ libraries
that are sometimes viewed as a sandbox for contributions that some daywill even-
tually become part of a future C++ standard. uBLAS [23] is part of Boost’s numeric
library. From its website⁴:

³http://www.netlib.org/
⁴http://beta.boost.org/doc/libs/1_56_0/libs/numeric/ublas/doc/index.

htm

http://www.netlib.org/
http://beta.boost.org/doc/libs/1_56_0/libs/numeric/ublas/doc/index.htm
http://beta.boost.org/doc/libs/1_56_0/libs/numeric/ublas/doc/index.htm

4.1. TECHNOLOGIES 51

#include <cstddef>
#include <cblas.h>

void
example(const std::size_t n,

const std::size_t k,
const std::size_t m,
const double * a_ptr,
const double * b_ptr,
double * c_ptr,
const double alpha,
const double beta)

{
cblas_dgemm(CblasColMajor, // data layout

CblasNoTrans, // don't transpose A
CblasTrans, // do transpose B
n, // rows(A) = rows(C)
m, // cols(BT) = cols(C)
k, // cols(A) = rows(BT)
alpha, // α
a_ptr, // pointer to the data of A
n, // stride for A (special case)
b_ptr, // pointer to the data of B
m, // stride for B (special case)
beta, // β
c_ptr, // pointer to the data of C
n); // stride for C (special case)

}

Listing 4.1: Example code demonstrating the use of the CBLAS interface to com-
pute αABT+βC and store the result inC . The code makes some assumptions that
do not hold in general. In particular, the data layout need not be “column major”
and the strides (called LDX for parameter X in the BLAS jargon) need not match
the dimensions of the matrix, therefore allowing to slice out sub-matrices.

52 CHAPTER 4. IMPLEMENTATION

uBLAS is a C++ template class library that provides BLAS level
1, 2, 3 functionality for dense, packed and sparse matrices. The de-
sign and implementation unify mathematical notation via operator
overloading and efficient code generation via expression templates.

Using Boost uBLAS, the expression from equation 4.1 can be computed as
shown in listing 4.2. While this is not particularly elegant, the intent of the pro-
gram is pretty clear even to the unacquainted. Most importantly, it gets rid of the
tedious bookkeeping required when using the CBLAS interface.

Boost uBLAS can use its own C++ algorithms based on expression templates
(this is the default) or be bound to external BLAS libraries. In particular, Intel
distributes a header file to bind computation of dense matrix-matrix products to
their proprietary MKL [11]. Unfortunately, this binding is only very rudimentary
and might require intrusive changes to the code. For example, the expression in
listing 4.2 has to be re-written to use a temporary. We did not succeed at binding
Boost uBLAS to other BLAS kernels but there are reports on the internet that
suggest other people did.

uBLAS itself is not multi-threaded so the only way to gain parallelism is to
bind it to the multi-threaded MKL.

#include <boost/numeric/ublas/matrix.hpp>

void
example(const boost::numeric::ublas::matrix<double>& a,

const boost::numeric::ublas::matrix<double>& b,
boost::numeric::ublas::matrix<double>& c,
const double alpha,
const double beta)

{
c = alpha * prod(a, trans(b)) + beta * c;

}

Listing 4.2: Example code demonstrating the use of the Boost uBLAS tem-
plate library to compute αABT + βC and store the result in C . In the
above code, prod and trans bind to boost::numeric::ublas::prod and
boost::numeric::ublas::trans respectively that are found via ADL.

4.1.2.3 TNT

The Template Numerical Toolkit (TNT) [18] is a free software C++ numerical li-
brary developed by Pozo from the National Institute of Standards and Technology
(NIST). From the TNT website⁵:

⁵http://math.nist.gov/tnt/

http://math.nist.gov/tnt/

4.1. TECHNOLOGIES 53

[TNT] is a collection of interfaces and reference implementations
of numerical objects useful for scientific computing in C++. The toolkit
defines interfaces for basic data structures, such as multidimensional
arrays and sparse matrices, commonly used in numerical applica-
tions. The goal of this package is to provide reusable software compo-
nents that address many of the portability andmaintenance problems
with C++ codes.

TNT provides a distinction between interfaces and implementa-
tions of TNT components. For example, there is a TNT interface for
two-dimensional arrays which describes how individual elements are
accessed and how certain information, such as the array dimensions,
can be used in algorithms; however, there can be several implemen-
tations of such an interface: one that uses expression templates, or
one that uses BLAS kernels, or another that is instrumented to pro-
vide debugging information. By specifying only the interface, appli-
cations codes may utilize such algorithms, while giving library devel-
opers the greatest flexibility in employing optimization or portability
strategies.

While, according to this description, TNT seems to provide just what we need,
we could not figure out how tomake efficient use of the library. We havemanaged
to compute simple expressions using TNT but this was neither fast nor conve-
nient. We have not been able to bind TNT to an external BLAS library. Since there
didn’t seem to be a consistent and up-to-date referencemanual, reading the source
code was often the only way to learn about the library. This was further compli-
cated by the fact that there are two versions (TNT 1.2.6 and TNT 3.0.12) with
different APIs available at the NIST website. Considering these circumstances,
we have quickly abandoned the option to use TNT for our work.

Listing 4.3 shows our best attempt to implement equation 4.1 inside the TNT.
It is inferior compared to all other solutions in that it creates temporary objects
for intermediate results, instead of computing the entire expression in one flush.

4.1.2.4 Eigen

The last library we have considered was Eigen [10]; a stand-alone free software
linear algebra library. Its website ⁶ says:

Eigen is a C++ template library for linear algebra: matrices, vec-
tors, numerical solvers, and related algorithms.

Eigen uses expression templates to not only minimize abstraction overhead
but actually leverage compile-time optimizations that are not possible using or-
dinary function calls. This makes the C++ code very idiomatic without loosing
performance. The example from equation 4.1 is implementedwith Eigen as shown

⁶http://eigen.tuxfamily.org/

http://eigen.tuxfamily.org/

54 CHAPTER 4. IMPLEMENTATION

#include <tnt/tnt.h>

void
example(const TNT::Matrix<double>& a,

const TNT::Matrix<double>& b,
TNT::Matrix<double>& c,
const double alpha,
const double beta)

{
c = mult(alpha, mult(a, transpose(b))) + mult(beta, c);

}

Listing 4.3: Example code demonstrating the use of the Eigen template library to
compute αABT+βC and store the result inC . As it stands, this code creates up to
four temporary objects unless the compiler is able to optimize some of them away.
mult and transpose bind to TNT::mult and TNT::transpose via ADL.

in listing 4.4. It is almost identical to the mathematical notation. In fact, Eigen
provides even much more powerful features to write complex mathematical ex-
pressions in a very elegant way.

Eigen can be parallelized using OpenMP. All that needs to be done for this is
enabling OpenMP in the compiler⁷. It is possible to bind Eigen to the MKL simply
by defining a preprocessor symbol. However, as of this writing, it is not possible
to bind it to other BLAS kernels.

Eigen is under active development by an open volunteer group of free software
hackers, many with academic backgrounds. It has an active project mailing list
and our questions and patches were promptly dealt with.

#include <Eigen/Dense>

void
example(const Eigen::MatrixXd& a,

const Eigen::MatrixXd& b,
Eigen::MatrixXd& c,
const double alpha,
const double beta)

{
c = alpha * a * b.transpose() + beta * c;

}

Listing 4.4: Example code demonstrating the use of the Eigen template library
to compute αABT + βC and store the result in C . MatrixXd is a convenience
typedef for dynamic-size matrices with values of type double.

⁷For the GNU C++ compiler, the respective flag would be -fopenmp.

4.1. TECHNOLOGIES 55

Library / Interface Sp
ee
d

C
on
cu
rr
en
cy

Fl
ex
ib
ili
ty

El
eg
an
ce

M
at
ur
it
y

Fr
ee

So
ftw

ar
e

CBLAS 4ᵃ 4ᵃ 4 8 4 4ᵃ
Boost uBLAS 3ᵇ 7ᵇ 3ᶜ 3 3 4ᵈ
TNT 8ᵉ 8ᵉ 8ᵉ 7 8 4

Eigen 4 4 3ᶜ 4 4 4ᵈ
ᵃ depends on the BLAS library that is linked to
ᵇ good if compiled with MKL bindings
ᶜ can be bound to the MKL but not to any BLAS implementation in general
ᵈ unless compiled with MKL bindings
ᵉ at least we have not been able to

Table 4.1: Comparison of how well different libraries and interfaces to use basic
dense linear algebra in C++ fit our requirements. The symbols used mean “4” for
“yes / very good”, “3” for “somewhat / quite good”, “7” for “somewhat / rather
bad” and “8” for “no / very bad”.

4.1.2.5 Comparison

Table 4.1 compares the four options discussed thus far with respect to the require-
ments we have stated in the introduction of this section.

To get acquainted with their APIs and to be able to make a sound decision, we
have implemented small benchmarks for the four libraries as well as a naïve self-
made C++ implementation (lst 4.5). Our minimum requirement for any external
library was that it be at least as fast as the naïve implementation.

Figure 4.1 shows how well the libraries perform with regard to equation 4.1.
It can be seen clearly from the plot that the libraries can be classified into the two
groups “fast” and “slow”. The “slow” group is bounded below by our self-made
loop which is what we expect. In addition, the TNT library and uBLAS fall into it.
The “fast” group is lead by using the MKL directly via the CBLAS interface which
is not very surprising either. The uBLAS and Eigen libraries with MKL bindings
are somewhat less efficient than using CBLAS directly. Note how close Eigen’s
performance comes to the MKL.

Figure 4.2 shows the same plot for a parallel run using 32CPUs. Our self-made
solution is again hopelessly outperformed which shows that the libraries include
heavy optimizations. The abstraction penalty for using the MKL via uBLAS or
Eigen seems to be larger in the parallel case and Eigen’s own code is not as com-
petitive as in the sequential case. Please note how large the matrices have to be
for all libraries to achieve maximum performance in parallel. This will also be
important for our own work.

