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Abstract
Hypergraphs are generalizations of graphs where an edge can consist of more

than two nodes. A reoccurring task is to divide the node set of a hypergraph into
k different non-empty parts where we simultaneously want to minimize a partition-
ing objective. This problem is called the k-way hypergraph partitioning problem.
Applications can be found in the area of VLSI design and the parallelization of
computationally intensive problems. A method to solve this problem is the multi-
level partitioning scheme. This scheme consist of three phases. The hypergraph is
first coarsened, then initially partitioned and at the end the quality of the partition
is improved with a local search heuristic. A special case of this scheme is the n-Level
hypergraph partitioning framework KaHyPar. This framework currently uses the
external tools hMetis and PaToH for the initial partitioning phase. In this thesis
we develop various initial partitioning methods with the goal to produce the same
quality in the same amount of time as hMetis in this framework. Our final initial
partitioner combines all developed methods into one single initial partitioning algo-
rithm. The solution quality of KaHyPar with our initial partitioner is comparable
to the quality with hMetis and 1% better as the quality with PaToH as initial par-
titioner. The initial partitions produced by our initial partitioning algorithm are
0.6% better than the partitions of hMetis and the running time is 16% faster on
average.



Zusammenfassung
Hypergraphen sind Generalisierungen von Graphen bei denen eine Kante aus

mehr als nur aus zwei Knoten bestehen kann. Eine immer wiederkehrende Aufga-
be ist es die Knotenmenge eines Hypergraphen in k verschiedene nicht-leere Teile
aufzuteilen, wo wir gleichzeitig versuchen eine Partitionierungszielfunktion zu mi-
nimieren. Dieses Problem wird direktes k-way Hypergraph Partitionierungsproblem
genannt. Einige Anwendungen sind im Bereich des VLSI -Design und bei der Paral-
lelisierung von rechenaufwendigen Problemen zu finden. Eine Methode dieses Pro-
blem zu lösen ist das Multilevel-Partitionierungsschema. Dieses Verfahren besteht
aus drei Phasen. Der Hypergraph wird als erstes vergröbert, danach initial partitio-
niert und am Ende wird eine lokale Suchheuristik dazu genutzt um die Partitionie-
rung zu verbessern. Eine Speziallisierung dieses Schema is das n-level Hypergraph
Partitionierungsframework KaHyPar. Dieses Framework benutzt im Moment die ex-
ternen Anwendungen hMetis und PaToH für den initialen Partitionierungsschritt.
In dieser Arbeit entwickelten wir verschiedene initiale Partitionierungsalgorithmen
mit dem Ziel die gleiche Qualität in der gleichen Laufzeit im Vergleich zu hMetis
in diesem Framework zu produzieren. Der letztendlich beste initiale Partitionierer
kombiniert alle entwickelten Methoden in einem einzigen Algorithmus. Die Qualität
der Lösungen von KaHyPar mit unserem initialen Partitionierer ist vergleichbar mit
der Qualität mit hMetis und 1% besser als die Qualität mit PaToH als initialem
Partitionierer. Die initialen Partitionen die von unserem initialen Partitionierungs-
algorithmus produziert werden sind 0.6% besser als die Partitionen von hMetis und
die Laufzeit ist im Durchschnitt 16% schneller.
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1 Introduction

1 Introduction

Hypergraphs are generalizations of graphs where an edge can consist of more than two nodes. A
hyperedge is a subset of the hypernode set of a hypergraph. Therefore the set of all undirected
graphs is a subset of the set of all hypergraphs. Every problem, that can be modeled as a
graph can therefore be modeled as a hypergraph, too. This leads to fact that, if we are able to
provide solutions for hypergraphs problems, we are able to solve the same or similar problems
on graphs and much more problems which cannot be represented by a graph.
Taking the example of the hypergraph partitioning problem (HGP) where we want to partition
the hypernode set of a hypergraph into k non empty parts. The size of the resulting parts
should be between some lower and upper bound and the goal is to minimize or maximize a
partitioning objective. An application of hypergraph partitioning is to find in the VLSI physical
design. The goal here is to partition a circuit into smaller submodules and to keep the wires as
short as possible between it [4]. The nodes represents the gates and edges the wires between
the gates of a circuit. Because one wire can connect more than two gates a hypergraph models
this problem more precisely than a graph. Another application of the hypergraph partitioning
problem (HGP) is to parallize the calculation of the sparse-matrix vector product [6].
The most common solving heuristic for the hypergraph partitioning problem is the multilevel
partitioning scheme [6, 16]. This scheme is divided into three phases. The coarsening phase
successively merges node pairs with the goal to simplify the original hypergraph for the next
step. The resulting hypergraph is then divided into k differents parts in the initial partitioning
phase. After the initial partitioning takes place the merged nodes are unpacked in reverse
order and a local search algorithm is used to further improve the solution quality. This phase is
called the refinement phase. The state-of-the-art hypergraph partitioning frameworks, hMetis
and PaToH, implements this scheme.
The HGP moves in the last three decades more and more into focus of research. The main
applications area can be summarize in the area of parallelization and to simplify problem
instances. This thesis investigates the aspect of the initial partitioning of a hypergraph in a
multilevel partitioning scheme.

1.1 Problem Statement
The n-level hypergraph partitioning framework KaHyPar is a special case of the multilevel
partitioning scheme. For the initial partitioning step, this framework uses the state-of-the-
art partitioner hMetis as extern tool. The usage of hMetis as initial partitioner has several
disadvantages. First we can only use this tool as a black box and therefore we cannot control
the internal behaviour. The quality of such a framework depends on the quality of the initial
partitioner. We cannot change the code base of an extern tool and have to accept the produced
results. Therefore we limit the quality of the overall framework. To make KaHyPar independent
from extern tools, it becomes necessary to develop an own initial partitioner. The goal is to
produce with our work the same quality in the same amount of time in this framework as
with hMetis as initial partitioner. Further the final initial partitioner should be integrated
into KaHyPar and it shall be verified, if we reach our own goals with our independent initial
partitioner.

1.2 Contributions
We have implement and evaluate various direct k-way and recursive bisection initial partitioning
algorithms. In addition to the standard partitioning methods, we adapt the idea of label prop-
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1 Introduction

agation to a working initial partitioning algorithm. We include existing local search heuristics
from KaHyPar to improve the quality of our partitions after each partitioning. Our recursive
bisection methods produces 20% better quality and more as their corresponding direct k-way
implementations. By introducing multiple runs of each initial partitioner on each bisection,
we have increased the quality of each evaluated recursive bisection partitioner between 20%
and 25%. To fulfill the imbalance at the end of recursive bisection we developed an adaptable
ε′. We adapt ε′ before each bisection in a way, such that it allows maximum imbalance while
still being small enough to ensure the final imbalance with ε. In our experiments only 32 of
93600 partitions had an imbalance greater than the initial imbalance ε. Further we use the
existing framework KaHyPar and our developed recursive bisection implementation to provide
a recursive bisection n-level initial partitioner. As initial partitioner in the n-level context we
use a combination of all developed variants before, which we call pool initial partitioner. This
partitioner executes a subset of our implemented initial partitioning algorithm multiple times
and take the best produced partition from all runs as final partition.
To evaluate our initial partitioning algorithm we compared our initial partitioner against hMetis
and PaToH as intial partitioner in the direct n-level hypergraph partitioning framework KaHy-
Par on our benchmark set. The solution quality of KaHyPar with our initial partitioner is
comparable to the quality with hMetis and 1% better as the quality with PaToH as initial par-
titioner. The initial partitions produced by our initial partitioning algorithm are 0.6% better
than the partitions of hMetis and the running time is 16% faster on average.

1.3 Outline

In Section 2 we introduce in theoretical definitions and notations. We define the hypergraph
partitioning problem and introduce the most prominent partitioning objectives for this problem.
Section 3 gives an overview about related work in the area of hypergraph partitioning. The
main topic of this thesis about initial partitioning is presented in Section 4, which describes
the developed algorithms. Section 5 presents the evaluation of our work. Further we present
the results of our initial partitioner in the direct n-level hypergraph partitioning framework
KaHyPar in comparison with the state-of-the-art partitioner hMetis and PaToH. In the last
Section 6 we conclude the work and give an overview about future work.

2
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2 Preliminaries

In this section we outline the most relevant definitions and terminology in the area of hypergraph
partitioning.

2.1 Definitions and Terminology

Our initial partitioning framework is part of the KaHyPar partitioner. The terminology is
therefore similiar to [13].

Definition 2.1. An undirected weighted hypergraph H = (V,E, c, ω) is a set of hypernodes
V and a set of hyperedges E with a hypernode weight function c : V → R≥0 and a hyperedge
weight function ω : E → R≥0. A hyperedge e is a subset of V (formally: ∀e ∈ E : e ⊆ V ).

A hypergraph generalizes a graph by extending the definition of an edge, which can contain
more then only two nodes. Hyperedges are also called nets in the literature [7] and the vertices
of a hyperedge are called pins. We can extend the definition of the weight functions c and ω to
sets. Let V ′ ⊆ V and E ′ ⊆ E then we define

c(V ′) =
∑
v′∈V ′

c(v′)

ω(E ′) =
∑
e′∈E′

c(e′)

Definition 2.2. In the following we are listing important terminology.
(i) Vertex v is incident to a hyperedge e ⇔ v ∈ e.
(ii) Two vertices vi and vj are adjacent ⇔ ∃e ∈ E : vi ∈ e ∧ vj ∈ e.
(iii) We define I : V → P(E), which maps a vertex v to all its incident nets.
(iv) The degree of a hypernode v is defined as d(v) = |I(v)|
(v) A hypernode v is an isolated hypernode ⇔ d(v) = 0
(vi) The set Γ(v) = {u | ∃e ∈ E : v ∈ E ∧ u ∈ E} defines all adjacent vertices of a hypernode

v. A vertex u ∈ Γ(v) is called neighbour of v
(vii) The size of a net e is the cardinality |e| and a hyperedge with size |e| = 1 is called

single-node net.
(viii) Two nets ei, ej ∈ E are parallel, if ei = ej.

Figure 1 shows an example of a hypergraph. We can define the hypergraph in this figure
according to definition 2.1 as follows:

V = {v1, v2, v3, v4, v5, v6, v7}

E = {e1 = {v1, v2, v3}, e2 = {v2, v3}, e3 = {v3, v5, v6}, e4 = {v4}}

∀v ∈ V : c(v) = 1
∀e ∈ E : ω(e) = 1

Vertex v2 is incident to hyperedges e1 and e2. The same vertex is adjacent to vertex v1,
because both are contained in hyperedge e1. The set of incident nets of hypernode v2 is
I(v2) = {e1, e2} and that implies the degree d(v2) = |I(v2)| = 2. The neighborhood of vertex v2

3
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v7

v4

v1

v2

v3

v5 v6

e1 e2

e3

e4

Figure 1: An example of a hypergraph

is Γ(v2) = {v1, v2, v3}. Vertex v7 is an isolated hypernode, because ∀e ∈ E : v7 /∈ e⇒ d(v7) = 0.
The size of hyperedge e1 = {v1, v2, v3} is |e1| = 3. e4 is a single node net.

Definition 2.3. Given a hypergraph H = (V,E, c, ω) and two hypernodes u, v ∈ V . If we
contract two hypernodes u and v to one hypernode v′, we have to define a new hypergraph
H ′ = (V ′, E ′, c′, ω)

V ′ = (V ∪ v′) \ {u, v}

E ′ = {e | e ∈ E : u, v /∈ e} ∪ {(e ∪ v′) \ {u, v} | e ∈ (I(v) ∪ I(u))}

c′(z) =
{
c(z), z /∈ {u, v}
c(v) + c(u), z = v′

Formally a contraction of two hypernodes u and v means to merge the two verticies into one
new hypernode v′. The weight of the new hypernode v′ is the sum of the weights of the two
contracted hypernodes. In every hyperedge e, where either u or v occurs, we delete these pins
from the net e and add the new hypernode v′. Contraction of two hypernodes u and v might
lead to parallel and single node nets. Assume we have two nets ei, ej ∈ E with ei4ej = {u, v},
where4 is the symmetric difference. If we contract u and v than ei = ej. If two nets are parallel
after contraction, we can remove ej and set the hyperedge weight of ei to ω(ei) = ω(ei) +ω(ej).
A single node net e can occur, if we want to contract u and v and e = {u, v} ⇒ e = {v′}. In
the hypergraph partitiong problem (see definition 2.8) such a net can never become cut and
we can remove this net. Before we define the hypergraph partitioning problem, we have to
formally define a k-way partition P of a hypergraph H and some terminology we combine with
this partition P .

Definition 2.4. A k-way partition P = {V1, ..., Vk} of a hypergraph H is a division of V into
k parts, such that the following constraints are fulfilled:

(i)
k⋃
i=1

Vi = V ∧ ∀V ′ ∈ P : V ′ 6= ∅

(ii) ∀i, j ∈ {1, .., k} : i 6= j ⇒ Vi ∩ Vj = ∅
(iii) P is ε-balanced ⇔ ∀V ′ ∈ P : c(V ′) ≤ Lmax := d c(V )

k
e(1 + ε) + maxv∈V c(v)

Given the definition above a k-way partition P of a hypergraphH is a division of the hypernodes

4
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v7

v4

v1

v2

v3

v5 v6

e1 e2

e3

e4

v7

v4

v1
v′

v5 v6

e1

e2

e3

e4
Contracting v2 and v3

Figure 2: An example of a contraction. Hypernodes v2 and v3 are contracted into a single
hypernode v′. Hypernode v2 is incident to hyperedges e1 and e2 and v3 is incident to
e2 and e3. The resulting hypernode v′ is incident to all incident hyperedges of v2 and
v3 ⇒ v′ is incident to e1, e2 and e3. The hyperedge e2 consists only of the contraction
pair v2 and v3 ⇒ e2 becomes a single node net.

V into k disjoint subsets, where the weight of each subset has to be smaller than an upper weight
bound Lmax. The k subsets/parts of P are not allowed to be empty.

Definition 2.5. We define the number of pins of a net e in a block Vi ∈ P with

φ(e, Vi) := |{v ∈ Vi | v ∈ e}|

A net e is connected to a block Vi, if φ(e, Vi) > 0. A block Vi is adjacent to a vertex v /∈ Vi, if
there ∃e ∈ I(v) : φ(e, Vi) > 0.

Definition 2.6. Given a k-way partition P of a hypergraph H. We define the connectivity
set of a net e as Λ(e) = {Vi | φ(e, Vi) > 0}. The connectivity of a net e is the cardinality of the
connectivity set λ(e) := |Λ(e)|.

Definition 2.7. A hyperedge e is cut, if λ(e) > 1 and internal, if λ(e) = 1.

The connectivity set Λ(e) of a net e in a k-way partition P contains all blocks, which the net
e is connected to. A vertex, which is at least in one cut edge is called a border vertex.

Definition 2.8. The k-way hypergraph partitioning problem is to find an ε-balanced k-way
partition of a hypergraph H, which minimizes the sum of all weights of all cut edges.

κ(H,P ) =
∑
e∈E
λ(e)>1

ω(e) (2.1)

2.2 Partitioning Objectives

We present the hypergraph partitioning problem, where we want to minimize the weight of all
cut edges of a ε-balanced k-way partition P . There exist several other objectives which should
be minimized or maximized in the hypergraph partitioning context. In the following sections
we assume that we have a ε-balanced k-way partition of a hypergraph H = (V,E, c, ω).

5
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v7

v4

v1

v2

v3

v5 v6

e1 e2

e3

e4

V1

V2

Figure 3: An example of a perfect balanced 2-way partition P = {V1, V2} of a hypergraph. The
blocks V1 = {v1, v2, v3} and V2 = {v4, v5, v6, v7} are perfect balanced, because the
cardinality of V is odd. There is only one cut hyperedge e3.

2.2.1 Cut Metric

The cut objective is defined in equation 2.1. This metric is the sum of the weight of all cut
edges and we want to minimize it in the hypergraph partitioning context.

2.2.2 Sum of External Degree

The next interesting metric is the sum of external degree (SOED). The external degree of a
hyperedge e is the connectivity of e, if e is a cut net and zero otherwise [17]. The definition of
the SOED [26] is

ν(H,P ) =
∑
e∈E
λ(e)>1

ω(e)λ(e) (2.2)

The goal of this metric is to minimize the amount of cut edges and if a hyperedge is cut, than
we want to minimize the connectivity of that net. If ω ≡ 1 we can explain the SOED as sum of
the connectivity of all cut edges. Because we sum in both metrics (hyperedge cut and SOED)
over the weight of all cut edges and for those nets e λ(e) > 1, we note that κ < ν for all
hypergraphs H and partitions P .

2.2.3 (k − 1) metric

The (k − 1) metric is very similiar to the definition of the SOED [28].

τ(H,P ) =
∑
e∈E

ω(e)(λ(e)− 1) (2.3)

The goal for this metric is to minimize it.

6
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2.2.4 Absorption

The Absorption is defined as follows [2].

ψ(H,P ) =
k∑
i=1

∑
e∈E

e∩Vi 6=∅

|e ∩ Vi| − 1
|e| − 1 · ω(e) (2.4)

If we have a net e, which is an internal edge of block Vi, the fraction in the inner sum is 1 [2].
If the net e is only connected via one vertex to block Vi, the inner fraction is zero [2]. If we use
the absorption metric, the goal is to maximize it. Note, if every net is an internal hyperedge
than ψ(H,P ) = ω(E).

7
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3 Related Work

In this section we describe the related work into the area of hypergraph partitioning. First we
introduce the multilevel partitioning scheme in Section 3.1. In the following sections we outline
different techniques, which are used in the multilevel context. At the end we introduce the
n-level partitioning scheme in Section 3.5 and decribe the state-of-the-art partitioner hMetis in
Section 3.6.1 and PaToH in Section 3.6.2.

3.1 Multilevel Paradigm

The multilevel paradigm (see figure 4) is used by all state-of-the-art hypergraph partitioner.
This paradigm is divided into three phases.
In the first step, the coarsening phase, a set of hypernodes are choosen to be contracted. We
describe different techniques to choose the hypernodes in section 3.2. The contracted and re-
maining hypernodes build a smaller hypergraph. This procedure is repeated on the smaller
hypergraph until a predefined contraction limit is reached. Normally the coarsening is per-
formed until i · k hypernodes are left with i ∈ N.
If the hypergraph is small enough, an initial partition is generated in the second phase on
the resulting hypergraph of the coarsening process. There exist serveral techniques which are
detail described in Section 3.3. Random approaches assign hypernodes to a random block of a
partition. Growing-based techniques grow a cluster around a selected hypernode by assigning
those to a block. Greedy-Growing-techniques also grow a cluster around a selected vertex, but
the hypernodes, which are added to the cluster, are choosen based on a scoring function. We
can add a hypernode e.g. to the growing part by calculating the decrease of the hyperedge cut,
if we would assign it to the growing block.
In the last phase, the refinement/uncontraction phase, the contracted hypernodes are succes-
sively uncontracted in reverse order of contraction and the partitioning is projected to the next
level finer hypergraph. After projection to the next level the quality of the partition can be
improved with local search algorithms. Popular heuristics are the Kernighan-Lin (Section 3.4.1)
or Fiduccia-Mattheyses (Section 3.4.2) heuristics.
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Figure 4: Multilevel partitioning scheme
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3.2 Coarsening

The coarsening phase is the first step of the multilevel partitioning scheme. Karypis [19] out-
line three main purposes in this step. First, a coarsening should provide a smaller hypergraph
where the initial partitioning of the smaller hypergraph is not significantly worse than on the
original hypergraph. The next goal is to provide a coarsened version of a hypergraph where
local search algorithms become effective during the uncontraction phase. The last one is that
coarsening should reduce the size of hyperedges. Local search techinques work significantly
better on hypergraphs with small hyperedges, because they are easier to remove from the cut.
In general we can distinguish between two classes of coarsening algorithms. Agglomerative
coarsening schemes choose at one time step two hypernodes for contraction. Hierarchical coars-
ening schemes choose as many hypernode pairs as possible to merge it at one time step [2, 6].
In this section we give a short introduction about various heuristics, which are used by the
state-of-the-art partitioner to contract hypernodes of a hypergraph.

3.2.1 Edge Coarsening

Edge coarsening (EC) is a matching-based coarsening scheme and provided by hMetis [19]. If
a hypernode v should be matched with another one, all unmatched hypernodes u ∈ Γ(v) are
considered. The hypernode u with the largest edge weight between v and u forms a matching
pair (u, v) (for an example see figure 5). The weight of an edge between two hypernodes u and
v is defined as sum of all edge-weights of hyperedges that contain u and v. The edge-weight
of a hyperedge e with weight 1 is defined as 1

|e|−1 . Formally, we define the weight of an edge
ω′ : V × V → R between to hypernodes u and v in a hypergraph H with ∀e ∈ E : ω(e) = 1 as
follows:

ω′(v, u) =
∑

e∈I(v)∩I(u)

1
|e| − 1

The contraction partner u ∈ Γ(v) maximize ω′(v, u). Ties are broken randomly and the hyper-
nodes are visited in random order. With this definition the hypergraph is implicitly treated as
a graph by replacing the hyperedges with the clique expansion [12,19].
We can take the weight of a hyperedge into account and define the edge-weight as ω(e)

|e|−1 . We
call this coarsening heavy-edge coarsening.

3.2.2 Hyperedge Coarsening

The hyperedge coarsening (HEC) is a hierarchical coarsening scheme and also implement by
hMetis [15]. HEC looks for an independent set of hyperedges. A independent set S ⊆ E of
hyperedges of a hypergraph H is a set, where ∀e1, e2 ∈ S : e1 ∩ e2 = ∅. The hyperedges are
visited in decreasing order of their weight and a hyperedge is matched, if non of it pins is
matched before. We contract all hyperedges instead of hypernode pairs (for an example see
figure 5).
A majority of the hyperedges are not contracted during the hyperedge coarsening, because the
pins of these hyperedges are matched before. This observation has two main disadvantages [15].
The size of hyperedges decrease not significantly after each contraction step. Local search
algorithms become therefore less effective. The next problem is the different distribution of
hypernode weights at the end of the coarsening process. This destroys potentially the structure
of the contracted hypergraph. To solve these two problem Karypis [15] develop the modified
hyperedge coarsening (MHEC). After the hyperedge coarsening has taken place, the list of
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hyperedges is traversed again. All unmatched pins of a hyperedge are matched in this second
step.

Edge Coarsening

Hyperedge Coarsening

First Choice

Figure 5: Example of the EC, HEC and FC coarsening scheme. The yellow shapes in all variants
indicate the contracted hypernodes in the coarsening schemes.

3.2.3 First Choice

The two coarsening strategies described before both search for an independent set of hyperedges
or hypernode-pairs. The problem is that the independence property of such a coarsening can
destroy existing clusters of vertices in a hypergraph [19]. Based on this observation Karypis et
al. [19] developed the First Choice coarsening scheme, which is very similar to Edge Coarsening.
The difference is, if a hypernode v is visited all matched and all unmatched neighbours u ∈ Γ(v)
are considered as contraction partner. We are choosing again the hypernode u which maximizes
ω′(v, u). The chosen hypernode u could already be matched before with another hypernode.
Ties are broken randomly, but we favour unmatched hypernodes.

3.2.4 Heavy Connectivity Matching/Clustering

Heavy Connectivity Matching (HCM) is a matching-based coarsening scheme and implemented
by PaToH [6]. The algorithm works similar to EC, but uses a different rating function:

ω′(v, u) = |I(v) ∩ I(u)|

We choose a contraction partner u to an visited hypernode v which maximizes ω′(v, u). The
contraction pair (u, v) has the property to be highly connected via many hyperedges.
PaToH [6] also uses an agglomerative variant of this algorithm, which is similar to First Choice.

10
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At the beginning all hypernodes are singleton clusters Cu = {u}. During coarsening we only
visit those singleton clusters. If we want to find a contraction partner for a singleton cluster we
consider all incident singleton and multinode clusters. We choose the cluster Cv as contraction
partner for Cu which maximizes

ω′′(Cu, Cv) = |I(u) ∩ (∪v∈CvI(v))|
c(u ∪ Cv)

Again the goal is to find highly connected clusters, but very heavy clusters should be avoided
with the division by c(u∪Cv). This method is called the heavy connectivity clustering (HCC).

3.3 Initial Partitioning

The goal of the initial partitioning phase is to partition the coarsened hypergraph into k blocks.
Since the resulting partition of the multilevel paradigm depends on the quality of the initial
partitioning step, we review the most prominent initial partitioning algorithms in the following
subsections.

3.3.1 Random Partitioning

The easiest way to produce a k-way partition is to random assign hypernodes to blocks. Note
that no part should be heavier than the maximum allowed partition weight, which is fixed by
our ε.
Another random partitioning techniques is the Random Engeenering Method (REM) [23]. We
sort all hypernodes in decreasing order of their weights and assign it in this order. Assignment
probabilities to a part Vi are proportional to the hypothetical area remaining before the partition
weight of block i will satisfy the minimal bound of partition weights l (see equation 3.2). Assume
we have such a lower bound of partition weight l, then we can define the sum of all remaining
areas to satisfy this lower bound on all blocks as

R =
K∑
i=1

max(l − c(Vi), 0) (3.1)

Now can define the probability pi of assigning a hypernode vj to part Vi

pi = max( l − c(Vi)
R

, 0) (3.2)

This assignment strategy keeps the block weights equal and provides a good degree of random-
ness. If all parts reach the lower bound, we replace l in (3.1) and (3.2) with the upper bound
u.

3.3.2 Hypergraph Growing Partitioning

Hypergraph Growing Partitioning methods (HGP) create a partition by succesively growing
blocks around selected seed vertices. Hypernodes, which are connected to the growing partition,
are added until the partition satisfies the balance constraint. This assignment can be done in a
breath- or depth-first manner. PaToH [5] and hMetis [16] provide this technique in their initial
partitioning sets.
The result of the partitioning is sensitive to the selection of the start nodes. Start hypernodes
can be selected randomly or we are looking for pseudo peripheral hypernodes [25], which should
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be far away from each other. We find these start nodes by selecting a random hypernode and
execute a breath-first-search from this hypernode. The last hypernode touched by this search
is the second start hypernode.
Diekman [10] developed a framework called Bubble (BUB) for finite element meshes which is
able to compute a k-way partition of a graph. BUB searches for k pseudo peripheral seed nodes.
First, one node v with minimum degree is chosen. In finite element meshes this is usually a
corner node. From v we search with a breadth-first-search the second initial seed node v1 as
described above. We use these two nodes as start nodes for the next breadth-first-search to
find a third start node v2. This process is repeated until we found k start nodes.
With these initial seed nodes a breadth-first-search partitioning is performed, where the block
with the smallest amount of nodes receives the next node. If we touch all nodes, we calculate
the center nodes of all blocks and uses them to repeat the whole process. Figure 6 illustrates
the bubble algorithm. The algorithm terminates, if the seed nodes stop changing or there are
no improvement within 10 iterations.

v
v3

v1

v2

v
v3

v1

v2

v
v3

v1

v2

v′ v′3

v′1v′2

1. Find initial seed nodes 2. Partitioning 3. Find center node of partition

Figure 6: Illustration of the bubble algorithm.