56 CHAPTER 4. IMPLEMENTATION

#include <algorithm>
#include <cstddef>

#ifndef re s t r i c t
#define re s t r i c t /* empty */
#endif

void
example(const std::size_t n, const std::size_t k, const std::size_t m,

const double *const re s t r i c t a_ptr,
const double *const re s t r i c t b_ptr,
double *re s t r i c t c_ptr,
const double alpha, const double beta) noexcept

{
i f (beta == 0.0)

{
// C might be uninitialized and even if not, filling with zeros
// will be faster than multiplying each element with 0.
std::uninitialized_fill(c_ptr, c_ptr + n * m, 0.0);

}
else

{
for (std::size_t idx = 0; idx < n * m; ++idx)

c_ptr[idx] *= beta;
}

for (std::size_t l = 0; l < k; ++l)
for (std::size_t j = 0; j < m; ++j)
for (std::size_t i = 0; i < n; ++i)

c_ptr[i + n * j] += alpha * a_ptr[i + n * l] * b_ptr[j + m * l];
}

Listing 4.5: Our self-made reference implementation of computing the bench-
mark expression αABT + βC and store the result in C . Matrix data is assumed
to be in column-major order. The loops can be parallelized with OpenMP, how-
ever, for the second, one has to be careful not to introduce a data race. The macro
restrict can be #defined to a compiler-builtin with the semantics of the cor-
responding C keyword. For example, it would be #defined to __restrict for
the GNU C++ compiler. For compilers that do not support such an extension, the
“keyword” simply is “#defined away”. (The GNU Autotools are actually a little
smarter and take care not to #define restrict if the compiler already treats
it like a keyword.)

4.1. TECHNOLOGIES 57

0

5 · 108
1 · 109
2 · 109
2 · 109
2 · 109
3 · 109
4 · 109
4 · 109
5 · 109

0 1000 2000 3000 4000 5000

R
/

FL
O
Ps

s−
1

3√
nkm

CBLAS + MKL
Eigen
Eigen + MKL
uBLAS

uBLAS + MKL
TNT
self-made

Figure 4.1: FLOP rates of the compared linear algebra libraries during sequential
execution. Plotted is the FLOP rate against the “hypothetical” matrix size for
computing the expression αABT + βC where A is a n × k , B a m × k and C a
n ×m matrix. We assume thatWeff = nkm, corresponding to ω = 3. The machine
used for this experiment is identical to the ITI-120 described later in this work
(see tab 5.1).

58 CHAPTER 4. IMPLEMENTATION

0

1 · 109

2 · 109

3 · 109

4 · 109

5 · 109

6 · 109

0 2000 4000 6000 8000 10000

R
/

FL
O
Ps

s−
1
CP

Us
−1

3√
nkm

CBLAS + MKL
Eigen
Eigen + MKL

uBLAS + MKL
self-made

Figure 4.2: FLOP rates of the compared linear algebra libraries during parallel
execution. Plotted is the FLOP rate against the “hypothetical” matrix size for
computing the expression αABT + βC whereA is a n ×k , B am ×k andC a n ×m
matrix. We assume thatWeff = nkm, corresponding to ω = 3. This experiment
was conducted on a machine with 32 CPUs and Advanced Vector Instructions. (It
is the ITI-127 machine, described later. See table 5.1 for details.)

The two benchmarks have been recorded on differentmachines so please don’t
compare their absolute values.

Putting everything together, we decided to implement our algorithms on top
of Eigen as it would be the best fit for our requirements. For benchmarks we
run on the machines at our institute where Intel’s proprietary MKL is already
installed, we would bind to it via a simple configuration switch to get maximum
performance and parallelism. Yet, we (or anyone else) can build our software
without any non-free dependencies by default and still get very good performance
and parallelism (better than with any other option, that is). The elegance and
maturity of Eigen further contributed to that decision.

4.2. ALGORITHMS AND DATA STRUCTURES 59

4.1.3 Tools and Programs

We have developed the code on 64 bit GNU/Linux systems using the GNU tool-
chain. We have used the following tools to support our development work. All of
them are free software.

• The GNU Compiler Collection (GCC) – most notably, its C++ front-end g++
– was used to compile our code. Of course we have also used the associated
preprocessor, assembler, linker and system libraries. We have used versions
4.9.1 and 4.8.2⁸.

• Gprof is a profiling tool that accompanies GCC. We have used it to detect
hot-spots in our code and assure ourselves that the bulk of work is done
inside library calls.

• Gcov is a code coverage measuring tool for GCC. We have used it to assess
the unit test coverage of our code.

• The GNU Debugger (GDB) was used to hunt bugs in our code.

• Valgrind is a special-purpose debugger with a module (Memcheck) targeted
at detecting memory errors. We have used it to make sure our code is free
from leaks and obvious memory errors.

• The GNU Autotools are a framework to create very portable and highly au-
tomated build systems. We have used them for all our building and pack-
aging, starting from compiling the code over creating distribution tarballs
up to typesetting this document. The various POSIX tools play an essential
role in this system. We are also using a number of handy scripts the author
has developed over the years. Those are included in the distribution tarball.

• The Subversion (SVN) revision control systemwas used tomanage our source
code.

4.2 Algorithms and Data Structures

The most challenging task we have dedicated the bulk of our implementation ef-
fort to was designing data structures that efficiently model the structure of hi-
erarchical matrices and formulate algorithms for basic linear algebra operations
on them. Of course, these algorithms should internally call into the third-party

⁸The lower of these is likely the oldest version that will work since we have developed the code
with the newer one and then added just so many workarounds to make it compile with the older
one. Due to our intensive use of modern C++11 features, it is likely that there are many more issues
with older compilers, especially those that have been released before the C++11 standard. While
we are using new features liberally, we emphasize that our code is strictly standards compliant to
our best knowledge and should be compileable with any conforming compiler (of which there is
none, unfortunately).

60 CHAPTER 4. IMPLEMENTATION

Node
«interface»

InnerNodeLeafNode
1

0..∗

Figure 4.3: UML diagram of the Composite Pattern [5].

library (Eigen, in our case) that is used for classical dense linear algebra. We
have aimed to make these structures as high-level as possible and abstract away
as many of the details as possible from the user. Once this was done, the actual
algorithms could be implemented in just a few lines of very high-level code that
looks almost identical to the pseudo code listings presented in chapter 3. C++
aids this task very well with polymorphism, operator overloading and argument
dependent lookup (ADL) [22, § 14.2.4].

4.2.1 Data Structures for Hierarchical Matrices

The hierarchical structure of an H-matrix calls for an implementation using the
composite pattern [5]. In that pattern, a type recursively refers to itself via an
abstract interface. The pattern is the natural implementation of trees in object
oriented languages and visualized in figure 4.3.

4.2.1.1 The Abstract HMatrix Class

For our implementation, we defined an abstract HMatrix class. It supports a very
rudimentary interface. Apart from knowing its own size, it provides operations
to access individual elements. These must of course only be used for debugging
purpose since having multiply delegated virtual function calls for each element
access is clearly unacceptable in high-performance applications. On the other
hand, these functions allowed us to get started quickly with our high-level al-
gorithms (that then were of course terribly slow). Once we saw that they were
working, we successively optimized our low-level algorithms until no inefficient
operations were performed any more. The other two operations specified by
the HMatrix interface are a clone operation that returns a deep polymorphic
copy (since polymorphism prevents us from using copy constructors here) and a
passOverRegion function that implements a visitor-like interface but without

4.2. ALGORITHMS AND DATA STRUCTURES 61

double dynamic dispatch⁹.

4.2.1.1.1 Visitors The visitor mechanism is the foundation for practically all
algorithms we define on HMatrixes. Its semantics are straight-forward: Often,
an operation on or with a matrix can be formulated in terms of all its blocks of
non-zero elements. To do this efficiently, the matrix class had better tell us where
its non-zero blocks are so we waste no time dealing with the zero blocks.

TheActiveVisitor interface specifies exactly one function: visitRegion.
It takes as arguments a reference to an HMatrix, a flag that indicates whether this
matrix is to be interpreted as its transpose, four coordinates defining a rectangle
inside the matrix and two more coordinates defining the offset of that rectangle
inside whatever is the whole matrix.

To apply an operation to all regions of anHMatrix, one creates anActiveVisitor
object that overrides the visitRegion function accordingly and then passes the
visitor to the HMatrix’ passOverRegion function. This function takes addi-
tional parameters to specify whether the whole matrix or only a slice of it should
be shown to the visitor. In addition, it has parameters that allow propagation
of the information whether the matrix is to be interpreted as its transpose and
what the coordinates of the region’s origin are in whatever is the global coordi-
nate system. Thematrix is now responsible for calling the visitor’s visitRegion
function exactly once for each of its non-zero blocks. The order is unspecified. Of
course, if the matrix is composite, then it will pass the visitor on to its children
until recursion ends at the leaf matrices where the visitor is finally applied.

Sometimes, it is not necessary to modify the visited matrix. In this case, it is
undesirable from a software engineering point of view to have to use amechanism
that is formulated non-constant. Therefore, there also is the PassiveVisitor
interface. It is identical to theActiveVisitor interface except that thevisitRegion
function receives a const reference to the visited regions.

A simple use-case for an ActiveVisitor (that does not leverage the full
power of this mechanism) is an operation to scale an HMatrix’ elements by a
scalar factor. The visitor would store the factor as a member and then, for each
non-zero region it is shown, call a library function to actually scale the elements.

An example where a PassiveVisitor could be useful is if an HMatrix
should be “flattened”. That is, all elements should be copied into a single huge
two-dimensional array. Since we do not need to modify the original matrix, a
PassiveVisitor is sufficient. For each region it is shown, the visitor performs
some rather simple coordinate transformation to figure out where it is located in
the “flat” matrix and then copies over the elements (preferably via a library call)
into the array it has stored as a pointer member.