3.3.3 Greedy Hypergraph Growing Partitioning

Karypis and Kumar [18] extend the graph growing partition algorithm to hypergraphs. They
grow also a block V1 around a randomly selected vertex. They define the gain of a hypernode
v, which is connected to the growing block, in the reduction of the cut, if we would assign v
to V1. If we want to create a bisection of a hypergraph, we have to add all border vertices
v with v /∈ V1 and their corresponding gain into a priority queue q. The hypernode with the
highest gain in q is added to the growing part V1. Afterwards the gains of all hypernodes in q
are updated and all new border verticies v′ (with v′ /∈ V1 ∧ v′ /∈ q) are inserted into the priority
queue. The algorithm stops if the weight of V1 reaches a predefined upper bound. At the end
we have two blocks V1 and V2 = V \ V1.
PaToH [5] uses different gain function in their greedy hypergraph growing partitioning (GHGP)
variants.

GHGP Max-Pin. A variant, which prefer moves of hypernodes based on the num-
ber of incident hypernodes in the growing block. If we want to define the gain of
a move of a hypernode v from his current part Vi to Vj, the gain can be calculated
with the following formula

gMax−Pin(v, Vi, Vj) = |{u | u ∈ I(v) ∧ u ∈ Vj}|

GHGP Max-Net A variant, which prefer moves of hypernodes based on the num-
ber of incident hyperedges that connects the growing block with the hypernode. If
we want to define the gain of a move of a hypernode v from his current part Vi to

12



3.3 Initial Partitioning

v7

v4

v1

v2

v3

v5 v6

e1
e2

e3

e4

V1
Adding v3 to V1 would decrease the cut by 1

Becomes cut edge

Becomes internal edge of V1

Figure 7: Illustration of moving an unselected hypernode v3 to the growing partition V1. The
hypernode v3 decreases the cut by 1. The green edges become internal edges of V1
and the red hyperedge becomes a cut edge.

Vj, the gain can be calculated with the following formula

gMax−Net(v, Vi, Vj) = |{e | e ∈ Γ(v) ∧ Vj ∈ Λ(e)}|

Since GHGP is sensitive to the choice of the start vertex, the most common implementations
uses multiple runs [5, 18] and choose the best partition from that runs. Karypis and Kumar
[18] note that GGGP is still faster than GGP, because the cuts of GGGP are on average
better than of GGP and so fewer runs are needed to produce good solutions. If we want to
implement GHGP efficient, similar datastructures are needed, like they are used in the Fiduccia-
Mattheyses algorithm (see Section 3.4.2), and delta-gain updates [13] (see Section 3.4.3) should
be implemented.

3.3.4 Label propagation

Another idea of an initial partitioning algorithm is outlined by Henne [12] in his future work.
He describes how label propagation can be adapted to produce initial partitions.
The basic idea of label propagation is introduced by Raghavan et al. [24] to detect community
structures. The algorithm visits the nodes of a graph in random order and to every node is a
label assigned, which denotes the current community. If a node v is visited, the occurrences of
labels of adjacent nodes are calculated and the label with the maximum occurrence count is
chosen as the new label for v. Ties are broken randomly. This process can be repeated until
the labels of the nodes did not change any more or a maximum amount of iterations is reached.
A pseudocode of label propagation is listed in 1. Because every node is visited once and every
edge is visited twice in each iteration the time complexity of this algorithm is near linear.
Henne [12] described the adaption of label propagation to an initial partitioning algorithm as
follows. Initially, all but k · λ nodes have an empty label and the other nodes are assigned to
one of the k blocks randomly for some tuning parameter λ. Label propagation is performed
until all nodes with an empty label are assigned to one block. As score function the reduction
of the cut can be used to calculate the score to all adjacent labels of a hypernode v.
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Algorithm 1: Label Propagation
Data: (Hyper)graph H = (V,E, c, ω)
Result: label[1...n]

1 for v ∈ V do
2 label[v]← v

3 i← 0
4 while !converged ∧ i ≤ max_iteration do
5 for v ∈ V in random order do
6 label[v]← argmaxl score(v, l) // Best adjacent label according to a specific score

function
7 i++

3.3.5 Integer Linear Programming

Kucar [21] formulates the hypergraph partitioning problem as an Integer Linear Programm
(ILP). In the following, we briefly introduce on this formulation. First the following indicator
variables are needed:

xik =
{

1, if vi ∈ Vk
0, otherwise (3.3)

yjk =
{

1, if Λ(ej) = {Vk}
0, othwerwise (3.4)

Variable xik is true, if hypernode vi belongs to block k and variable yjk is true, if the hyperedge
ej is an internal net of part Vk.
With the following objective function we try to maximize the number of non cut hyperedges in
our ILP:

max
|E|∑
j=1

k∑
l=1

yjl (3.5)

To maximize this function hypernodes of a hyperedge should be placed in the same block. If
we want to adapt the hypergraph partitioning problem completly to an ILP, we have to define
several constraints to our indicator variables. First we have to ensure that all hypernodes can
only be in one block. Equation (3.6) takes this into account.

k∑
l=1

xil = 1, ∀i = 1, ..., |V | (3.6)

In the next step we define a lower αl and upper bound βl for the part weigts.

αl ≤
|V |∑
i=1

xil · c(vi) ≤ βl, ∀l = 1, ..., k (3.7)

The next inequality 3.8 ensures that yjl is 1, only if all hypernodes vi ∈ ej are part of block Vl.

yjl ≤ xil, ∀j = 1, ..., |E|, l = 1, ...k, vi ∈ ej (3.8)

At the end we have to define the domain of our indicator variables.

∀i ∈ {1, ..., |V |} : ∀l ∈ {1, ..., k} : xil ∈ {0, 1} (3.9)
∀j ∈ {1, ..., |E|} : ∀l ∈ {1, ..., k} : yjl ∈ {0, 1} (3.10)
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If we relax the problem to a Linear Programm with a real solution space, we can solve the
problem with a LP solver. After solving the LP, we can relax the solution back to a natural
solution.

3.3.6 Recursive-Bisection

Most literature describes only bisection-based partitioning algorithms. The reason is that most
partitioning frameworks use only recursive bisection to obtain a k-partition of a hypergraph.
This scheme bisects the original hypergraph in two parts and afterwards the two resulting
blocks are recursively further bisected until we have k parts (see figure 8). After each bisection
we can improve our partitioning objective with a local search heuristic. Note that with this
description k is restricted to be a power of 2.
To extend recursive bisection for any k, we use the definition from Schulz [25]. If we want
to divide the hypernode set V of a hypergraph H into k parts, we bisect V in V1 and V2
with part weight bounds c(V1) ≤ (1 + ε)bk2cd

c(V )
k
e and c(V2) ≤ (1 + ε)dk2ed

c(V )
k
e. We further

divide V1 into bk2c and V2 into dk2e parts. If we use on each bisection the initial imbalance ε
for the weight bound, it can happen that one of our resulting blocks is imbalanced. Assume
k = 32 and ε = 0.05 and after each bisection, where we have to further divide a subhypergraph
H ′ = (V ′, E ′, c, ω) resulting from bisections of the original hypergraph, the weight of block V1

is equal to the maximum allowed part weight ⇒ c(V1) ≈ c(V ′)
2 (1 + ε). V1 produces at the end

on the original hypergraph an imbalance of (1 + ε)log2 k = 1.055 ≈ 1, 27. Most partitioning
frameworks restrict the input ε at the beginning of the recursive bisection process. Schulz [25]
uses 1% imbalance at each bisection step to reach his default imbalance value of 3%. hMetis [14]
provides a parameter called ubfactor, where the user can specify the imbalance, which is then
used at each bisection.
If we bisect a hypergraph we have to extract the two subhypergraphs H1 = (V1, E1, c, ω)

and H2 = (V2, E2, c, ω). We define the resulting hyperedge sets E1 and E2 of a hypergraph
H = (V,E, c, ω) and a bisection P2 = {V1, V2} as follows:

Ei = {e | e ∈ E : Λ(e) = {Vi}}

All nets e ∈ Ei are internal hyperedges of part Vi and all cut nets are removed in the extraction
step. Cut nets cannot be removed from the cut during future recursive bisections and therefore
we remove it in the extraction step. If we use another metric, e.g. the (k − 1) metric, we also
have to minimize the connectivity of a hyperedge. If we remove the cut edges we cannot control
the connectivity of these nets anymore. PaToH [6] splits a cut edge e into two parts e′ and e′′,
where e′ contains all hypernodes from block V1 and e′′ from block V2. Figure 9 illustrates the
two extraction methods of a bipartitioned hypergraph.
The local search algorithms, which can be used after each bisection, have no global view on the
problem. Therefore the final solution could be far away from the optimum [3, 4, 19]. A direct
k-way partitioning method has a global view on the problem and therefore be able to compute
potentially better results [19]. The possibility that a local search heuristic finds a positive move
on the original hypergraph of recursive bisection is very low, because large nets are still part of
the hypergraph and cut nets have a large number of pins in both parts of the bisection [3]. Also
a direct k-way algorithm can work with tighter balance constraints and can explore a greater
part of the solution space than a recursive bisection method [19]. Much research has been done
to produce a good direct k-way partitioning algorithm, but all algorithms are inferior to the
multilevel recursive bisection scheme [19].
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V1 V2 V3
V4

V2

V1 V3

V4

V12
V34

V1

V2

V3

V4

Original Hypergraph

Extracting partitions

Extracting partitionsExtracting partitions

Putting the partitions together on top level

Figure 8: Example of Recursive Bisection. We want to partition a hypergraph into four parts.
We divide the original hypergraph into two parts and recursively bisect the resulting
parts until we have our four parts. At the end we put the pieces on the original
hypergraph together.

3.4 Refinement

3.4.1 Kernighan-Lin

Kerninghan and Lin introduce one of the first local search algorithms for the partitioning
problem [20]. We present the simplest variant of this heuristic where we assume that we have
a graph G = (V,E, ω) with a edge weighting function ω and let P = (V1, V2) be a perfectly
balanced two-partition of the graph. Assume we have a perfectly balanced partition P ∗ =
(V ∗1 , V ∗2 ) with a minimum cut. We can produce this partition with a sequence of interchanging
of two nodes s = ((a1, b1), ..., (ak, bk)) from every arbitrary perfect balanced partition P .
Let us assume we have a perfectly balanced two partition P = (A,B). The external costs of a
node a ∈ A is defined as Ea = ∑

v∈B ω(a, v) and the internal costs of a node a ∈ A is defined
as Ia = ∑

v∈A ω(a, v). The both definitions are used vice versa for all b ∈ B. Further difference
between the external and internal costs is defined as Dv = Ev − Iv ∀v ∈ V .

Definition 3.1. Assume we want to interchange two nodes a ∈ A and b ∈ B of a perfectly
balanced partition P = (A,B). The reduction of the edge cut, is a function g : V × V → Z
with g(a, b) = Da +Db − 2ω(a, b).

Now we are able to define an algorithm. First all D values of all nodes are calculated. Then
we have to search two nodes a ∈ A and b ∈ B where g(a, b) is maximized. Afterwards the
exchange of a and b is performed and these two nodes are locked for further interchanges. The

16



3.4 Refinement

v7

v4

v1

v2

v3

v5 v6

e1 e2

e3

e4

V1

V2

v1

v2

v3
e1 e2

v7

v4

v5 v6

e4

H1

H2

v1

v2

v3
e1 e2

v7

v4

v5 v6

e4

H1

H2

e′3

e′′3

Figure 9: Example of extraction methods. On the top-right side we see the extracted subhy-
pergraphs, when minimizing the cut metric. Hyperedge e3 is a cut edge and can
be removed in both resulting subhypergraphs. On the buttom-right side we see the
extraction of the subhypergraphs, when the (k − 1) metric is optimized. Hyperedge
e3 is split into two nets e′3 and e′′3. e′3 is part of the subhypergraph H1 and contains
the nodes which are in e3 and V1. e′′3 is part of the subhypergraph H2 and contains
the nodes which are in e3 and V2.

gain gi = g(a, b) is saved in a interchange gain sequence s. After each interchange all D values
have to be updated:

D′x = Dx + 2ω(x, a)− 2ω(x, b) ∀x ∈ A \ {a}

D′y = Dy + 2ω(y, b)− 2ω(y, a) ∀y ∈ B \ {b}

∀x ∈ A the edge (x, a) is an internal edge of block A. After the exchange (x, a) became an
external edge and we have to add ω(x, a) to Ex and substract the same value from Ix. If we
want to update Dx we have to add 2ω(x, a). The consideration of subtracting 2ω(x, b) from
Dx are equivalent. This process is repeated until all nodes are locked. If all nodes are locked,
we have to find a point 1 ≤ k ≤ |s| where ∑k

i=1 gi is maximized. The first k exchanges of
node pairs are performed on our partition P and the whole process is repeated until no further
improvement is possible. In algorithm 2 is a pseudocode of the described algorithm.
The algorithm has a running time of O(|V | · |E| log(|E|)) in his initial version. The maximum
gain pair (a, b) in line 8 of algorithm 2 can be calculated by searching for the maximum Da

and Db value [20]. The resulting pair (a, b) of this linear scan is only possibly a maximum gain
pair, but we are reducing the running time to O(|V |2). We only have to update those D values
in line 13 of algorithm 2, which are incident to a or b.

17



3 Related Work

Algorithm 2: Kerninghan-Lin heuristic
Data: (Hyper)graph H = (V,E, ω) and perfect balanced partition P = (A,B)
Result: Improved partition P ′ = (A′, B′)

1 initialize all D values
2 A′ ← A
3 B′ ← B
4 do
5 X ← A′

6 Y ← B′

7 for i = 1 until |V |2 do
8 (ai, bi)← argmaxai∈X,bi∈Y g(ai, bi)
9 gi ← g(ai, bi)

10 X ← X \ {ai} ∪ {bi}
11 Y ← Y \ {bi} ∪ {ai}
12 lock(ai, bi)
13 update all D values
14 k ← argmax1≤k≤ |V |2

∑k
i=1 gi

15 g ← ∑k
i=1 gi

16 if g > 0 then
17 for i = 1 until k do
18 A′ ← A′ \ {ai} ∪ {bi}
19 B′ ← B′ \ {bi} ∪ {ai}

20 while g > 0
21 return P ′ = (A′, B′)

3.4.2 Fiduccia-Matheyses

0

maxg

gmax

gmin

v1 v2

v3

v3v2v1 v|V |

Figure 10: Example of the bucket queue
datastructure.

The most prominent and used local search heuristic is
the Fiduccia-Matheyses algorithm [11]. This algorithm
is an adaption of the Kerninghan-Lin algorithm (see
section 3.4.1). The algorithm works in its simplest vari-
ant for an arbitrary bipartition P = (A,B) and with
arbitrary balance constraints for each block of the par-
tition.
The main differences between Fiduccia-Matheyses and
Kerninghan-Lin is that only one hypernode is moved
per pass from one block to another. Furthermore a spe-
cial datastructure is used for finding the maximum gain
value, and to update and remove gain values of hyper-
nodes. Before we start to describe this algorithm, we
describe the special datastructure which is called bucket
queue. An example of this datastructure is shown in fig-
ure 10. The gain g : V → R of a hypernode v is the
reduction of the hyperedge cut, if we move this vertex
from his current block to the other block of a bisection.
If we want to find out the maximum/minimum possible gain of a move with the assumption
that ∀e ∈ E : ω(e) = 1, we have to search for a node vmax = argmaxv∈V d(v) with maximum
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degree. The maximum gain gmax, which can occur during a pass, is defined as gmax = d(vmax).
This can occur, if all incident edges of vmax were removed from the cut after we move this node.
Vice versa the minimum gain gmin is defined as gmin = −gmax. With this observation we can
save the gain of a hypernode into an array with size 2gmax from −gmax to gmax. An array entry
i contains a double-linked list with all hypernodes with gain i. To find the hypernode with
the maximum gain efficiently, we hold a pointer maxg to that entry in the datastructure. If
this node is removed, we have to update the maxg pointer. To update and remove arbitrary
hypernodes into the datastructure efficiently a mapping is stored from all hypernodes to the
corresponding entry in the double-linked list. The gain of a hypernode can be updated in
O(1), if the hypernode is accessed over our mapping and added to the new double-linked list
introduced by the new gain. We only have to check, if the new gain is greater than maxg and
in this case we have to update the maxg pointer.
Algorithm 3: Fiduccia-Matheyses heuristic
Data: (Hyper)graph H = (V,E, ω), ε and a bipartition P = (V1, V2) with

Vi ≤ d c(V )
2 e(1 + ε) i ∈ {0, 1}

Result: Improved partition P ′ = (V ′1 , V ′2)
1 b0 ← initialize with gain values from V1, if we move those hypernodes from V1 to V2
2 b1 ← initialize with gain values from V2, if we move those hypernodes from V2 to V1
3 V ′1 ← V1
4 V ′2 ← V2
5 do
6 X1 ← V ′1
7 X2 ← V ′2
8 for i = 1 until |V | ∨ (b0.empty() ∧ b1.empty()) do
9 do

10 pi ← argmaxj∈{0,1}bj,max
11 gi ← bpi,max

12 vi ← bpi,max.node()
13 bpi

.remove(vi)
14 while c(Vp) + c(vi) ≥ d c(V )

2 e(1 + ε)
15

16 Xpi
← Xpi

\ {vi}
17 X1−pi

← X1−pi
∪ {vi}

18 lock(vi)
19 update gain of b0 and b1

20 k ← argmax1≤k≤|V |
∑k
i=1 gi

21 g ← ∑k
i=1 gi

22 if g > 0 then
23 for i = 1 until k do
24 V ′pi

← V ′pi
\ {vi}

25 V ′1−pi
← V ′1−pi

∪ {vi}

26 while g > 0
27 return P ′ = (A′, B′)

The main algorithm requires as input a hypergraph H, an initial imbalance ε and a bipartition
P = (V1, V2), which fullfil the balance constraints. First the two bucket queues b1 and b2 have
to be initialized, which both hold the gain values of hypernodes of the moves to part V1 or V2.
Then the algorithm is very similiar to the Kerninghan-Lin algorithm. Except that we have to
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take care, if a move with maximum gain should be performed, that the block weights are within
the balance constraints after a move (line 9 - 14). If there are several nodes with maximum gain
we choose one randomly. After a move the moved hypernode is locked and the gain values in b1
and b2 are updated. The second part of algorithm 3 (line 20 - 25) is similiar to the Kerninghan-
Lin algorithm. We apply the moves which lead to the highest gain and repeat the process until
we no further improve the quality of the solution. To provide fast updates of the gain values
after a move of a hypernode v, only hypernodes u ∈ Γ(v) have to be updated. If we want to
further improve the updates we can use delta-gain updates (see section 3.4.3). Fiduccia and
Matheyses [11] show that no more than four update operations have to be performed during
the update process.

3.4.3 Delta-Gain Update
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Figure 11: Four cases of delta gain updates.

As mentioned before we only have to update the gains of all incident pins u ∈ Γ(v) of a moved
hypernode v. For hypergraphs the gain of the pins of a net changes only in four cases [11,13]. In
figure 11 the four cases are illustrated. We present a list of the four cases, where we describe the
state of the net e before and after a move of a hypernode v and the resulting update operations:
(i) Before the move of hypernode v ∈ e the net e has connectivity λ(e) = 1 and Λ(e) = {Vi}.

The hyperedge e contributes −ω(e) to the gain of all its pins. If we move the hypernode
v to block Vj the net e becomes a cut net. Therefore, if we move another pin u ∈ e after
this move from Vi to any block 6= Vi, the cut would not change. We have to add to all
calculated gain values of all pins p ∈ e ∩ Vi the value +ω(e).

(ii) Before the move of hypernode v ∈ e ∩ Vj the net e has connectivity λ(e) = 2, Λ(e) =
{Vi, Vj} and |Vj ∩ e| = 1. Moving v to Vi removes e from the cut. Before the move all
moves of pins u ∈ e ∩ Vi to any block 6= Vi were zero gain moves, if we only consider net
e. After the move all moves of pins u ∈ e ∩ Vi to any block 6= Vi would make e a cut
net again, if we move it. Therefore we have to add −ω(e) to all calculated gain values of
moves to any block 6= Vi.

(iii) Before the move of hypernode v ∈ e ∩ Vj the net e has connectivity λ(e) = 2, Λ(e) =
{Vi, Vj} and |Vj ∩ e| = 2. The move of v is a zero gain move, but only one pin of e is still
left in Vj. Moving this pin to Vi would remove e from the cut. Therefore we have to add
+ω(e) to the calculated gain of the remaining pin p ∈ Vj for moving it to Vi.

(iv) Before the move of hypernode v ∈ e ∩ Vi the net e has connectivity λ(e) = 2, Λ(e) =
{Vi, Vj} and |Vj∩e| = 1. The move of v from Vi to Vj is a zero gain move. Before the move
the remaining pin p ∈ Vj would remove e from the cut and after the move of hypernode
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v the net e has two pins in Vj. Therefore we have to add −ω(e) to the calculated gain of
pin p for moving it to Vi.

3.5 nLevel-Partitioning

The n-level partitioning scheme is an extreme version to the multilevel partitioning scheme.
There still all three phases of the multilevel paradigm: coarsening, initial partitioning and
refinement phase. The difference is that the n-level scheme only contract two nodes at each
level [22]. Furthermore Osipov [22] outlined that the n-level hierarchy leads to quadratic space
consumption and the contraction of two nodes instead of finding a heavy matching leads to a
non-uniform distribution of node weights. Osipov and Sanders [22] solve these two problems by
providing a dynamic graph datastructure and taking the node weight into account in a rating
function for the contraction of two nodes, which avoids very heavy nodes during contraction.
Schlag [13] adapts the n-level concept to hypergraph partitioning. In the coarsening phase the
hypernode pairs are rated with following function:

r(u, v) := 1
c(u) · c(v)

∑
e∈(I(u)∩I(v))

ω(e)
|e| − 1 (3.11)

In [13] three different coarsening strategies are presented, which only differ in the way they
re-rating the adjacent vertices of a contracted hypernode pair (u, v). For each hypernode
v a rating to all adjacent pins u ∈ Γ(v) is calculated and the pair (u, v) with the highest
rating is stored in a priority queue. After all ratings are calculated the hypernode-pair (u, v)
with the highest rating is contracted. The full-variant recalculate all ratings of all adjacent
vertices after a contraction. Since the re-rating can become very expensive, there exists two
different approaches to update the ratings. In the first method only the ratings of neighbours
w ∈ Γ(u) ∪ Γ(v) of a contraction pair (u, v) are updated, which chooses either v or u as
contraction partner in the initial rating phase. This method is called partial. In the second
variant the ratings are not updated immediately. The adjacent vertices are invalided. If a
contraction pair (u, v) in the following is chosen and either u or v is invalid, the rating is
re-calculated and the priority queue is updated. This method is called lazy.

3.6 State-of-the-art Hypergraph Partitioning Tools

3.6.1 hMetis

hMetis was developed by Karypis and Kumar [16] and it is one of the state-of-the-art hypergraph
partitioning tools. hMetis is optimized for partitioning VLSI instances. It uses the multilevel
paradigm.
The coarsening strategies are EC, HEC and FC, which are described in section 3.2. As initial
partitioning they perform random, hypergraph growing partitioning in a breadth-first-fashion
and greedy hypergraph growing. They mentioned that the initial partitioning with smallest
cut not necessarily leads to the smallest cut after the uncontraction phase [15]. They use i
initial partitionings in the refinement phase and propagate on each level the best x% to the
next level finer hypergraph. In this phase of the multilevel paradigm they use the classical
FM local search algorithm with some adaptions. Only k moves are performed and only two
passes [15]. Another refinement algorithm is the Hyperedge Refinement algorithm (HER) [16].
This algorithm moves groups of vertices with the goal to remove a whole net from the cut.
Two modes of multilevel partitioning are provided. hMetis can perform direct k-way and
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recursive bisection multilevel partitioning. In the recursive bisection mode the multilevel process
is performed on each bisection.

3.6.2 PaToH

PaToH is developed by Catalyurek and Aykanat [6] and it is one of the state-of-the-art hyper-
graph partitioning tools, too. PaToH is optimized for partitioning sparse matrix instances and
uses the multilevel paradigm.
In the coarsening phase PaToH uses HCM and HCC, which are described in section 3.2. In
the initial partitioning phase they use eleven different initial partitioning methods which can
be categories into random, hypergraph growing and greedy hypergraph growing variants. For a
closer overview on all different variants, we refer to the PaToH manual [5]. PaToH also have a
parameter for the number of different initial partitionings which should be constructed for the
refinement phase [5]. In the refinement phase PaToH uses Boundary FM (BFM). BFM only
looks at boundary hypernodes and moves are only performed from an over-loaded to an under-
loaded partition [6]. The refinement stops if no feasible move remains or max(50, 0.001|V |)
moves with no decrease into the cut are performed [6].
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4 Initial Partitioning

The goal of this work is to implement and evaluate different initial partitioning algorithms
for the n-level hypergraph partitioning framework KaHyPar. For more information about this
framework we refer the reader to [13]. This framework relies upon hMetis to produce an initial
partition. With this work we try to develop an initial partitioning method which produces
equal or better cuts than hMetis on the coarsened hypergraph instances in the same amount of
time. After we integrate our partitioner in KaHyPar, we want to archieve better cuts as with
hMetis as initial partitioner.
In the first phase of this work we implement several of the described algorithms in Section
3.3. We adapt these algorithms to direct k-way initial partitioners and evaluate the various
implementations. We implement a random, breadth-first-search, greedy hypergraph growing
and label propagation initial partitioner, which are explained in Section 4.1. In Section 4.1.3
we describe several implementations of greedy hypergraph growing and different gain functions.
Afterwards the algorithms are embedded into a recursive bisection framework, which we de-
scribe in Section 4.2. This framework can handle an arbitrary number of blocks. We can adapt
before each bisection the initial imbalance ε, such that the final partitions are guaranteed to
satisfy the imbalance. This technique allows us to explore a greater solution space during re-
cursive bisection than other existing implementations.
Finally, the recursive bisection implementation and the existing n-level hypergraph partitioning
framework KaHyPar is used to build a recursive bisection n-level initial partitioner in Section
4.3. In every bisection step, we coarsen the hypergraph, then we choose an initial partitioning
algorithm to bisect the hypergraph and then we uncoarsen the contracted node and use a local
search heuristics to improve the quality.