⁹This might be considered a design flaw and if we were to implement the thing again, we
would do the Visitor pattern correctly. Fortunately, since we have only one leaf node type, the
tyranny of dominant decomposition is rather mild in our case. However our code is littered
with if (auto full_ptr = dynamic_cast<FullMatrix<T>*>(&matrix)) { ... }
constructs, many of which could have been avoided if double dynamic dispatch had been used.

62 CHAPTER 4. IMPLEMENTATION

BothActiveVisitors andPassiveVisitor are passed around by-reference
so they can carry state. For a PassiveVisitor, this is often essential. For ex-
ample, if we want to find the maximum element in a matrix.

4.2.1.2 Leafs: The FullMatrix Class

The only leaf node type we have derived (except for a MockHMatrix class for
unit testing) is the FullMatrix class. It is a rather simplistic wrapper around the
Eigen::Matrix class to which it directly delegates calls to the size and element-
wise accessor functions.

The FullMatrix class extends the HMatrix interface by a getRawMatrix
function that returns a reference to the underlyingEigen::Matrix. AFullMatrix
does not know anything about its structure. Visitors are therefore passed over the
entire matrix.

In order to clone() a FullMatrix, a copy of the underlying raw matrix is
wrapped inside a new FullMatrix.

4.2.1.3 Nested Dissection: The BlockMatrix Class

The BlockMatrix class¹⁰ represents the special structure of a matrix obtained
via nested dissection (§ 2.4.1). It has references to seven child HMatrixes with
some restrictions on their relative dimensions dictated by the structure of the
matrix. We did not make our implementation symmetry-aware which means that
we store all blocks separately, even if they contain the same data¹¹. The size of
a BlockMatrix (which must be square) is defined by the sum of the sizes of
its diagonal blocks. Element-wise access is readily delegated to the respective
child matrix by bracketing the indices along both dimensions. Visitors are passed
over the seven children leaving out the two off-diagonal zero blocks. A clone of
a BlockMatrix is made by recursively clone()ing its children and arranging
them into a new BlockMatrix.

BlockMatrixes extend the HMatrix interface by providing access to the
seven sub-matrices via functions getBlockA, …, getBlockY. (The names are
the same as introduced in section 2.4.1.) These functions return a pointer to the
respective sub-matrix or a nullptr if the BlockMatrix is a degenerate 0 × 0
matrix with no children.

4.2.1.4 Arbitrary Children: The ArrangedMatrix Class

The ArrangedMatrix class is the most general case of an HMatrix node. It
has an arbitrary number of arbitrarily arranged children. The only restrictions

¹⁰In retrospective, NDMatrix would probably have been a better name.
¹¹Avoiding this turned out to be harder than expected. While reading access is easily mapped to

the transposed region, it is not so clear what should happen if an entry is written to. For example,
is the algorithm to scale a matrix with a scalar factor supposed to know it should visit only half the
matrix? We have postponed this decision until no time soon.

4.2. ALGORITHMS AND DATA STRUCTURES 63

are that the child matrices must fit the boundaries of the ArrangedMatrix and
no two child matrices must overlap with each other. The matrix is represented
as an unordered list of MatrixAnchors where a MatrixAnchor is a very sim-
ple data structure storing a pointer to an HMatrix (the child matrix) and two
indices specifying the coordinates of the child matrix’ first element inside the
whole ArrangedMatrix.

To access a single element inside an ArrangedMatrix, a linear search over
the list of children is required. For each child, it has to be checked whether the
requested index falls into their region. If no child is tested positively, then the
index falls into a zero block.

Likewise, if a visitor is to be passed over a region of an ArrangedMatrix,
we check for each child whether it overlaps with the requested region and if so,
recurse into the respective sub-region of the child. This might sound worse than
it is because the most frequent case is that the entire matrix is to be passed over
in which case we need to deal with each child individually, anyway. In addition,
the number of children is usually not very large.

An ArrangedMatrix is clone()d by clone()ing all its children and in-
serting them (at the same positions) into a new list of MatrixAnchors in a new
ArrangedMatrix with the same dimensions.

ArrangedMatrixes provide access to their children via an iterator over the
MatrixAnchors.

ArrangedMatrixes are general and flexible but sometimes, more is known
about the structure and this extra information can be exploited by certain algo-
rithms. Therefore an ArrangedMatrix keeps three flags to indicate whether it
is row-linear, column-linear and diagonal. Usually, a matrix can only have one of
the properties except in trivial cases (such as an empty matrix). Table 4.2 explains
these three properties further.

4.2.1.5 Slicing and Transposing: The MatrixView Class

The HMatrix classes discussed so far all own their data and are therefore heavy-
weight components. Often times, we want to refer to a slice of another matrix
as a matrix in its own right or view a matrix as its transpose. This leads us to
the introduction of a light-weight MatrixView class. A MatrixView object is
only a few words in size storing a pointer to the viewed HMatrix, four indices
defining the region that is viewed and a flag whether the view is transposed.

In order to be able to create a view of const and non-const HMatrixes alike,
we need two types of views: ConstMatrixViews and MutableMatrixViews.
These are actually just template aliases for the general MatrixView class that
takes an additional boolean template parameter that selects whether the viewed
matrix may be modified.

Element-wise access on a MatrixView involves adding an offset to both in-
dices and – if the view is transposed – eventually swapping row and column index.
The thus obtained new indices are passed on to the viewedmatrix. Visitors are ap-

64 CHAPTER 4. IMPLEMENTATION

Property Definition Example

row-linear Each sub-matrix has the
same height as the en-
tire matrix.

column-linear Each sub-matrix has the
same width as the entire
matrix.

diagonal Each sub-matrix is an-
chored at the main diag-
onal.

Table 4.2: Special properties of ArrangedMatrixes. It is readily seen that
a matrix is row-linear if and only if its transpose is column linear. Since an
empty ArrangedMatrix (with no children) fullfills all three properties in a triv-
ial sense, each ArrangedMatrix starts with all three flags initially set. Each
time a tile is added, it is checked (with constant overhead) for each property
that is still set whether this new tile voids that property. Querying whether an
ArrangedMatrix has any of the properties is a constant operation that simply
returns the value of the respective flag.

4.2. ALGORITHMS AND DATA STRUCTURES 65

plied to the viewed region of the underlying HMatrix only with the flag whether
the region is transposed xor’ed with the transpose flag of the view.

Unfortunately, it is not possible to implementclone() properly forMatrixViews.
If the clone were shallow, it would violate the requirement for the operation to
have copy-semantics. If it were deep as required by the interface, it could not even
return the same type as the cloned object. Therefore, MatrixView::clone is
amputated (overridden to unconditionally throw an exception). Likewise, for ob-
vious reasons, the ConstMatrixView::set member had to be amputated, too.

4.2.1.6 HVector and FullVector

For vectors, we also have an abstract HVector interface that merely defines func-
tions to query the size of the vector and element-wise access. However, the only
implementing class is FullVector that delegates to Eigen::Matrix again and
provides a getRawVector member function that returns a reference to it. There
is no visitor interface for HVectors.

Figure 4.4 summarizes the data types introduced in this section. Equipped
with these types, we can stack together any configuration we need. In the follow-
ing section, we will describe how basic linear algebra operations can be carried
out with these types.

4.2.2 Basic Algorithms for Hierarchical Matrices

In this section, we will discuss how some basic operations can be implemented
for the data structures introduced in the previous section. We have already ex-
plained how trivial element-wise operations such as scaling with a scalar factor
can be implemented using ActiveVisitors. In this section, we will focus on
two operations that are not so obvious to implement and have received the most
attention on our behalves: sums / differences and products of HMatrixes.

4.2.2.1 Implementation Strategy

Implementing a fully-fledged library of linear algebra operations would have been
both, overkill for our task and impossible within the time constraints for this
work. Instead, we have focused on making those operations efficient that are
actually used by our program and left the others alone.

Since we were not sure from the beginning how the complete program can
work, we have adopted a “tracer bullet” approach [9]. First, we’ve implemented
naïve algorithms for all operations and wrote black-box unit tests for them. This
allowed us to quickly formulate our higher-level algorithms using arbitrary ex-
pressions and see whether they will work correctly. At the beginning of every
such algorithm we put a macro BSC_KLAMMLER_INEFFICIENT_ALGORITHM
that serves two tasks. First, it is a prominent warning that the algorithm is not op-
timized yet. Second, it allows us to inject tracer code to detect what algorithms are
called by our program. The BSC_KLAMMLER_INEFFICIENT_ALGORITHMmacro

66 CHAPTER 4. IMPLEMENTATION

HMatrix
rows, cols : Integer
passOverRegion(…)
clone() : HMatrix

FullMatrix
data : Real[*][*]
passOverRegion(…)
clone() : HMatrix

BlockMatrix
A,B,C,U ,V ,X ,Y : HMatrix
passOverRegion(…)
clone() : HMatrix

ArrangedMatrix
children : MatrixAnchor[*]
passOverRegion(…)
clone() : HMatrix

MatrixView
viewed : HMatrix
trans : Boolean
i0, j0,i1, j1 : Integer
passOverRegion(…)

Figure 4.4: UML class diagram of the various matrix classes.

4.2. ALGORITHMS AND DATA STRUCTURES 67

is defined to invoke a function that – depending on a global policy variable – may
act in different ways.

• If the policy is IGNORE then the function call is a no-op. This is useful
during early states of development where we simply want to get going.

• A policy of WARN will log a warning message that the inefficient algorithm
was called. This helps decidingwhat algorithms still need optimization once
the basic scaffolding stands.

• The THROW policy triggers a fatal error. This is used when benchmarking
the code to make sure all calls to inefficient functions have been optimized
away.

Once we were confident that our general design would work, we started turning
on the warnings and optimized one operation at a time. While doing so, we could
run regression tests against the unit test base as well as verify that our high-level
algorithms still work correctly with the optimized routines as often as we wanted.
Since optimizing often meant writing additional functions, we also needed addi-
tional white-box unit tests that exercise them. We have used Gcov to verify on a
regular basis that at least, we reach almost complete instruction coverage.