4.1 Direct k-Way Initial Partitioning

4.1.1 Random

The simplest algorithm to produce a k-way partition is to randomly assign the hypernodes to
a block of a partition. This algorithm is used as a baseline for all other partitioning meth-
ods. Other methods should normally produce partitions with better quality. But to assign all
hypernodes in expected O(|V |) running time has the advantage that it is possible to run this
algorithm more often than other variants in the same amount of time.
Algorithm 4 shows the pseudocode of our random initial partitioner. This partitioner produces
a k-way partition P = (V1, ..., Vk) of a hypergraph H = (V,E, c, ω) and tries to ensure that
all weights of all blocks Vi are below wmax = d c(V )

k
e(1 + ε) for a given ε. We visit all nodes

of the hypergraph and for all nodes we randomly choose a block Vp. If the resulting weight
c(Vi ∪ {v}) ≤ wmax, we assign hypernode v to part Vp, otherwise we choose another random
block Vp and try to assign it again. If there is no part, such that the resulting block weight
c(Vi∪{v}) for an arbitrary i ∈ {1, ..., k} is smaller than wmax we assign v to the last calculated
random partition Vp. Note, if we reach this state the resulting partition P is not ε-balanced.
In most cases we can satisfy the balancing constraint, but if the graph is small and the weights
of the hypernodes are large, it may occur that there are few nodes left at the end which could
not be assigned to a part.
On the first view the algorithm has a worst case running time of O(k|V |). This is because it
may occur that we have to try several parts to assign a hypernode v. Because of its simplicity
and the fact that the worst case only occurs at the end of the partitioning process, the algorithm
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runs fast in practice. The idea to assign the hypernodes random to a block seem to be not
a promising method, but if the hypergraph is small enough, we can try to run this algorithm
multiple times and use the best result.

Algorithm 4: Random-based partitioning algorithm
Data: Hypergraph H = (V,E, c, ω), ε, k
Result: k-way partitioning P = (V1, ..., Vk)

1 wmax ← d c(V )
k
e(1 + ε)

2 P ← (∅, ..., ∅) // |P | = k
3 for v ∈ V do
4 tryAssignmentToPart← (0, ..., 0) // |tryAssignmentToPart| = k
5 sum← 0
6 p← −1
7 do

// In this loop we have to search for a valid block p for hypernode v
8 if p 6= −1 ∧ !tryAssignmentToPart[p] then
9 tryAssignmentToPart[p]← 1

10 sum← sum+ p

11 if sum = k(k+1)
2 then

// All blocks has been discovered an there is no block to assign v such that
resulting block weight is smaller than wmax

12 break do-while loop

13 p← choose random p ∈ {1, ..., k}
14 while c(Vi ∪ {v}) ≤ wmax
15 Vp ← Vp ∪ {v}
16 return P = (V1, ..., Vk)

4.1.2 Breadth-First-Search

The next algorithm we present is based on the concept of hypergraph growing partitioning as
described in Section 3.3.2. To create a bisection with this variant, we randomly choose a hy-
pernode and perform a breath-first-search (BFS) from that vertex until half of the hypergraph
is discovered. The vertices touched by our search constitutes part V1 and all untouched V2. In
this section we extend the hypergraph growing partitioning algorithm to produce direct k-way
partition.
First we describe an optimization of the BFS traversal on hypergraphs. Normally, in graphs,
we select a start node and push it into a queue. Afterwards we pop a node v from the queue.
Then we iterate over all adjacent nodes of v and push all unmarked nodes into the queue. If we
push a node into the queue, we mark it as in_queue. We repeat this procedure until the queue
is empty. This algorithm has a running time of O(|V | + |E|). Appling the same algorithm to
hypergraphs can result in a running time of O(|V | + |E|(maxe∈E |e|)2). This is caused by the
fact that a hyperedge contains more than two nodes. Assume we push the pins of a hyperedge
e into the queue and mark them as in queue. This has the effect that every time we pop an
element of that net e from the queue we again iterate over all pins, but all of them are already
marked and nothing happens. If we want to prevent that case we have to mark all hyperedges
as in queue as well. If we visit the first pin of a net e we have to consider all pins of e and push
them into the queue, if they are not marked already. If we pop the next hypernode from the
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queue of net e, we have not to iterate over all pins in e again. Based on this observation the
first pin of net e contributes O(|e|) and the remaining O(1) to the overall running time, if we
pop them from the queue. Every edge contributes |e|+∑|e|−1

i=1 1 = 2|e|−1 to the overall running
time. The running time of the BFS traversal in hypergraphs with the adaption described above
can be estimated as follows:

∑
e∈E

2|e| − 1 ≤ |E|(2 max
e∈E
|e| − 1) ≤ 2(max

e∈E
|e|)|E| = O((max

e∈E
|e|)|E|)

Additionally, we have to initialize the datastructures for marking hypernodes and hyper-
edges. This can be done in O(|V | + |E|). This leads to an overall running time of O(|V | +
(maxe∈E |e|)|E|).
Our direct k-way hypergraph growing partitioning algorithm is shown in Algorithm 5. At the
beginning of the algorithm we initialize k queues for the BFS traversal. Queue i contains the
hypernodes, which are adjacent to the growing block Vi. To start with the hypergraph grow-
ing algorithm we have to choose k different start vertices. As described in Section 3.3.2 we
can choose those hypernodes by searching for pseudo peripheral hypernodes. This is done by
choosing a random start node and perform a BFS traversal from that node. The last hypernode
touched by this search is taken as the second start node. We repeat this procedure with both
start vertices as start nodes for the next BFS to find the third start hypernode. This procedure
is repeated until we have k different start hypernodes. Start vertex si is inserted into queue qi
to grow block Vi.
The assignment process starts in line 6. We grow the blocks in a round-robin-fashion until
there are no further hypernodes left to be assigned. In each round, we assign one additional
hypernode v to a part Vi. After the assignment of vertex v, block Vi+1 can choose its next
hypernode. If we reach part Vk we start this process again from i = 1 until all hypernodes are
assigned. A part Vi can choose its new hypernode from its corresponding queue qi. Note that
during the assignment process the blocks of the partition can grow different fast, because the
weights of the nodes are not uniform. For this reason we only assign hypernodes to blocks,
which are enabled. A part can become disable in two cases. In the first case, if there are no
further hypernodes in its corresponding queue and all hypernodes are assigned to a part. In
the second case, if we found a hypernode v, but the resulting part weight of Vi would become
to heavy after the assignment of v to Vi. The assignment process of a hypernode v to a part Vi
works as follows:
(i) Choose an unassigned hypernode v from qi (line 13).
(ii) If there is no unassigned hypernode v ∈ qi, we randomly search for an unassigned hyper-

node (line 18).
(iii) If we found a hypernode v in step (i) or (ii), we check if the resulting weight c(Vi ∪ {v})

is less to or equal than d c(V )
k
e(1 + ε).

(iv) If the resulting weight of Vi ∪ {v} fulfils our balance constraints, we push all adjacent
neighbors u ∈ Γ(v), which are not marked in_queue or already assigned to another part,
into qi and assign hypernode v to Vi.

Note, if we push all adjacent hypernodes into the queue after the assignment of v, we use all
the optimizations described at the beginning of this section (in line 21 - 27). To mark the hy-
pernodes and hyperedges, we use k different bitsets, one for each qi. The running time of this
algorithm is O(k(|V |+ (maxe∈E |e|)|E|)), because we perform k different breadth-first-searches
and each has a running time of O(|V |+ (maxe∈E |e|)|E|).
We are also able to assign all hypernodes to a block Vi before initial partitioning. A BFS traver-
sal then only operates on those hypernodes of block Vi. Note that if we assign all hypernodes
to a part i 6= −1, we only perform k − 1 breath-first-searches.
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Algorithm 5: BFS-based partitioning algorithm
Data: Hypergraph H = (V,E, c, ω), ε, k
Result: k-way partitioning P = (V1, ..., Vk)

1 wmax ← d c(V )
k
e(1 + ε), P ← (∅, ..., ∅) // |P | = k

2 markHypernodes← {{0, .., 0}, .., {0, .., 0}} // |markHypernodes| = k, ∀i ∈ {1, .., k}|markHypernodes[i]| = |V |

3 markHyperedges← {{0, .., 0}, .., {0, .., 0}} // |markHyperedges| = k, ∀i ∈ {1, .., k}|markHyperedges[i]| = |E|

4 startNodes← calculateStartNodes(H, k)
5 Q← (q[k] = {startNodes[1]}, ..., q[k] = {startNodes[k]}) // Array of k different queues
6

7 while there are unassigned nodes do
8 for i = 1...k do
9 if Vi is enabled then

10 v ←⊥
11 if q[i] is not empty then

// searching for a valid hypernode v which is not assigned to a any part
12 do
13 v ← q[i].front(), q[i].pop()
14 while v is already assigned ∧ q[i] is not empty

15

16 if v = invalid_hypernode ∨ v is already assigned then
// We have to choose a new random unassigned hypernode, because the queue qi is

empty or no unassigned hypernode was contained into qi.
17 v ← search for a random unassigned hypernode
18

19 if v 6= invalid_hypernode then
20 if c(Vi ∪ {v}) ≤ wmax then
21 Vi ← Vi ∪ {v}
22 for e ∈ I(v) do
23 if !markHyperedges[i][e] then
24 for u ∈ e do
25 if !markHypernodes[i][u] then
26 q[i].push(u)
27 markHypernode[i][u]← 1

28 markHyperedge[i][e]← 1

29 else
30 if qi is empty then
31 disable Vi

32 else
33 disable Vi

34 return P = (V1, ..., Vk)

4.1.3 Greedy Hypergraph Growing

Greedy hypergraph growing partitioning (GHGP) is an extension of the hypergraph growing
algorithm and described in Section 3.3.3. The difference to HGP is that we choose the next
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vertex which should be assigned to a block Vi according to a gain function. In this Section
we present our direct k-way greedy hypergraph growing algorithms. We provide three different
implementations of GHGP and three different gain functions, which all provides their own delta
gain updates (see Sections 3.3.3 and 3.4.3). If we combine all variants we have nine different
greedy hypergraph growing algorithms.

Gain functions

The first gain function is the classical FM variant and the other two functions are the Max-Pin
and Max-Net variants used by PaToH [5]. A gain function is mapping g : V × P × P → R.
This mapping assigns each move of a hypernode v ∈ V from block Vfrom ∈ P to Vto ∈ P a gain
value. To store gain values we use k different prority queues PQ = {pq1, ..., pqk}. If we insert
a hypernode-gain pair (v, g) into priority queue pqi, it means that the move of hypernode v to
part Vi has gain g.

FM gain function

The gain of a hypernode v is the decrease of the hyperedge cut, if we move it from its current
block Vi to Vj with i 6= j. If the hyperedge cut e.g. is 100 and we move a hypernode to another
part, which results in a new cut of 97, the FM gain is +3.
As mentioned at the end of Section 4.1.2, we are able to assign all hypernodes to a block
Vi before initial partitioning and use the vertices from that block to grow a partition. If we
have a look at an unpartitioned hypergraph H, all hypernodes have default part −1. We call
all hypernodes unassigned. This leads to the fact that the connectivity of all hyperedges e is
λ(e) = 0 in the beginning. If we assign all hypernodes to an arbitrary block Vi, the connectivity
of all hyperedges e changes to λ(e) = 1. Figure 12 illustrates two different behaviors of the FM
gain function in the same situation, if we use the vertices from block V2 to grow a partition P
(left figure) and if all hypernodes are unassigned before initial partitioning (right figure). In
the left situation the connectivity of the hyperedges e1, e2 and e3 is λ(e1) = λ(e2) = 2 and
λ(e3) = 1. Moving v3 from partition V2 to V1 removes e1 and e2 from the cut, but makes e3 a
cut edge ⇒ g(v, V2, V1) = 1. If we look at the same situation in the right figure, hyperedge e1,
e2 and e3 has connectivity λ(e1) = λ(e2) = 1 and λ(e3) = 0. Moving v3 from −1 to V1 would
only change the connectivity of e3 to λ(e3) = 1. No hyperedge becomes a cut edge and no net
is removed from the cut ⇒ g(v3, V2, V1) = 0. If we did not assign all hypernodes to a block
before initial partitioning, we can only increase the connectivity of a hyperedge during initial
partitioning ⇒ ∀v ∈ V : ∀i, j ∈ {1, ..., k} : g(v, Vi, Vj) ≤ 0. To remove a net from the cut, we
have to decrease the connectivity of a hyperedge. Keep in mind the two different behaviors of
the FM gain function.
The calculation of the FM gain of a hypernode v, which should be moved from his current part
Vfrom to Vto is list in Algorithm 6. To calculate the decrease in the cut we have to look at each
net e incident to v and either decide if the move removes hyperedge e from the cut or makes it
a cut net. A net e becomes a cut hyperedge, if the connectivity is λ(e) = 1 and there are no
pins in the destination block Vto of the move. Note, if we move an unassigned hypernode, it can
happen that Λ(e) = {Vto} and this move would not increase the connectivity of e. Therefore we
have to check, if Vto ∩ e = ∅. Only in this case the connectivity of a hyperedge e increases and
net e becomes a cut hyperedge after the move. If the connectivity of net e is not λ(e) = 1, we
have to check if the move removes hyperedge e from the cut. If we did not assign all hypernodes
before initial partitioning to an arbitrary block, we can never decrease the cut with a move,
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Figure 12: Main problem of FM gain function during initial partitioning. Left we assign all
hypernodes to block V2 before initial partitioning and in the right all hypernodes
are left unassigned.

because all moves from source part −1 never decrease the connectivity of a hyperedge. In this
case we skip the resulting check for a cut decrease. The precondition for a cut decrease is that
the connectivity of hyperedge e is λ(e) = 2. If part Vfrom only contains hypernode v and Vto
contains all remaining pins of hyperedge e, the move would decrease the connectivity of e and
remove it from cut. The gain for moving a hypernode v can be calculated in O(|I(v)|), because
our hypergraph datastructures provides constant time operations for all necessary operations.
After a move of a hypernode v we have to update the gain values of all neighbors u ∈ Γ(v).
Therefore we implement delta gain updates as described in Section 3.4.3. If we move only
unassigned hypernodes, there are two special cases, which are illustrated in Figure 13. If all
hypernodes of a hyperedge are unassigned, all moves to an arbitrary block are zero gain moves.
If we assign the first hypernode v at this net e to part Vi, we have to decrease the gain of
all moves of a hypernode u ∈ e \ {v} to a part Vj with i 6= j by the value of ω(e). These
moves would increase the connectivity of e to 2 and make it a cut net. If net e has connectivity
λ(e) = 1 with Λ(e) = {Vi} and we move an unassigned hypernode v to Vj with i 6= j, e becomes
a cut net. Therefore we have to increase the gains of all calculated moves of a hypernode
u ∈ e \ Vi to a block 6= Vi by the value of ω(e). Before we move hypernode v to Vj, all moves
of unassigned hypernodes u ∈ e to a block 6= Vi would make e a cut net. After the move e is a
cut net and all moves of unassigned hypernode did not increase the cut anymore.

Algorithm 6: FM Gain Calculation
Data: Hypergraph H = (V,E, c, ω), Hypernode v, Partition Vfrom and Vto
Result: Gain g, for moving hypernode v from block Vfrom to Vto

1 for e ∈ I(v) do
2 if λ(e) = 1 ∧ Vto ∩ e = ∅ then
3 g ← g − ω(e)
4 else if λ(e) = 2 ∧ unassigned_part 6= −1 then
5 if |Vfrom ∩ e| = 1 ∧ |Vto ∩ e| = |e| − 1 then
6 g ← g + ω(e)

7 return g
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Figure 13: Two additional delta gain update cases, if we move only unassigned hypernodes.

Max-Pin gain function

The next gain function we implement is the Max-Pin gain function used by PaToH [5]. The
gain of a move of a hypernode v from part Vfrom to Vto is calculated by counting the number
of pins p ∈ Γ(v), which are already assigned to Vto. This gain function prefers moves of hyper-
nodes with a large number of pins adjacent to that vertex, which are assigned to Vto. Assume
we have a net e of size |e| = 20, |Vfrom ∩ e| = 3 and |Vto ∩ e| = 17. The FM gain function only
takes a move from Vfrom to Vto into account, if |Vfrom∩ e| = 1 and all remaining pins are in Vto.
In the example above all moves from Vfrom to Vto are zero gain moves, if we only consider net
e. The Max-Pin gain function signalizes a large number of pins in Vto for each move to that
part for a hypernode v ∈ Vfrom ⇒ ∀v ∈ Vfrom : g(v, Vfrom, Vto) = 17. With this function we
are working towards to remove e from the cut. An example of that variant is shown in figure 14.
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Figure 14: Example of the Max-Pin gain function (left figure) and Max-Net gain function (right
figure).

To improve the running time of this variant we also provide delta gain updates. If we move
a hypernode v from Vfrom to Vto, all calculated gains for moving hypernodes u ∈ Γ(v) to part
Vfrom are decremented and to part Vto are incremented. Before moving hypernode v, we count
it for each calculated gain of moving a hypernode u ∈ Γ(v) to block Vfrom. After we move
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hypernode v to Vto the gains of all moves of hypernodes u ∈ Γ(v) ∩ Vfrom decrease, because v
is part of Vto now. Otherwise the gains of moves of hypernodes u ∈ Γ(v) to Vto increase. The
pseudocode of Max-Pin delta gain updates is listed in algorithm 7.

Algorithm 7: Max-Pin delta gain update
Data: (Hyper)graph H = (V,E, c, ω), k Priority-Queues Q = {pq1, ..., pqk}, Hypernode v,

Partition Vfrom and Vto
1 for u ∈ Γ(v) do
2 if u ∈ pqto then
3 pqto.u← pqto.u+ 1
4 if u ∈ pqfrom then
5 pqfrom.u← pqfrom.u− 1

Max-Net gain function

The last gain function we introduce is the Max-Net gain function [5]. The gain of a move of
a hypernode v from block Vfrom to Vto is defined as the number of hyperedges e ∈ I(v) where
Vto ∈ Λ(e). To calculate the gain, we iterate over all nets e incident to hypernode v and check
if |e ∩ Vto| ≥ 1. We increment a counter for every edge, where the condition is true and return
this counter as our gain value. The intentioned idea is that we try to remove potentially as
many nets from the cut as possible. The next example outline one disadvantage of this function.
Assume a situation, where we have a net e with ∀e′ ∈ E\{e} : e∩e′ = ∅. Net e has connectivity
λ(e) = 2 and only one pin p in block Vi. Moving p to the other part Vj ∈ Λ(e) \ {Vi} would
remove e from the cut. The Max-Net gain is g(p, Vi, Vj) = 1, because p is only incident to e. But
1 is a very low gain for this function, because the Max-Net gain is for all moves of hypernodes
greater than zero. Therefore the move of p would potentially not perform, although it would
remove e from the cut.
Algorithm 8: Max-Net delta gain update
Data: (Hyper)graph H = (V,E, c, ω), k Priority-Queues Q = {pq1, ..., pqk}, Hypernode v,

Partition Vfrom and Vto
1 for e ∈ I(v) do
2 if |e ∩ Vfrom| = 0 ∨ |e ∩ Vto| = 1 then
3 for u ∈ e do
4 if |e ∩ Vfrom| = 0 ∧ u ∈ pqfrom then
5 pqfrom.u← pqfrom.u− 1
6 if |e ∩ Vto| = 1 ∧ u ∈ pqto then
7 pqto.u← pqto.u+ 1

We also provide delta gain updates for this variant. The gain of a hypernode changes, if the
connectivity of an incident net changes. There are two cases a move of a hypernode v from
Vfrom to Vto can modify the connectivity of a hyperedge e ∈ I(v). If v is the only remaining
hypernode in e∩Vfrom, the move decreases the connectivity of e. In this case, we decrement all
calculated gain values of a hypernode u ∈ e to part Vfrom. If the hypernode v is the first vertex
in Vto after the move, we have to increment the calculated gains of all hypernodes u ∈ e to part
Vto by the value of one. Note, if we move only unassigned hypernodes, we can never decrease
the connectivity of a net and the gain values are monotonically increasing. The pseudocode for
Max-Net delta gain updates is given in Algorithm 8.
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Implementaions

We have developed three direct k-Way partitioning algorithms for greedy hypergraph growing
partitiong (GHGP). In this section we present all three methods and outline their differences
and similarities.
Each variant uses k different priority queues to store the gain for moving a hypernode to an
other block. If a hypernode v is inserted into a priority queue pq[i] with gain gv it means
that moving hypernode v from its current part to Vi has gain gv. The priority queue provides
logarithmic time operations for inserting, removing and updating elements. For every greedy
hypergraph growing partitioner we need to choose k start nodes S = {s1, ..., sk}, one for each
block. We search again for pseudo peripheral hypernodes as described in Section 4.1.2 and
3.3.2. We insert start node si with its corresponding gain gsi

into pqi. Start hypernode si is
used to grow block Vi.

Sequential Greedy Hypergraph Growing

Algorithm 9: Sequential Greedy Hypergraph Growing Algorithm
Data: Hypergraph H = (V,E, c, ω), ε, k
Result: k-way partition P = (V1, ..., Vk)

1 P ← (∅, ..., ∅) // P.size() = k
2 PQ← (pq1, ..., pqk) // |PQ| = k
3 S ← calculateStartNodes(H, k)
4 for i from 1 until k do
5 gsi

← calculateGain(H, partOf(si), Vi)
6 pqi.insert((si, gsi

))
7 ε′ ← 0 // Relaxing the input ε to avoid empty partitions
8 wmax ← d c(V )

k
e(1 + ε′)

9 for i = 1...k do
10 v ← pqi.max()
11 while c(Vi ∪ v) ≤ wmax do
12 Vi ← Vi ∪ {v}
13 update all gains in all pqi of all hypernodes u ∈ Γ(v) and insert all u /∈ pqi into pqi

with their corresponding gain // see algorithm 10
14 if pqi is empty then

// If pqi is empty and we haven’t reached the partition bound wmax we have to
choose a new start node.

15 u← search for a random unassigned hypernode
16 pqi.insert((u, calculateGain(H, partOf(u), Vi)))
17 v ← pqi.max()

18 wmax ← d c(V )
k
e(1 + ε)

19 assign all remaining unassigned hypernodes
20

21 return P = (V1, ..., Vk)

The first initial partitioner is called sequential GHG partitioner, because we grow one block
after the other. Algorithm 9 shows the pseudocode of this variant. First, like in all GHGP
variants, we initialize the k priority queues and calculate k start nodes. At the beginning we set
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our initial imbalance ε to ε′ := 0 and use it for the maximum allowed part weight bound wmax.
This avoids empty blocks at end of the partitioning process. This case occurs, if the initial
imbalance ε is large and the maximum weight wmax := d c(V )

k
e(1 + ε) is assigned to each part. If

we finally want to grow the last blocks, it is possible that the weight of all remaining unassigned
hypernodes is smaller than wmax and if this case occurs at a block Vk−i for an i ∈ {0, ..., k− 1},
the following k − i + 1 parts are empty. In the main partitioning process we iterate over all
parts and grow block Vi until we found a hypernode v where c(Vi ∪ {v}) > wmax. We choose
the next hypernode v, which should be assigned to part Vi, according to the maximum gain in
pqi. If the vertex v can be assigned to Vi, we remove it from all priority queues, assign it to
Vi and perform the corresponding delta gain updates for all neighbours of v that are already
into a priority queue. After this we have to insert all u ∈ Γ(v), which are not already inserted
into pqi with their corresponding gain for moving u to Vi. The implementation of the insertion
of the new gain values and update of all calculated gains after a move is shown in algorithm
10. Note that in this GHGP variant delta gain updates are very fast, because only the active
pqi of block Vi contains most hypernodes. All pqj with j > i contains only the start node for
part Vj. All pql with l < i only contain the hypernodes which could not be assigned to part Vl,
because the resulting weight of this part would become greater than wmax. If the current pqi is
empty after delta gain updates and insertion of all unassigned hypernodes u ∈ Γ(v) ∧ u /∈ pqi,
we have no further hypernodes to assign to part Vi. It is possible that Vi has a weight less
than our partition weight bound wmax. In this case we randomly choose a new unassigned
start node and continue with the assignment process. Growing the blocks sequentially can
leave some hypernodes unassigned at the end of the partitioning process, because we redefine
our ε to ε′ = 0. Therefore the sum of all part weights ∑V ′∈P c(V ′) is less or equal than c(V )
after we grow the last block. At the end we use again the upper bound wmax := d c(V )

k
e(1 + ε)

with initial imbalance ε and assign the remaining hypernodes in all priority queues pqi to their
corresponding part Vi. To assign all remaining hypernodes, we choose the hypernode from
a priority queue, where the gain for moving it to a part Vi is maximized. If there are still
unassigned hypernodes left after assigning all remaining hypernodes v ∈ pqi with i ∈ {1, ..., k},
we visit them in random order and assign hypernode v to part Vi, where the gain is maximized.
This behaviour is summarized in line 25 and 26.
Algorithm 10: Insertion, Deletion and Update of the new gain values after a move
Data: (Hyper)graph H = (V,E, c, ω), Priority-Queues Q = {pq1, ..., pqk}, Hypernode v, Block

Vfrom and Vto
1 delete v in all pqi
2 deltaGainUpdate(H,PQ, v, Vfrom, Vto)
3 for e ∈ I(v) do
4 if e is not marked in_queue then
5 for u ∈ e do
6 if u /∈ pqto ∧ u is unassigned then
7 gu ← calculateGain(H,Vfrom, Vto)
8 pqto.insert((u, gu))

9 mark e as in_queue

In this variant, we use a separate assignment procedure to assign the remaining unassigned
hypernodes after we grow all blocks, instead of repeating the sequential assignment process.
There are two reason to do this in algorithm 9. First, if we repeat the procedure with the
upper bound the algorithm tends to assign all remaining hypernodes to the first parts. To
distribute the remaining unassigned hypernodes more evenly, we use the seperate assignment
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procedure. Repeating the sequential assignment process would increase the cost of delta gain
updates, because all priority queues are filled with hypernodes from the first iteration. If we
further want to have the advantage of fast delta gain updates, we have to use this additional
assignment process.