For some operations (such as matrix-vector products) we have been able to
optimize the general version of the operation. For other operations, however, this
was not simple and we have ended up optimizing only those special cases that are
hit by our program and resort to the nav̈e implementation if none of the special
cases matches.

All these operations are implemented as non-member non-friend functions in
a single header file that is kept separately from the HMatrix class definitions.

4.2.2.2 Sums and Differences

Obviously, the logic for adding and subtracting HMatrixes is the same. There-
fore, all algorithms that deal with them are implemented as templates that take an
additional parameter that specifies the operation. The user-level operator over-
loads might then (parameter validation aside) look like this.
template<typename T>
HMatrix<T>&
operator+=(HMatrix<T>& self, const HMatrix<T>& other)
{

algorithms_hpp::plus_minus_to<'+'>(self, other);
return self;

}

where algorithms_hpp::plus_minus_to is an internal function that does
the actual work. Therefore, the code that needs to be duplicated for operator -=
is negligible. plus_minus_to is defined as

68 CHAPTER 4. IMPLEMENTATION

template<char Op, typename T>
void
plus_minus_to(HMatrix<T>& self, const HMatrix<T>& other)
{

static_assert(Op == '+' || Op == '-',
"template␣parameter␣'Op'␣must␣be␣'+'␣or␣'-'");

// ...
}

and at some point (where the actual addition or subtraction is carried out) might
contain something like
switch (Op)

{
case '+': val += diff; break;
case '-': val -= diff; break;
default: BSC_KLAMMLER_NOT_REACHED;
}

where the switch statement generates no machine code since Op is a compile-
time constant. (The above snippet is actually copied from the naïve fallback imple-
mentation and occurs inside a tight loop there.) ThemacroBSC_KLAMMLER_NOT_REACHED
is defined to unconditionally trigger a fatal error and can be placed as an assertion
at points the control flow should never reach.

This implementation is a little more complicated than simply defining opera-
tor -= in terms of
template<typename T>
HMatrix<T>&
operator-=(HMatrix<T>& self, const HMatrix<T>& other)
{
return self += -other;

}

but while it is possible to optimize the negation away here, reliably doing sowould
require more thoughts than a few switch(Op) { ... } here and

The application of the update is performed in two logical steps. For each non-
zero block in the addend (or subtrahend), it is checked where it belongs in the
augend (or minuend). There are at least three cases to distinguish.

• The update is completely confined inside a non-zero block of the augend (or
minuend). In this case, a simple library call to apply the update is sufficient.

• The update falls completely inside a zero block of the augend (or minuend). It
depends on the type of the HMatrixwhether we can handle this case at all.
For an ArrangedMatrix, we simply add a new tile with just the data of
the update (or its negative in case of subtraction). For a BlockMatrix on
the other hand, this case is a contract violation as such a matrix must never
contain anything inside the zero blocks that are defined by its structure. If

4.2. ALGORITHMS AND DATA STRUCTURES 69

we get such an update for a BlockMatrix, we have no chance but must
raise an error.

• The update partially overlaps with a non-zero block in the augend (or min-
uend). This case is the most difficult one. If the augend (or minuend) is
not an ArrangedMatrix, the operation is invalid in the first place any-
way. However, even if we are updating an ArrangedMatrix, it is not
clear how we should proceed. Adding tiles for the non-overlapped regions
would quickly cause fragmentation of the matrix. A clever heuristic to de-
cide how to grow / merge tiles would be complicated and cause additional
overhead. Since this situation never occurs in our algorithms (by design, cf
chapter 3) we have simply disallowed it.¹²

The above logic is implemented via a pair of visitors. A PassiveVisitor
visits the addend (or subtrahend) to extract all non-zero blocks. Those it passes to
an ActiveVisitor that passes over the augend (or minuend) to find out which
of the above three cases applies and handle it properly.

To add and subtract HVectors – since there are only FullVectors – we can
always call directly into the library. Only if one of the vectors is an unknown type
(which only happens if a mockup is passed for the unit tests) a naïve copy loop
takes over.

4.2.2.3 Products

4.2.2.3.1 Matrix-Vector Products Since it is much simpler, let us discuss the
product of anHMatrix and aFullVectorfirst. The result will also be aFullVector.¹³
Assume for the sake of this discussion that the matrix is the left-hand and the vec-
tor the right-hand operand. The other case is easily implemented in terms of this
one simply by swapping the operands. If one were to distinguish between row
and column vectors – which we don’t – an additional transposition would have
to be done.

We observe that no matter how the matrix looks, the result will be the sum of
the vector multiplied individually with each non-zero block in the matrix. Those
individual products yield vectors where all elements above and below the non-
zero block are zero. These products are computed straight-forwardly by passing
a PassiveVisitor over the HMatrix that multiplies each non-zero block with
the respective piece of the vector. The result is accumulated in a FullVector
that is initially filled will all-zeros. This procedure is illustrated in figure 4.5.

¹²If it would happen, the naïve fallback algorithm will kick in and trigger an error at the first
attempt to add (or subtract) a non-zero element inside a zero block. The additional check for each
elementwhether it is zero is needed in the naïve version so it can treat everything as a FullMatrix.

¹³The case that the vector is not a FullVector again only applies to unit test mockups. The
result will still be a FullVector in this case.

70 CHAPTER 4. IMPLEMENTATION

1

2

3

4
5

6

1 2 3 45 6

A B

C

M v

· = · + · + ·

=

0

⊕

Av [j1 : j2]

⊕

Bv [j3 : j4]

⊕

Cv [j5 : j6]

Figure 4.5: Product of an HMatrix M and an HVector v that is treated as a
FullVector. For each non-zero block of M , we compute the product of that
block and the respective slice of v that spans the same indices than the block’s
columns. Then we add together the partial results where we have invented the
operator “⊕” to mean “add at the right offset”. The small numbers above and left
to the matrix M number the row and column indices that define the slices of the
non-zero blocks. That is, A = M[i1 : i2][j1 : j2], B = M[i3 : i4][j3 : j4] and
C = M[i5 : i6][j5 : j6].

4.2.2.3.2 Matrix-Matrix Products Unfortunately, the above approach grows
unwieldy if the right-hand operand is a matrix too. Even if it were a FullMatrix
– which more often than not, it is not – it would be inefficient to implement
a matrix-matrix product as a bunch of matrix-vector products. We have only
implemented the following special cases.

• Both operands are a single FullMatrix. This case is a simple call into the
dense linear algebra library. The result is a FullMatrix again.

• The left-hand operand is a column-linear ArrangedMatrix. The result is
again a column-linear ArrangedMatrix with sub-matrices of exactly the
same size and at exactly the same positions than in the left-hand operand.

• The right-hand operand is a row-linear ArrangedMatrix. The result is
again a row-linearArrangedMatrixwith sub-matrices of exactly the same
size and at exactly the same positions than in the right-hand operand.

• The left-hand operand is a column-linear ArrangedMatrix and the right-
hand operand is a row-linearArrangedMatrix. Theresult is anArrangedMatrix
with a “grid” of sub-matrices of sizes and positions defined by the sizes and
positions of the sub-matrices in the operands.

• Both operands are arbitrary HMatrixes. The result is computed by an inef-
ficient naïve element-wise loop and returned in a FullMatrix, throwing
away any structural information. This case never happens in our code.

4.2. ALGORITHMS AND DATA STRUCTURES 71

While this case is simple to compute, it requires a little more work to de-
tect. This is because the FullMatrix might be buried under layers of other
HMatrixes so simply checking the type of the operands (either statically or dy-
namically) is not sufficient. The most obvious example how this can happen is if
a MatrixView is created. While the matrix data is still a single dense block, the
dynamic – leave alone with the static – type of the operand is not FullMatrix.
An other example would be a degenerated ArrangedMatrix that has exactly
one FullMatrix of equal size as child. Of course, this situation can be made ar-
bitrarily complex by stacking all kind of HMatrixes together as long as the final
view projects to a sub-matrix of a single FullMatrix.

Our approach to this problem is to pass aPassiveVisitor over the operand.
The first non-zero block that is shown to this visitor is recorded (a pointer to it,
four indices that define the sub-block and a flag whether the block is transposed).
If a second block is shown to the visitor afterwards, it is invalidated. If after
passing over the operand, the visitor has seen exactly one block and that block
has the same size as the operand, we use it for the multiplication. otherwise this
algorithm bails out and the naïve substitute acts as a fallback. If a single dense
block of full size could be extracted from both operands, the Eigen library is called
to compute their product.

The other three cases are really just creating an empty ArrangedMatrix of
appropriate dimensions for the result, and then looping over all combinations of
sub-matrices, computing their respective product and adding the result as a sub-
matrix in the overall product. Figure 4.6 illustrates this.

Often times, we are dealing with a matrix that is row- or or column-linear but
doesn’t say so. This happens for example in our algorithms when we slice out the
M21 part (see § 3.2.1) of a BlockMatrix. While the slice is of type MatrixView
that has no concept of linearity, we as the user know that the matrix actually
is column-linear. Therefore, we use a trick to get the object learn its structure.
Instead of slicing out a MatrixView, we are creating a new ArrangedMatrix
where each sub-matrix is a MatrixView of a single dense non-zero block.

To do so, we define the static factory function makeArrangement that takes
as parameters an HMatrix to slice, four coordinates that define the region to slice
out and a functor to extract a non-zero block. This function creates an empty
ArrangedMatrix of the same size as the region to be sliced out and then passes
a PassiveVisitor over that region that, for every non-zero block it is shown,
passes the block to the functor and inserts the returned HMatrix into the new
ArrangedMatrix at the correct position. Finally, the new ArrangedMatrix
is returned. In effect, this “flattens out” a general HMatrix to yield an identical
HMatrix with recursion depth one.