Global Greedy Hypergraph Growing

Algorithm 11: Global Greedy Hypergraph Growing Algorithm
Data: Hypergraph H = (V,E, c, ω), ε, k
Result: k-way partitioning P = (V1, ..., Vk)

1 P ← (∅, ..., ∅) // P.size() = k
2 PQ← (pq1, ..., pqk) // Array of binary max-heaps of size k
3 S ← calculateStartNodes(H, k)
4 for i from 1 until k do
5 gsi

← calculateGain(H, partOf(si), Vi)
6 pqi.insert((si, gsi

))
7

8 ε′ ← 0 // Relaxing the input ε to avoid empty partitions
9 wmax ← d c(V )

k
e(1 + ε′)

10 while there are unassigned nodes do
11 for i from 1 to k do
12 if pqi is empty then
13 u← search for a randomly chosen unassigned hypernode
14 pqi.insert((u, calculateGain(H, partOf(u), Vi)))

15 i← argmaxi∈{1,...,k} pqi.maxGain()
16 v ← pqi.max()
17

18 if every Vi is disabled then
// Every part is disabled and we use the input ε to assign all remaining unassigned

hypernodes.
19 wmax ← d c(V )

k
e(1 + ε)

20 enable every partition Vi again
21 else if Vi is enabled ∧ c(Vi ∪ v) ≤ wmax then
22 Vi ← Vi ∪ {v}
23 update all gains in all pqi of all hypernodes u ∈ Γ(v) and insert all u /∈ pqi into pqi

with their corresponding gain // see algorithm 10
24 else
25 disable Vi

26 return P = (V1, ..., Vk)

The next GHGP implementation is the global algorithm. This variant chooses the move with
the maximum gain among all possible moves from all priority queues. This move is called the
global maximum gain move. To find this move, we search in all k priority queues for the hy-
pernode with the highest gain and perform this move. The pseudocode of this variant is shown
in algorithm 11. The initialzation step between line 1 and 7 is the same as in algorithm 9. At
the beginnning we redefine our input ε to ε′ := 0 in line 9, because we want to avoid empty
parts. To find the global maximum gain move in the assigment process, we first insert into each
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empty priority queue the gain of a randomly choosen unassigned hypernode. Afterwards we
determine the highest gain among all k priority queues by a simple array scan (line 19). Ties
are broken randomly to guarantee evenly growing partitions. We are able to enable or disable
a block Vi for receiving further hypernodes. We have to take care that we only consider moves
to enabled parts in line 19. All parts are initial enabled. If an assignment of a hypernode to an
enabled block failed, because the resulting weight c(Vi ∪ {v}) is greater than wmax, we disable
this block. If all parts are disabled, we repeat the assignment process with the initial imbalance
ε for our partition weight bound wmax := d c(V )

k
e(1 + ε) and enable all blocks again. If we find

a valid move to a block Vi, we perform it. Afterwards we insert all new gain values of adjacent
unassigned hypernodes into pqi and perform delta gain updates (line 25 - 28 and algorithm 10).
We repeat the assignment process until no unassigned hypernodes are left.

Round-Robin Greedy Hypergraph Growing

Algorithm 12: Round-Robin Greedy Hypergraph Growing Algorithm
Data: (Hyper)graph H = (V,E, c, ω), ε, k
Result: k-way partitioning P = (V1, ..., Vk)

1 P ← (∅, ..., ∅) // P.size() = k
2 PQ← (pq1, ..., pqk) // Array of binary max-heaps of size k
3 S ← calculateStartNodes(H, k)
4 for i from 1 until k do
5 gsi

← calculateGain(H, partOf(si), Vi)
6 pqi.insert((si, gsi

))
7

8 wmax ← d c(V )
k
e(1 + ε)

9 while there are unassigned nodes do
10 for i from 1 to k do
11 if Vi is enabled then
12 if pqi is empty then
13 u← search for a random unassigned hypernode
14 pqi.insert((u, calculateGain(H, partOf(u), Vi)))
15 v ← pqi.max()
16 if c(Vi ∪ v) ≤ wmax then
17 Vi ← Vi ∪ {v}
18 update all gains in all pqi of all hypernodes u ∈ Γ(v) and insert all u /∈ pqi into

pqi with their corresponding gain // see algorithm 10
19 else
20 disable Vi

21 return P = (V1, ..., Vk)

The last implementation variant is called round-robin greedy hypergraph growing partitioner.
This variant is similar to the BFS partitioner implementation in Section 4.1.2. In each round
of the assignment process, each block Vi can choose one additional hypernode with the highest
gain value in pqi. The initialization step in line 1 until 7 is again similar to all other GHGP
variants. The difference is at the beginning of the assignment process. We do not need to
redefine our initial imbalance ε, because all parts grow simultaneously. In the assignment
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phase we iterate over all parts and choose the hypernode v with the highest gain value in pqi. If
the resulting weight c(Vi ∪ {v}) is smaller or equal than wmax, we assign it to Vi, otherwise we
disable block Vi. In one iteration over all blocks only enabled parts are considered for receiving
further hypernodes. This step is repeated until all hypernodes are assigned.

4.1.4 Label Propagation

The Label Propagation-based initial partitioning algorithm is inspired by the ideas of Henne [12].
The label propagation algorithm and the main idea of label propagation initial partitioning is
described in section 3.3.4. In this Section we describe our implementation of a direct k-way
label propagation initial partitioner.
Each hypernode has a label. A label represents the current block, which a hypernode is assigned
to. An empty label represents an unassigned hypernode. Changing a label of a hypernode v
from i to j means moving v from its current block Vi to Vj. As score function we use the FM
gain function. If we choose a new label for a hypernode v, we choose a label of an adjacent
hypernode u ∈ Γ(v) where gain for moving v to the corresponding label/block is maximized.
Algorithm 13: Label Propagation-based Partitioning Algorithm
Data: (Hyper)graph H = (V,E, c, ω), ε, k
Result: k-way partitioning P = (V1, ..., Vk)

1 P ← (∅, ..., ∅) // P.size() = k
2 S ← calculateStartNodes(H, k)
3 for i from 1 until k do
4 Bi ← random subset B ⊆ Γ(si) ∧ 1 ≤ |B| ≤ 5
5 Vi ← Vi ∪Bi

6

7 wmax ← d c(V )
k
e(1 + ε)

8 cur_iterations← 0
9 while not converged ∧ cur_iterations ≤ imax do

10 for v ∈ V in random order do
11 Vfrom ← partOf(v)
12 Vto ← compute max gain move to a incident label/partition to
13 if Vto 6= Vfrom ∧ c(Vto ∪ {v}) ≤ wmax then
14 Vto ← Vto ∪ {v}
15 converged← false

16 if converged ∧ there are unassigned hypernodes then
// If the algorithm is converged, but there are still unassigned nodes the hypergraph

consist of more than one connected components and we have to assgin a small
amount of unassigned hypernodes to continue.

17 B ← random subset B ⊆ V with 1 ≤ |B| ≤ 5 ∧ ∀v ∈ B : v is unassigned
18 for v ∈ B do
19 Vto ← argminV ∈P c(V )
20 Vto ← Vto ∪ {v}
21 converged← false

22

23 return P = (V1, ..., Vk)

Algorithm 13 shows the pseudocode of our label propagation initial partitioner. At the begin-
ning we choose k pseudo peripherial start hypernodes (see section 3.3.2). In line 3 until 6 we
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choose five different hypernodes around each start node si with a breath-first-search and assign
them to part Vi. This procedure avoids empty parts at end of the partitioning process. Assume
we assign only the start node si to block Vi. In the first round of label propagation a start node
si decides to change its label. No other hypernode has label i. Therefore no hypernode would
change its label to part i anymore, because only adjacent parts of a hypernode v are considered
for the score calculation. With the assignment of five additional hypernodes around each start
vertex, the probability of empty parts is minimized.
In the main loop we iterate over all hypernodes in random order until the algorithm has con-
verged or we reach a predefined maximum number of iterations. For each hypernode v we have
to calculate all scores to labels/blocks of adjacent hypernodes u ∈ Γ(v). The new label of v
is the label, where the score is maximized. If this label/block Vto differs from its current and
the resulting weight of the part Vto ∪ {v} is smaller than our partition weight bound wmax,
we change the label/block of v to Vto. If we iterate over all hypernodes and no hypernode
changed its label, we have to check if there are still unassigned hypernodes. Assume we have a
hypergraph H = (V1 ∪ V2, E, c, ω) where ∀A ⊆ V1 : ∀B ⊆ V2 : A ∪ B /∈ E and V1 ∩ V2 = ∅. H
consists of two connected components. If the start node set S is a subset of V1, no hypernode
v ∈ V2 has an adjacent label and therefore none of them are able to get assigned to a part
during the label propagation algorithm. This is caused by the fact that only labels of adjacent
hypernodes are considered for score calculation. If this situation occurs, we choose a random
set B of unassigned hypernodes with a size smaller or equal to five. We assign each hypernode
of this set to a part with minimum weight. Then we repeat the process until the algorithm has
converged and no unassigned hypernodes are left.
To calculate the new label for a hypernode v, we need to determine an adjacent label/block
where the FM score is maximized. Since we call this method in each round of label propagation
|V | times, we have to implement it very efficient. Algorithm 14, shows the implementation of
this calculation. The pseudocode is structured into two sections. First, we calculate the FM
gain for moving hypernode v to all adjacent parts and then we search for the move with maxi-
mum gain. To store the FM gain to all adjacent blocks we use an array of size k, which is called
tmp_gains. We iterate over all hyperedges e ∈ I(v) and check if the net is a internal or cut net.
If the hyperedge e is an internal net and Λ(e) = {Vi} with i ∈ {1, ..., k}, moving a hypernode v
to a block Vj with j 6= i would increase the cut, except if v is the only assigned hypernode in
net e. In this case the connectivity set Λ(e) = {Vi} changes only to Λ(e) = {Vj}. If e becomes
a cut net, we add ω(e) to tmp_gains[i] and to internal_weight. In internal_weight we sum
the weight of all internal nets e ∈ I(v). We substract internal_weight from all tmp_gains[i]
with i ∈ {1, ..., k} at the end of the gain calculation. By adding ω(e) to tmp_gains[i] we ensure
that only the move to block Vi is a zero gain move. All other moves to an other part (6= Vi)
makes e a cut net. We can handle the internal net case then in O(1) instead of O(k). If the
net e is already a cut net, we can only reduce the cut with a move of a hypernode v, if λ(e) = 2
and e ∩ Vfrom = {v}. If this condition is true, we add the edge weight ω(e) to tmp_gains[to].
In the next phase we have to search for the maximum score in tmp_gains, which represents
the new label/block of hypernode v. If hypernode v is an unassigned hypernode and there
exists a neighbour u ∈ Γ(v) with a non empty label, we assign it to the label where the score is
maximized (ensure by setting gmax to −∞ in line 21). Otherwise, we only want to move hyper-
node v, if the move decrease the cut (ensure by setting gmax to zero in line 19). A gain value
tmp_gains[i] is only considered, if the corresponding part/label Vi is adjacent to hypernode
v (line 24). Now we can iterate over all gains temporally calculated and subtract the weight
of all internal hyperedges before comparing it with the current maximum gain. If the move of
hypernode v to a part Vi produces a feasible weight of block Vi and if the gain of this move is
greater as the current maximum gain, we save it as our new maximum gain and continue.
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The first phase of this algorithm 14 has a worst case running time of O(|I(v)|k), because in the
worst case every net e ∈ I(v) has connectivity λ(e) = k. The next phase is a simple array scan
with constant time operations, so we have a running time of O(k). The worst case running
time of the maximum gain move calculation is O(|I(v)|k).
Algorithm 14: Computation of Max Gain Move to Incident Label
Data: (Hyper)graph H = (V,E, c, ω), Hypernode v
Result: Max Gain Move (Vmax, gmax)

1 tmp_gains← (0, ..., 0) // Array of size k
2 internal_weight← 0
3 Vfrom ← partOf(v)
4

5 for e ∈ I(v) do
6 if λ(e) = 1 ∧ |e ∩ Vfrom| > 1 then
7 Vi ← corresponding label/block in net e
8 internal_weight← internal_weight+ ω(e)
9 tmp_gains[i]← tmp_gains[i] + ω(e)

10 else
11 for Vto ∈ Λ(e) do
12 if λ(e) = 2 ∧ |e ∩ Vfrom| = 1 ∧ Vfrom 6= Vto then
13 tmp_gains[to]← tmp_gains[to] + ω(e)

14

15 (Vmax, gmax)← (Vfrom, 0)
16 if from = unassigned_part then
17 (Vmax, gmax)← (Vfrom,−∞)
18 for i from 1 until k do
19 if ∃e ∈ I(v) : Vi ∈ Λ(e) then
20 tmp_gains[i]← tmp_gains[i]− internal_weight
21 if c(Vi ∪ {v}) ≤ wmax ∧ tmp_gainsi > gmax then
22 (Vmax, gmax)← (Vi, tmp_gainsi)

23 return (Vmax, gmax)