This mechanism is very flexible and could be applied to many problems. For
the issue described above, we use a functor that does not clone() the non-zero
blocks –whichwould certainly be a terrible idea – but creates aConstMatrixView
of them. The storage needed for a single MatrixView and its entry inside the
ArrangedMatrix is about a dozen machine words so the overall cost for the

72 CHAPTER 4. IMPLEMENTATION

A B1 B2 B3 AB1 AB2 AB3× =

A1

A2

A3

B

A1B

A2B

A3B

× =

A1

A2

A3

B1 B2 B3

A1B1

A2B1

A3B1

A1B2

A2B2

A3B2

A1B3

A2B3

A3B3

× =

Figure 4.6: Products of row- and column-linear ArrangedMatrixes.

operation can be reasonably neglected. Once the arrangement is made, it knows
whether it is column-linear so the fast multiplication technique will work. (Note
that every sub-matrix of the arrangement is aConstMatrixView to aFullMatrix
so the individual matrix-matrix products will be able to use the simple and effi-
cient dense case.) The overhead for creating the arrangement first is additionally
compensated by the fact that traversing the non-zero blocks of theArrangedMatrix’
really is an iterationwith a constant recursion depth of two (One for theArrangedMatrix
itself and one for the contained MatrixViews.) so it will be more efficient than
traversing a deeply recursive BlockMatrix. This comes in handy as we can use
the arrangement for more than one product in our algorithms.

4.2.3 Decompositions

Equipped with the data structures and basic algorithmic building blocks described
in the previous section, the block LLT and LDLT decomposition algorithms could
be implemented almost as the pseudo code listings. Since the logic for the paral-
lel recursive processing and concurrency-safe update handling and propagation
is shared between both algorithms, we have derived them from a common base
RecursiveSPDPreconditioner. This class is in turn derived from the even

4.3. PARALLELIZATION 73

more general Preconditioner class.¹⁴ These form a template (in the sense of
Gamma et al. [5]) class where we can plug in Cholesky decomposition or ma-
trix inversion. The most important aspects of this hierarchy are illustrated in
figure 4.7.

The initImpl function member of the RecursiveSPDPreconditioner
basically implements algorithm 3.1 while the actual factoring and update compu-
tation logic is delegated to the purely virtual decomposeImpl member function.
TheBlockLLTPreconditioner andBlockLDLTPreconditioner classes over-
ride this template function implementing algorithm 3.2 and 3.3 respectively.

4.3 Parallelization

We distinguish three levels of parallelism (each including all of the previous).

0 none — The algorithms perform purely sequential.

1 structural — The recursive descent is parallel.

2 expression-level — Independent operations in a single expression are com-
puted in parallel. For example, the individual sub-products in figure 4.6
could all be computed in parallel. Unfortunately, we have not implemented
this yet due to time constraints.

3 data-level — The external linear algebra library operates in parallel on the
same data.

The parallelization level can be selected at compile-time by defining the macro
BSC_KLAMMLER_PARALLEL to the respective integer. Of course, if Eigen is to be
bound to the MKL, then for level-3 parallelism, the parallel version of it must be
linked to and for all other levels the squential one.

To recurse in parallel, a new thread is created for each dependency sub-tree
and joined again before returning to the parent level. Calling the parallel ver-
sions of library functions does not require any action on our behalf. However,
we did not want to start more threads than we have hardware processing units.
Otherwise, the performance might be compromised badly by repetitive context
switches for no good reason. Therefore, we have made the number of threads to
fork a run-time configuration feature. For the external libraries, we can use the
OpenMP omp_set_num_threads function to set this number accordingly.

A second consideration is that if structural parallelism has already forked a
thread for each processor to be busy, there is no point in calling parallel library

¹⁴We have chosen the name “preconditioner” since originally we have assumed that computing
the inverse will introduce such large numeric errors that the result cannot be used immediately
but might be useful for preconditioning iterative solvers like the conjugate gradient method. After
it turned out that the errors are reasonably small, we have abandoned that idea but still kept the
name.

74 CHAPTER 4. IMPLEMENTATION

Preconditioner
flopsInit : Integer
flopsSolve : Integer

+ init(M : HMatrix)
+ solve(b : HVector) : FullVector
initImpl(M : HMatrix)
solveImpl(b : HVector) : FullVector

LLTPreconditioner
− L : FullMatrix
initImpl(…)
solveImpl(…) : …

InversePreconditioner
− M−1 : ArrangedMatrix
initImpl(…)
solveImpl(…) : …

RecursiveSPDPreconditioner
L : ArrangedMatrix
initImpl(M : HMatrix)
decomposeImpl(M11, M12, M21, M22)

BlockLLTPreconditioner

decomposeImpl(…)
solveImpl(…) : …

BlockLDLTPreconditioner
− D : ArrangedMatrix
decomposeImpl(…)
solveImpl(…) : …

Figure 4.7: UML class diagram of the Preconditioners used in our code. The
LLTPreconditioner and the InversePreconditioner compute a dense
Cholesky factorization and the inverse of the entire matrix (that is flattened for
this purpose) respectively and do not exploit the structure of the matrix in any
way. They were used to convince us that our effort was worthwhile. The FLOP
counting is discussed in section 4.4.

4.3. PARALLELIZATION 75

algorithms. On the contrary, doing so would cause the same undesirable context
switches but this time even worse since the heavy instruction pipelining and vec-
torization machinery found on modern hardware that is used for the low-level
numerics needs quite long to reach its peak performance. Also, instead of having
two processors operate on the same data in parallel, it is usually much better to
have each of them operate sequentially on independent data for data locality and
cache consistency.

Since our time frame for implementing this work was limited, we could not
implement a perfect parallelization scheme but had to make a compromise. We
have therefore decided to implement the following simple approach.

As long as there are more processing units available, recursion forks new
threads. Once the number of threads has reached the number of processors, fur-
ther recursion does not fork anymore. (If the number of processors is not a power
of two, then an approximation is used.) We call this the “single CPU level”.

Below the single CPU level, library calls operate sequentially on their data.
Once recursion has crawled up again to a level where some processing units begin
to run out of work, all but one threads are blocked and that single active thread
calls parallel library functions to operate on all processors simultaneously. This
scheme is illustrated in figure 4.8.

This logic is implemented in the RecursiveSPDPreconditioner class and
therefore shared between the block LLT and block LDLT variant. The parallel
recursive descent is implemented using C++11 std::threads. This logic is en-
capsulated by packing each recursive call into a lambda expression that is then
passed to a dispatch routine. Below the single CPU level, that routine simply calls
the two lambdas. The return value (the unsafe update) is passed around by mov-
ing it in and out of the lambda. Initially, we call omp_set_num_threads(1)
to disable data-level parallelism. As recursion ascends above the single CPU level
again, the number of threads is set to the user-selected concurrency and process-
ing continues fully parallel, a single node at a time. To achieve this, the nodes
above the single CPU level acquire a std::unique_lock<std::mutex> be-
fore the start processing and release it upon completion of their work when they
notify the next node via a std::condition_variable.

4.3.1 Synchronization

The algorithms are designed such that they circumvent write dependencies in the
first place avoiding the need for locking (cf § 3.2.4.1). However, since we obviously
did not implement L (andD) as a single huge 2D-array but an ArrangedMatrix,
even adding a new sub-matrix needs protection. This is because internally, the
ArrangedMatrix has to keep a std::vector of its sub-matrices and append-
ing to a std::vector is not concurrency safe. Fortunately, the critical section
can be minimized to a very small constant number of machine instructions.¹⁵ This

¹⁵Strictly speaking, it is actually worse than that. If the vector needs to be re-sized, a memory
allocation – which is a potentially blocking system call – and a copy-loop (logarithmic in the overall

76 CHAPTER 4. IMPLEMENTATION

C(1)

C
(2)
A

C
(3)
AA

C
(4)
AAA

A
(4)
AAA

B
(4)
AAA

C
(4)
AAB

A
(4)
AAB

B
(4)
AAB

C
(3)
AB

C
(4)
ABA

A
(4)
ABA

B
(4)
ABA

C
(4)
ABB

A
(4)
ABB

B
(4)
ABB

C
(2)
B

C
(3)
BA

C
(4)
BAA

A
(4)
BAA

B
(4)
BAA

C
(4)
BAB

A
(4)
BAB

B
(4)
BAB

C
(3)
BB

C
(4)
BBA

A
(4)
BBA

B
(4)
BBA

C
(4)
BBB

A
(4)
BBB

B
(4)
BBB

might wait for

dep
end

s on

pa
ra
lle

ll
ib
ra
ry

ca
lls
→

←
se
qu

en
tia

l
/

Figure 4.8: Parallelization scheme used for the recursive algorithm. This example
shows the processing of a matrix with a recursion depth of 4 on a machine with
4 processors. Above the “single CPU level” (hatched bar) each recursion forks a
new thread of execution (different threads are marked by different colors), below
it, recursion is sequential. Likewise, library calls below the single CPU level are
sequential wile above it, parallel algorithms are called. On the other hand, the
nodes below the single CPU level (if they are on different threads) execute inde-
pendently of each other, each on its own CPU. In contrast, the nodes above it each
occupy all CPUs simultaneously. Therefore, they wait for each other upon ascent
so only one node above the single CPU level is active at any time. This waiting
is implemented via an ordinary mutex so the order need not be the one indicated
by the thin dashed arrows. The symbols indicate the sub-matrix that is factored
at the node in question using the syntax introduced in chapter 3. Also compare
this figure with figure 3.2.

4.4. OBSERVATION 77

is done by constructing the new sub-matrix out-of-place and then moving it into
theArrangedMatrix. For example, this is how theBlockLLTPreconditioner
inserts L11 and L21 into L.

full_matrix l11 { /* compute via Cholesky factorization... */ };
arranged_matrix l21 { /* compute via forward substitution... */ };
{
const auto lck = this->lockL();
this->getFactorL().addTile(

std::unique_ptr<h_matrix> {new full_matrix {std::move(l11)}},
offset, offset);

this->getFactorL().addTile(
std::unique_ptr<h_matrix> {new arranged_matrix {std::move(l21)}},
offset + m11.rows(), offset);

}
// Make sure the matrices were actually moved, not copied.
assert(l11.size() == 0);
assert(l21.size() == 0);

The std::unique_ptr<h_matrix> could be created outside the critical sec-
tion as well; then only a single move would be required but the code is cleaner
this way.

4.4 Observation

The theoretical number of FLOPs needed by the algorithms cannot be expressed
in a simple formula since we have left too many degrees of freedom for the in-
ner dimensions of the matrix. Therefore, we have augmented out algorithms to
compute them on-the-fly. For this purpose, the Preconditioner class has two
counters for the flops needed for the decomposition and each solving respectively.
These counters are incremented by the algorithms as they see the work. (If more
than one system is solved, only the first run will update the counter.) Since the
algorithms operate concurrently, the counter must be updated atomically which
is done via a lock-free std::atomic<std::size_t>. Since the result is only
meaningful after the complete decomposition is done anyway, we are using the
relaxed memory order for updating the counters so to minimize the overhead. Fi-
nally, the preprocessor macro BSC_KLAMMLER_COUNT_FLOPS can be #defined
to zero to disable FLOP counting all together (we did not see any difference when
we did this). The number of FLOPs the algorithms report are the theoretical num-
bers. Our implementations performmore than those since we cannot exploit sym-
metry up to the theoretical level due to missing library functions.

matrix size) is needed inside the critical section. We’ll ignore this here.

78 CHAPTER 4. IMPLEMENTATION

4.5 Quality

We have added many bells and whistles to our code to be informed about bugs
as much as possible. Therefore, all functions validate their parameters and check
their post conditions.

To validate parameters, we check for and report contract violations via throw-
ing std::invalid_argument exceptions. The logic required for the checks is
wrapped inside conditional statements where we check the value of the prepro-
cessor macro BSC_KLAMMLER_CHECK_ARGUMENTS.This helps the human reader
telling the business logic apart from the error checking code but also allows us
to compile-out the parameter validation all together in builds we use for bench-
marking.

For internal checks (pre- and post conditions) we use the standard library’s
assert macro. It can also be made to produce no machine code by defining the
preprocessor symbol NDEBUG. The same mechanism is extensively used by the
Eigen library so we get feedback from there, too.

Some classes have non-trivial invariants. For example, the dimensions of
the sub-matrices in a BlockMatrix must satisfy certain conditions. For such
classes, we add an ordinary private function classInvariantsHold_ that re-
turns true if and only if the invariants hold. Functions that perform operations
that might affect the invariants (like constructors or assignment operators) end
with
assert(this->classInvariantsHold_());

to check they did not cripple the object’s state. If debugging is disabled, the above
line produces no machine code.

Finally, we are using a number of macros that are strategically placed at points
where something bad might happen.

• BSC_KLAMMLER_NOT_REACHED always and unconditionally throws an ex-
ception. It is placed in “unreachable” default cases of switch statements
and the like that are expected to be never reached if our reasoning is correct.
Using this macro is safer than simply placing a comment stating our expec-
tation, more expressive than assert(0) and if used consistently, allows
quicker understanding of the code.

• BSC_KLAMMLER_NOT_IMPLEMENTED is anothermacro that triggers a fatal
exception. It is placed in functions that still need to be implemented. This
is safer than simply returning a dummy value because we cannot forget to
implement them properly this way. Also, it makes it easy to search the code
for open issues.

• BSC_KLAMMLER_INEFFICIENT_ALGORITHM is placed inside algorithms
that are already implemented (and supposed to work correctly) but known
to be inefficient. The macro calls a diagnostic function that by default does

4.5. QUALITY 79

nothing but can be configured to report what inefficient algorithms are
(still) called. See the discussion in section 4.2.2.1 for details about it.

We make extensive use of the “resource allocation is initialization” (RAII) pat-
tern to keep our code clean and safe. For example, we are using smart pointers
throughout our code to avoid having to deal withmemory deallocations ourselves.
Thanks to C++11’ std::unique_ptrs, this comes at zero run-time overhead.
All of our classes implement copy and move semantics and make the need for
using pointers very small. RAII is also used in other contexts to reliably start and
stop timers or to join threads.

Chapter 5

Experimental

We have run some benchmarks for our algorithms that are discussed in this chap-
ter. For the algorithms we have implemented, we wanted to know

• how much execution time they have,

• how high a FLOP rate they achieve and

• how large the errors are.

The number of FLOPs was counted as described in section 4.4.
To measure execution time, the init and solve function members of the

Preconditioner class accept as an optional parameter a pointer to a timer that
is started and stopped immediately before and after the operations are started and
finished respectively. As timers, we use the best (most accurate) available clock
that provides a steady notion of time. This is done easily using the std::chrono
library included in C++11.
/** @brief Best available clock. */
using clock_type = typename std::conditional<

std::chrono::high_resolution_clock::is_steady,
std::chrono::high_resolution_clock,
std::chrono::steady_clock>::type;

Clearly, if we know the number of FLOPs and the execution time, we can
compute the FLOP rate, given that we already know the number of CPUs.

Finally, the errors are measured by multiplying the obtained result x with the
coefficient matrixM (which we keep a copy of) and subtracting it from the right-
hand side b. The norm of this residual vector is then compared to the norm of b.
This gives us the relative residual

rrel :=
∥r ∥
∥b∥ with r := Mx − b . (5.1)

About the problem instance, we record the number od non-zero entries as
well as the recursion depth and the range in which the sizes of the blocks A and
B fall at the lowest level.

80

5.1. TEST SETUP 81

Our program can be configured to report all this information by emitting SQL
INSERT statements on standard output. These can be redirected to a file and then
loaded into a database for further processing. A SQLite database file with the data
discussed in this chapter is available from the author.

5.1 Test Setup

Since we had no collection of real-world problems to test our algorithms with, we
have included a random problem generator in our software. It takes as parameters
the desired recursion depth of the coefficient matrix, a range from which to chose
the size of the smallest dense blocksA and B along the main diagonal and whether
the generated matrix should be symmetric and positive definite (we always set
that last parameter true).

The generator proceeds by picking randomly sized (within the given range)
dense blocks at the lowest level and then recursively assembles them to a matrix
that looks as if it were obtained via nested dissection (§ 2.4.1).

Once this structure is built up. The dense blocks are filled with random num-
bers. We use the setRandom function from Eigen’s matrix class for this. If the
matrix is to be symmetric and positive definite, we make it diagonal dominant
as this is a sufficient condition¹. First, we mirror the lower triangular part to the
upper to make it symmetric. Then we sum up the absolute values of each row and
assign the sum to the diagonal element².

Likewise, a set of random right-hand vectors with no further constraints is
generated.

The same matrix is then decomposed with both algorithms and the same set
of right-hand side vectors is solved for.

The parameters were chosen as large as possible where the most significant
constraint was not to exhaust the computer’s memory. The recursion depth was
chosen between 4 and 10 and the block sizes at the lowest level between 500 and
10 000. In order to obtain a linear measure for the matrix size, we look at the
square root of the non-zero entries. This is what the size of a dense matrix with
the same number of non-zero entries would be.

5.2 Hardware

We had access to two server computers called ITI-120 and ITI-127 in the follow-
ing³. The most important technical details about these machines are summarized

¹This procedure was recommended to us by Daniel Maurer, who has implemented an industry-
strength block LLT solver for distributed computing environments [15].

² This is done using visitors (§ 4.2.1.1.1).
³They are known to the world as i10pc120.iti.kit.edu and i10pc127.iti.kit.edu

respectively. Actually, we had four machines since there are also i10pc121.iti.kit.edu and
i10pc128.iti.kit.edu which are of the same type. ITI stands for “Institute for Theoretical
Informatics”, our department at the Karlsruhe Institute of Technology (KIT).

82 CHAPTER 5. EXPERIMENTAL

Property ITI-120 ITI-127

processor Intel® Xeon® CPU
E5345

Intel® Xeon® CPU
E5-4640

architecture x86_64 x86_64
CPUsᵃ 8 32
AVXᵇ no yes
CPU frequency 2.3GHz 2.4GHz
Cache 4MiB 20MiB
RAM 16GiB 500GiB
operating system Ubuntu 10.04.4 LTS Ubuntu 12.04.5 LTS
kernel 2.6.32-66-generic 3.2.0-64-generic

ᵃ actual hardware CPUs without hyper-threading
ᵇ Advanced Vector Extensions

Table 5.1: Technical data about our test hardware.

in table 5.1.
All experiments were performed with exclusive access to the machine. Except

from an SSH server and other elementary operating system tasks, there were no
concurrent jobs executing on the machines.

Unless explicitly mentioned otherwise, the results discussed in this chapter
refer to experiments on ITI-127 using all available 32 CPUs and level-3 paral-
lelization (§ 4.3) enabled. Our program is compiled with NeSt (§ 2.3.5.4) for matrix
inversion and linked to the MKL.

5.3 Decomposition

As expected from the theoretical discussion, the block LDLT variant performs
considerably more work than the block LLT algorithm. Although we have seen
increased FLOP rates (as expected) especially with large inputs and many pro-
cessors, the amount of additional work is so large (very roughly doubled) that it
is extremely hard for the block LDLT decomposition to compete against the LLT

version. Nevertheless, we have seen instances where the overall execution time
was lower.

Figure 5.1 shows the theoretic number of FLOPs required for both algorithms
for the test instances we have run. From the relative plot, it can be readily seen
that the block LDLT decomposition requires roughly the doubled amount of work
but the ratio varies greatly even for problems of similar size.⁴

Plotted in figure 5.2 is the execution time for both algorithms. The absolute
values again vary greatly but a general trend for the difference to diminish with

⁴This is actually a hint that simply counting non-zero elements is not a very good measure. This
can also be seen from the two “outlier” groups around 60 k and 90 k.

5.3. DECOMPOSITION 83

0

1 · 1013

2 · 1013

3 · 1013

4 · 1013

5 · 1013

6 · 1013

0 20 k 40 k 60 k 80 k 100 k 120 k

W
/

FL
O
Ps

sqrt(NZC)

LLT

LDLT

0

0.5

1

1.5

2

2.5

3

0 20 k 40 k 60 k 80 k 100 k 120 k

W
L
D
L
T
/
W

L
L
T

sqrt(NZC)

Figure 5.1: Absolute and relative amount of (theoretical) work for decomposing.

84 CHAPTER 5. EXPERIMENTAL

larger inputs can be seen. The relative plot revels that while for small inputs
(
√
NZC ≲ 20 k), the LDLT variant is hopelessly outperformed by the LLT version.

For larger inputs, the ratio approaches 1 with the LDLT variant being faster for
about half of the instances.

Figure 5.3 compares the efficiency (FLOP rates) of the two algorithms. These
show a clear result that we would have expected from our theoretical considera-
tions. While the LLT version performs many Cholesky decompositions and for-
ward substitutions that have linear critical paths and require quite some branch-
ing, the LDLT variant is dominated almost exclusively by matrix-matrix products
that have logarithmic critical paths and can be implemented very efficiently, espe-
cially for large matrices (see § 4.1.2.5 and figures therein). For small inputs, both
algorithms make poor use of the hardware and gain as the inputs grow. However,
for the LLT version, the FLOP rate levels off at about 1GFLOP s−1 CPU−1 while
the LDLT variant easily reaches the doubled efficiency, thereby compensating for
its about equally large additional work.

5.4 Solving

Unlike for the decomposition where the LDLT variant pays a high price by per-
forming much extra work, the cost for solving a linear system once the decompo-
sition is computed is exactly the same for both algorithms. (The respective plot
showing a straight line at a constant ratio of 1 is so boring that we refrain from
even showing it.) However, the work for the block LLT decomposition is in great
parts dedicated to substitutions while the block LDLT decomposition requires
only matrix-vector products. With regard to efficiency, the same arguments as
for the decomposition apply. This time however, we get the increased efficiency
at no extra work.

Consequently, figure 5.4 shows that for almost any input, the LDLT variant is
significantly faster. On average, it only takes 60% of the time to solve. The FLOP
rate, as the amount of work is equal, is therefore increased accordingly. However,
the factor of 2 or more seen for the decompositions is not reached.

5.5 Accuracy

We would have expected that computing the inverse matrix – especially with
an inexact iterative algorithm – would have negative effects on the accuracy of
the result. Plotting the logarithms of the relative residuals for the block LLT and
LDLT decomposition against each other (fig 5.6) shows that they have a nice linear
dependency with the LDLT variant having a greater error as expected. To our
surprise, linear regression revels that the relative residuals for the LDLT variant
are less than 10% greater on average. While this is significant, we assume that
for most practical applications, such a small increase in the error will not matter
and no further refinement of the result is needed.

5.5. ACCURACY 85

0

200

400

600

800

1000

1200

1400

0 20 k 40 k 60 k 80 k 100 k 120 k

t
/

s

sqrt(NZC)

LLT

LDLT

0

1

2

3

4

5

6

0 20 k 40 k 60 k 80 k 100 k 120 k

t L
D
L
T
/
t L

L
T

sqrt(NZC)

Figure 5.2: Absolute and relative execution times for decomposing.

86 CHAPTER 5. EXPERIMENTAL

0

5 · 108

1 · 109

2 · 109

2 · 109

2 · 109

0 20 k 40 k 60 k 80 k 100 k 120 k

R
/

FL
O
Ps

s−
1
CP

Us
−1

sqrt(NZC)

LLT

LDLT

0

1

2

3

4

5

6

0 20 k 40 k 60 k 80 k 100 k 120 k

R
L
D
L
T
/
R
L
L
T

sqrt(NZC)

Figure 5.3: Absolute and relative FLOP rates for decomposing.

5.5. ACCURACY 87

0

5

10

15

20

25

30

35

40

45

50

0 20 k 40 k 60 k 80 k 100 k 120 k

t
/

s

sqrt(NZC)

LLT
LDLT

0

0.2

0.4

0.6

0.8

1

1.2

0 20 k 40 k 60 k 80 k 100 k 120 k

t L
D
L
T
/
t L

L
T

sqrt(NZC)

Figure 5.4: Absolute and relative execution times for solving. The dashed line is
the average over all solves.

88 CHAPTER 5. EXPERIMENTAL

0

5 · 106
1 · 107
2 · 107
2 · 107
2 · 107
3 · 107
4 · 107
4 · 107
5 · 107
5 · 107

0 20 k 40 k 60 k 80 k 100 k 120 k

R
/

FL
O
Ps

s−
1
CP

Us
−1

sqrt(NZC)

LLT
LDLT

0

0.5

1

1.5

2

2.5

3

3.5

0 20 k 40 k 60 k 80 k 100 k 120 k

R
L
D
L
T
/
R
L
L
T

sqrt(NZC)

Figure 5.5: Absolute and relative FLOP rates for solving.

5.6. TESTS ON THE SMALLER ITI-120 89

−15.0

−14.9

−14.8

−14.7

−14.6

−14.5

−14.4

−15.0 −14.9 −14.8 −14.7 −14.6 −14.5 −14.4

lo
g 1

0
(∥
r
∥/
∥b
∥)

fo
rL

D
L
T

log
10
(∥r ∥/∥b∥) for LLT

k120 ≈ 0.011

k127 ≈ 0.034

ITI-120
ITI-127

Figure 5.6: Logarithmic relative residuals of the block LLT and LDLT algorithm
for the two machines we have tested. The linear regression curve with slope fixed
at unity has a bias of d120 ≈ 0.011 and d127 ≈ 0.034 respectively which means
that on average, the residuals for the LDLT variant are about 10d120 ≈ 1.03 and
10d127 ≈ 1.08 times those of the LLT version.

Note however that we only investigated very well conditioned symmetric and
positive definite diagonal dominant coefficientmatrices. Maybe for othermatrices
the results would have been not so good.

From the plot it can also be seen that matrices with larger blocks have larger
absolute errors. Another interesting observation is that the relative errors are
significantly larger on the ITI-127 machine. We don’t really have an explanation
for this except that maybe the AVX code has to do with it.

5.6 Tests on the Smaller ITI-120

On the smaller ITI-120 machine, we have been unable to produce satisfactory
results. Both algorithms had a hard time approaching reasonable FLOP rates but
even more so for the block LDLT version. We think this is due to the inefficiency
of parallel library functions for small matrices and the bookkeeping overhead that
is more significant for small problems. As we have increased the problem size to
a point where these negative effects might have been compensated for, we ran

90 CHAPTER 5. EXPERIMENTAL

out of memory. The plots we have obtained from the ITI-120 machine are not
very interesting so we don’t show any. (In essence, they show the same as the
other diagrams but clipped to the region below 20 k.) The important observation
is that our implementation requires a certain problem size to make good use of
the hardware and that this limit is even higher for the block LDLT decomposition.

Chapter 6

Conclusion

We have introduced a recursive block LLT decomposition for symmetric and pos-
itive definite H-matrices with nested dissection structure and presented a variant
thereof that is based on matrix inversion and produces a block LDLT decompo-
sition where the block diagonal matrix is obtained as its inverse. While the LLT

version spends a lot of work computing Cholesky factorization and forward sub-
stitutions, theLDLT variant is dominated bymatrix-matrix products. This is desir-
able because matrix products are extremely well understood and highly optimized
implementations are available off-the-shelf. Furthermore, matrix-matrix multipli-
cation only has a critical path logarithmic in thematrix sizewhereas Cholesky fac-
torization and substitution both have linear critical paths that set limits to parallel
computing. On the negative side, the LDLT variant severely increased amount of
work roughly by a factor of two. On the other hand, solving a linear system
once the decomposition is computed is equally expensive for both versions but
the LDLT variant has a shorter critical path.

In this work we have presented our implementation of both algorithms for
shared-memory machines using the C++ programming language and the Eigen
linear algebra library. We have conducted experiments on two server machines
with 8 and 32 cores respectively. While for small inputs, the LDLT variant is
clearly not worthwhile, it amortizes as parallelism and problem size increase. We
have hit instances where the block LDLT decomposition outperforms block LLT

decomposition but the advantage is neither reproducible nor significant. In con-
trast, solving is almost always significantly faster as expected from theory.

We conclude that block LDLT decomposition might be worth consideration in
cases where many linear systems need to be solved for a single coefficient matrix
in a highly parallel system. This will be especially compelling if the right-hand
sides are not all known a priori but become ready over time so an effective par-
allelization scheme cannot be built solely upon solving independent systems in
parallel.

We envision that a possible application domain could be in near-time compu-
tation for finite-element problems as found in many engineering disciplines. Our

91

92 CHAPTER 6. CONCLUSION

implementation for shared-memory systems has shown to eventually equalize
the penalty of its increased amount of work on a machine with 32 processors and
500GiB memory. Such machines might be found already today in engineering
offices and even more so in the near future.

6.1 Further Work

There are several directions this work could be extended to. Maybe the most
obvious step could be to port our implementation to a distributed memory system
where even larger inputs could be tested.

In addition, we have thought of the possibility to make a hybrid algorithm
between block LLT and LDLT by only inverting some of the matrices (those near
the root of the dependency tree where most parallelism is needed) and computing
Cholesky factorizations for the others. This could allow tuning the algorithm
between less work and more efficiency.

M

=

L

·

D

·

LT

(6.1)
On the other hand, doing so might destroy the advantage we currently see for
solving.

Bibliography

[1] Noga Alon, Amir Shpilka, and Christopher Umans. “On sunflowers andma-
trix multiplication”. In: Computational Complexity 22.2 (2013), pp. 219–243.
issn: 1016-3328. doi: 10.1007/s00037-013-0060-1.

[2] Basic Linear Algebra Subprograms (BLAS). url: http://www.netlib.
org/blas/ (visited on 11/04/2014).

[3] Boost C++ Libraries. url:http://www.boost.org/ (visited on 11/04/2014).
[4] Steffen Börm, Lars Lars Grasedyck, and Wolfgang Hackbusch. Hierarchi-

cal Matrices. lecture note 21. Max-Planck-Institut für Mathematik in den
Naturwissenschaften Leipzig, June 2006.

[5] Erich Gamma et al. Design Patterns : Elements of Reusable Object-Oriented
Software. Boston, USA: Addison-Wesley, 2007.

[6] Alan George, Michael T. Heath, and Joseph Liu. “Parallel Cholesky factor-
ization on a shared-memory multiprocessor”. In: Linear Algebra and its Ap-
plications 77.0 (1986), pp. 165–187. issn: 0024-3795. doi: http://dx.doi.
org/10.1016/0024-3795(86)90167-9.

[7] Gene H Golub and Charles F van Loan.Matrix Computations. Oxford, Great
Britain: North Oxford Academic, 1986. isbn: 0-946536-00-7; 0-946536-05-8.

[8] Raymond Greenlaw, H James Hoover, and Walter L Ruzzo. Limits to Paral-
lel Computation: P-completeness Theory. New York, USA: Oxford University
Press, Inc, 1995. isbn: 0-19-508591-4.

[9] AndrewHunt andDavidThomas.Thepragmatic programmer : from journey-
man to master. Boston, USA: Addison-Wesley, 1999. isbn: 0-201-61622-X.

[10] Benoît Jacob, Gaël Guennebaud, et al. Eigen. url:http://eigen.tuxfamily.
org/ (visited on 11/04/2014).

[11] Vipin Kumar. How to use Boost uBLAS with Intel MKL? Apr. 24, 2013. url:
https://software.intel.com/en-us/articles/how-to-use-
boost-ublas-with-intel-mkl (visited on 11/04/2014).

[12] François Le Gall. “Powers of Tensors and Fast Matrix Multiplication”. In:
CoRR abs/1401.7714 (2014). url: http://arxiv.org/abs/1401.7714.

I

http://dx.doi.org/10.1007/s00037-013-0060-1
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.boost.org/
http://dx.doi.org/http://dx.doi.org/10.1016/0024-3795(86)90167-9
http://dx.doi.org/http://dx.doi.org/10.1016/0024-3795(86)90167-9
http://eigen.tuxfamily.org/
http://eigen.tuxfamily.org/
https://software.intel.com/en-us/articles/how-to-use-boost-ublas-with-intel-mkl
https://software.intel.com/en-us/articles/how-to-use-boost-ublas-with-intel-mkl
http://arxiv.org/abs/1401.7714

II BIBLIOGRAPHY

[13] Linear Algebra Package (LAPACK). url: http://www.netlib.org/
lapack/ (visited on 11/04/2014).

[14] Math Kernel Library (MKL). Intel Corporation. url: https://software.
intel.com/en-us/intel-mkl (visited on 11/04/2014).

[15] Daniel Maurer and Christian Wieners. “A parallel block LU decomposi-
tion method for distributed finite element matrices”. In: Parallel Computing
37.12 (2011). 6th InternationalWorkshop on Parallel Matrix Algorithms and
Applications (PMAA’10), pp. 742–758. issn: 0167-8191. doi: http://dx.
doi.org/10.1016/j.parco.2011.05.007.

[16] Victor Pan and John Reif. “Efficient Parallel Solution of Linear Systems”. In:
Proceedings of the Seventeenth Annual ACM Symposium on Theory of Com-
puting. STOC ’85. Providence, Rhode Island, USA: ACM, 1985, pp. 143–152.
isbn: 0-89791-151-2. doi: 10.1145/22145.22161.

[17] Victor Pan and John Reif. “Fast and Efficient Parallel Solution of Sparse
Linear Systems”. In: SIAM Journal on Computing 22.6 (Dec. 1993), pp. 1227–
1250. issn: 0097-5397. doi: 10.1137/0222073.

[18] Roldan Pozo. Template Numerical Toolkit (TNT). National Institute of Stan-
dards and Technology. url: http://math.nist.gov/tnt/ (visited on
11/04/2014).

[19] William H Press et al. Numerical Recipes: The Art of Scientific Computing.
3rd ed. Cambridge, Great Britain: Cambridge University Press, 2007.

[20] Peter Sanders, Jochen Speck, and Raoul Steffen. “Work-efficient Matrix In-
version in Polylogarithmic Time”. In: Proceedings of the Twenty-fifth Annual
ACM Symposium on Parallelism in Algorithms and Architectures. SPAA ’13.
Montreal,Quebec, Canada: ACM, 2013, pp. 214–221. isbn: 978-1-4503-1572-
2. doi: 10.1145/2486159.2486173.

[21] Volker Strassen. “Gaussian elimination is not optimal”. In:NumerischeMath-
ematik 13.4 (1969), pp. 354–356. issn: 0029-599X. doi:10.1007/BF02165411.

[22] Bjarne Stroustrup. The C++ Programming Language. 4th ed. Boston, USA:
Addison-Wesley, 2014.

[23] JoergWalter, Mathias Koch, et al. Basic Linear Algebra Library. Ed. by David
Bellot. url: http://beta.boost.org/doc/libs/1_56_0/libs/
numeric/ublas/doc/index.htm (visited on 11/04/2014).

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/intel-mkl
http://dx.doi.org/http://dx.doi.org/10.1016/j.parco.2011.05.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.parco.2011.05.007
http://dx.doi.org/10.1145/22145.22161
http://dx.doi.org/10.1137/0222073
http://math.nist.gov/tnt/
http://dx.doi.org/10.1145/2486159.2486173
http://dx.doi.org/10.1007/BF02165411
http://beta.boost.org/doc/libs/1_56_0/libs/numeric/ublas/doc/index.htm
http://beta.boost.org/doc/libs/1_56_0/libs/numeric/ublas/doc/index.htm

List of Algorithms

2.1 Dot . 9
2.2 ForwardSubstitution . 13
2.3 BackwardSubstitution . 14
2.4 CholeskyInnerProduct . 16
2.5 CholeskyGaxpy . 18
2.6 InverseNewton . 24
2.7 InverseNeSt . 26
3.1 NDBlockLLT . 38
3.2 NDBlockLLTLeaf . 39
3.3 NDBlockLDLTLeaf . 45

III

IV LIST OF ALGORITHMS

List of Code Listings

4.1 CBLAS Interface Example . 51
4.2 Boost uBLAS Example . 52
4.3 TNT Example . 54
4.4 Eigen Example . 54
4.5 naïve Self-Made Matrix Multiplication Code 56

V

VI LIST OF CODE LISTINGS

List of Figures

2.1 H-matrix as Quad-Tree . 28
2.2 Nested Dissection . 31

3.1 Data Dependencies for Block LLT Decomposition 36
3.2 Call Tree for Block LLT Decomposition 41

4.1 FLOP Rates for Linear Algebra Libraries – Sequential 57
4.2 FLOP Rates for Linear Algebra Libraries – Parallel 58
4.3 Composite Pattern . 60
4.4 HMatrix Class Diagram . 66
4.5 Product of HMatrix and HVector 70
4.6 Products of ArrangedMatrixes 72
4.7 Preconditioner Class Diagram 74
4.8 Parallelization Scheme . 76

5.1 Work for Decomposing . 83
5.2 Execution Times for Decomposing 85
5.3 FLOP Rates for Decomposing . 86
5.4 Execution Time for Solving . 87
5.5 FLOP Rate for Solving . 88
5.6 Relative Residuals . 89

VII

VIII LIST OF FIGURES

List of Tables

2.1 Blocks of Nested Dissection Matrix 30

3.1 Work for Block LLT Decomposition 40
3.2 Work for Block LDLT Decomposition 46

4.1 Linear Algebra Library Comparison 55
4.2 Special ArrangedMatrixes . 64

5.1 Test Hardware Technical Data . 82

IX

X LIST OF TABLES

	Introduction
	Previous Work
	Our Contribution
	Overview

	Preliminaries
	Typographical Conventions
	Complexity
	Asymptotic Complexity
	Floating Point Operations
	Execution Time

	Linear Systems
	LU Decomposition
	Forward Substitution
	Backward Substitution

	Cholesky Decomposition
	Inner Product Cholesky
	Gaxpy Cholesky
	Outer Product Cholesky

	Block LU Decomposition
	Block LU Decomposition
	Matrix Inversion
	Gauß-Jordan Elimination
	Strassen Inversion
	Newton Inversion
	The NeSt Algorithm

	Hierarchical Matrices
	Nested Dissection
	Symmetry

	Algorithmics
	Notation
	Block LLT Decomposition of H-Matrices
	Decomposition
	Work-Flow
	Complexity
	Parallelism
	Synchronization
	Parallel Efficiency

	Solving

	Block LDLT Decomposition of H-Matrices
	Complexity
	Parallelism

	Implementation
	Technologies
	Programming Languages
	Libraries
	BLAS & LAPACK
	Boost uBLAS
	TNT
	Eigen
	Comparison

	Tools and Programs

	Algorithms and Data Structures
	Data Structures for Hierarchical Matrices
	The Abstract HMatrix Class
	Visitors

	Leafs: The FullMatrix Class
	Nested Dissection: The BlockMatrix Class
	Arbitrary Children: The ArrangedMatrix Class
	Slicing and Transposing: The MatrixView Class
	HVector and FullVector

	Basic Algorithms for Hierarchical Matrices
	Implementation Strategy
	Sums and Differences
	Products
	Matrix-Vector Products
	Matrix-Matrix Products

	Decompositions

	Parallelization
	Synchronization

	Observation
	Quality

	Experimental
	Test Setup
	Hardware
	Decomposition
	Solving
	Accuracy
	Tests on the Smaller ITI-120

	Conclusion
	Further Work

	Bibliography
	List of Algorithms
	List of Code Listings
	List of Figures
	List of Tables