4.1.5 Additional Implementation Details

We implement two heuristics to improve our direct k-way partitioners. Every partitioner is
able to perform a rollback operation to the best cut seen during initial partitioning. After each
initial partitioning we can use a local search algorithm to improve the quality.
If we assign all hypernodes to a block Vi before initial partitioning, we can store every move
of a hypernode from a part Vi to Vj and calculate the cut after each move. A partition P
is feasible, if it fulfils the balance constraints and all hypernodes are assigned. If we assign
only unassigned hypernodes during initial partitioning, the partition is feasible after the last
hypernode is assigned. Therefore we cannot rollback to best cut, because the last partition
is the only feasible solution. Otherwise, it is possible that there exists more than one valid
partition P , which are produced during initial partitioning. In this case we can rollback at the
end of the initial partitioning to a partition Pbest with minimum cut.
As additional improvement of our initial partitions we use a k-Way FM local search algorithm,
which is part of the n-level hypergraph partitioning framework KaHyPar.
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4.2 Recursive Bisection

Alternative to direct k-Way partitioning, a k-partition can be obtained with the recursive
bisection method. Recursive bisection is a method which takes a hypergraph H and bisect
it in two parts. The resulting blocks are further bisected recursively until we have k parts.
For a detailed description of this method we refer the reader to Section 3.3.6. If we bisect a
hypergraph into two near equal weighted parts, k is restricted to be a power of 2. To partition
a hypergraph into k parts with recursive bisection, where k 6= 2n, the weight of the resulting
parts V1 and V2 of each bisection has to be less or equal than two different weight bounds w1
and w2 with c(V1) ≤ w1 and c(V2) ≤ w2. This is caused by the fact that we want to further
bisect the first resulting part in bk2c and the second in dk2e parts. For a bisection, where we want
to further divide a subhypergraph H ′ = (V ′, E ′, c, ω) into k′ ≤ k parts, we allow a maximum
weight of w1 = c(V ′)

k′
bk′2 c(1 + ε′) for the first block and w2 = c(V ′)

k′
dk′2 e(1 + ε′) for the second

one. ε′ is adapted at each bisection, such that it allows maximum imbalance while still being
small enough to ensure the final imbalance with ε. Section 4.2.1 introduces the main problem
with the usage of the initial imbalance ε on each bisection and the description of our adaptive
epsilon ε′. If we want to further divide the two parts V1 and V2 of each bisection, we have to
extract the subhypergraphs H1 = (V1, E1, c, ω) and H2 = (V2, E2, c, ω). The hyperedge sets E1
and E2 contains only internal nets of V1 and V2 (see Section 3.3.6). The implementation details
of our recursive bisection partitioner is described in Section 4.2.2.
We decide to execute recursive bisection in reverse pre-order. We extract the second part and
furhter bisect it before the first part, because there exists a small problem with the execution in
pre-order. Assume we execute recursive bisection in pre-order and want to divide a hypergraph
H into k = 4 parts. First we bisect the original hypergraph H into V1 and V2. Afterwards we
extract block V1 as subhypergraph H ′. The bisection of H ′ produces the final blocks V1 and
V2 on the original hypergraph. We assign the hypernodes of H ′ in H to their corresponding
block and go back to the original hypergraph H, where we have to extract partition V2. We
have bisected hypergraph H at the beginning into V1 and V2. Further we have assigned the
final block V2 on the original hypergraph H as well, which results from the bisection of the
extracted subhypergraph H ′ of part V1. If we extract part V2 on the original hypergraph H,
we extract the final part V2 and V2 of the first bisection. The result is that partition V2 is the
end of recursive bisection empty. Figure 15 illustrates this problem.

4.2.1 Adaptive Epsilon

At this section we work out a formulation for an ε′, which can be adapted before each bisection,
which leads to a greater exploration of the solution space during recursive bisection. Further-
more it is guaranteed that we fulfil the imbalance with ε at the end.
Using the initial imbalance parameter ε in each bisection step can lead to an imbalanced parti-
tion at the end of recursive bisection. Assume block V1 has the maximum possible part weight
c(V1) ≈ c(V )

2 (1 + ε) which is allowed at the first bisection step. The same case occurs at the
next bisection with the subhypergraph of part V1 ⇒ c(V ′1) ≈ c(V )

4 (1 + ε)2. If we want to divide
a hypergraph into k parts with recursive bisection and the described situation above occurs,
the weight of the final block V1 is c(V1) ≈ c(V )

k
(1 + ε)log2(k), if k = 2n with n ∈ N>0. This is the

worst case part weight of a block. We can avoid this case, if we restrict our initial imbalance
ε. A solution is to choose an ε′ ≤ ε for each bisection, which ensure that every part is less or
equal than the maximum allowed block weight at the end of recursive bisection. We can choose
a fix value for ε′ or we can calculate it according to the initial imbalance ε and k.
Our imbalance is defined in definition 2.4. Every part V ′ ∈ P should have a weight less than
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Figure 15: Problem with the pre-order traversal of recursive bisection. The number on the
arrow denotes the execution order. On the right side you see the final partition, if
we execute recursive bisection with pre-order traversal.

or equal to Lmax := d c(V )
k
e(1 + ε) + maxv∈V c(v) for a given input ε. To define our new ε′ we

use another definition, which is L′max := c(V )
k

(1 + ε). This definition simplifies the calculation
and if we can ensure that the resulting weights of each part at end of recursive bisection fulfils
the imbalance with L′max, we can fulfil the imbalance with Lmax, since L′max ≤ Lmax. First, we
work out a formulation for the adaptive ε′, if k = 2n and at end of this section we show our
observations for the general case, if k 6= 2n.
Assume k = 2n with n ∈ N>0. The final block V1 is created after log2(k) bisections, if we
recursively further divide the first block before the second. Assume that on each bisection the
first block has the maximum possible part weight. The final weight of block V1 after the last
bisection is

c(V1) := c(V )
2log2(k) (1 + ε)log2(k) = c(V )

k
(1 + ε)log2(k) (4.1)

This is the heaviest part weight of a block which can occur at the end of recursive bisection.
We can replace V1 with an arbitrary block V ′ ∈ P , because the heaviest possible weight for it
is the same. By replacing ε with ε′ in c(V ′) we ensure that the weight in equation 4.1 is less or
equal than L′max.

c(V ′) = c(V )
k

(1 + ε′)log2(k) ≤ c(V )
k

(1 + ε) = L′max

⇒ ε′ ≤ (1 + ε)log2(k)−1 − 1
(4.2)

We have a restriction ε′ for the initial imbalance ε, which ensures that all blocks V ′ ∈ P
have a weight less than or equal to Lmax at the end of recursive bisection by using ε′ for each
bisection. If we use on each bisection the same ε′, we restrict the solution space unnecessary.
The restricted ε′ was constructed based on a worst case scenario. If a bisection produces two
blocks with equal weight, we can choose ε′ much greater for the following bisections. It may be
desirable to adapt ε′ before each bisection. By using the adaptive epsilon ε′, which we calculate
before each bisection again, we can ensure that the resulting weights of all parts after the end
of recursive bisection is less or equal than L′max and we can explore a greater solution space as
with the usage of a fix ε′ for each bisection. Since L′max ≤ Lmax, we fulfil our original imbalance
as well.
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4 Initial Partitioning

Assume we have a subhypergraph H ′ = (V ′, E ′, c, ω), which was created from bisections of the
original hypergraph H during the recursive bisection process. The task is to further divide H ′
in k′ = 2n′ parts with k′ ≤ k with recursive bisection. To calculate the adaptive epsilon ε′ for
the bisection of subhypergraph H ′, we have to calculate the heaviest possible block weight of a
part V ′′. The considerations for the weight of this part V ′′ ∈ P is the same as for equation 4.1
and the calculation of ε′ is equal to the calculation in inequality 4.2.

c(V ′′) = c(V ′)
k′

(1 + ε′)log2(k′) ≤ c(V )
k

(1 + ε) = L′max

⇒ ε′ ≤ (k
′ · c(V )
k · c(V ′)(1 + ε))log2(k′)−1 − 1

(4.3)

If we want to ensure that the resulting parts at the end of recursive bisection with k = 2n have
a weight less or equal than L′max, we have to set our ε′ to (1 + ε)log2(k)−1 − 1 for each bisection.
At the first bisection step the weight of the two resulting blocks should not exceed c(V )

2 (1 + ε′).
If we are on an arbitrary recursive bisection step and want to further bisect a subhypergraph
H ′ into k′ = 2n′ ≤ k parts, we have to set our ε′ to (k′·c(V )

k·c(V ′)(1 + ε))log2(k′)−1 − 1. The weight of
the resulting parts of the bisection of subhypergraph H ′ should also not exceed c(V ′)

2 (1 + ε′).
We have defined a adaptable restriction for the maximum allowed imbalance for each bisection,
if k = 2n with n ∈ N. The next step is to expand the definition of the adaptive epsilon for an
arbitrary k ∈ N.

Theorem 4.1. Given a hypergraphH = (V,E, c, ω), which should be divided into k parts with
recursive bisection. The resulting weights of each part of the final partition P = {V1, ..., Vk}
should not exceed L′max := c(V )

k
(1 + ε) for a given initial imbalance ε. If we want to further

divide a subhypergraph H ′ = (V ′, E ′, c, ω) into k′ ≤ k parts, which results from bisections of
the original hypergraph H, we can adapt ε′ before the bisection of H ′ to

ε′ ≤
(
k′ · c(V )
k · c(V ′)(1 + ε)

)dlog2(k′)e−1

− 1

The adaptive epsilon ε′ ensures that P is ε-balanced ⇒ ∀Vi ∈ {1, ..., k} : c(Vi) ≤ L′max ≤ Lmax.

Proof. We have shown Theorem 4.1 for a k = 2n with n ∈ N>0. Now we have to show it for an
arbitrary k ∈ N>0. If we want to divide a hypergraph H into k parts, we have to ensure that
the weight of the first block V1 does not exceed c(V )

k
bk2c(1 + ε′) and the second one V2 does not

exceed c(V )
k
dk2e(1 + ε′) at the first bisection, because we want to further divide V1 in bk2c blocks

and the second V2 in dk2e blocks. If we want to proof Theorem 4.1 for an arbitrary k ∈ N, we
have to show that each resulting block at the end of recursive bisection, if we use the adaptive
epsilon ε′ for each bisection, has a weight less than or equal to L′max. To proof this we have
to calculate the heaviest possible part weight of an block at the end of recursive bisection. Let
us consider an arbitrary path p = (k0 → k1 → ... → kdlog2(k)e) through all levels of recursive
bisection, which indicates in how many parts one of the two blocks of the bisection on level
i ∈ {0, ..., dlog2(k)e} should be further divided. Figure 16 illustrates this path p. We can more
precisely define path p as follows:

k0 = k

ki = max(bki−1

2 c, 1) ∨ ki = dki−1

2 e
(4.4)
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4.2 Recursive Bisection

This path means that we have to divide hypergraph H into k0 parts. One of the resulting parts
of the first bisection should be further divided into k1 parts. If we are on an arbitrary level i
(see Figure 16) and have to further divide a subhypergraph H ′, resulting from bisections along
our path p, in ki−1 parts, we have to ensure that the resulting weight of the corresponding
part, which we further want to divide in ki parts, does not exceed c(V ′)ki

ki−1
(1 + ε′). Because we

consider an arbitrary path of partition sizes through each level of recursive bisection we can
choose either bki−1

2 c or d
ki−1

2 e for the value of ki in equation 4.4. If we choose bki−1
2 c, we have

to ensure that ki cannot become zero, since it makes no sense to divide an subhypergraph H ′
into zero parts. We assume that each bisection produce the maximum possible weight for the
block we further want to divide along path p. Now we are able to calculate heaviest possible
part weight of the resulting block V ′.

c(V ′) =
c(V )

dlog2(k)e−1∏
i=0

ki+1

dlog2(k)e−1∏
i=0

ki

(1 + ε′)dlog2(k)e = c(V )kdlog2(k)e

k0
(1 + ε′)dlog2(k)e = c(V )

k
(1 + ε′)dlog2(k)e

(4.5)
The products in the fraction cancel each other off except k0 and kdlog2(k)e. Since we define
k0 = k and kdlog2(k)e = 1, we can replace them in equation 4.5. We have calculated the heaviest
possible weight of a block, which can occur, if we divide a hypergraph H into k ∈ N parts
with recursive bisection. To finish the proof, we have to make the same considerations as for
equation 4.3. Assume again we have a subhypergraph H ′ = (V ′, E ′, c, ω), which results from
bisections of the original hypergraph H, and should be further divided into k′ ≤ k parts with
k′ ∈ N. Let us consider again an arbitrary path p′ = (k0 → k1 → ... → kdlog2(k′)e) where we
define k0 = k′. We can calculate the heaviest possible part weight along that path p′ of the
resulting block V ′′ like in equation 4.5.

c(V ′′) =
c(V ′)

dlog2(k′)e−1∏
i=0

ki+1

dlog2(k′)e−1∏
i=0

ki

(1+ε′)dlog2(k′)e = c(V ′)kdlog2(k′)e

k0
(1+ε′)dlog2(k′)e = c(V ′)

k′
(1+ε′)dlog2(k′)e

(4.6)
We have only to estimate c(V ′′) with the estimation of ε′ of Theorem 4.1 in equation 4.6 to
finish the proof.

c(V ′′) = c(V ′)
k′

(1 + ε′)dlog2(k′)e ≤ c(V ′)
k′

(1 + (k
′ · c(V )
k · c(V ′)(1 + ε))dlog2(k′)e−1 − 1)dlog2(k′)e

= c(V )
k

(1 + ε) = L′max

(4.7)

4.2.2 Implementation

If we bisect a hypergraph H = (V,E, c, ω) into P = (V1, V2) and extract one of the resulting
parts Vi with i ∈ {1, 2} into a subhypergraph

H ′ = (Vi, E ′, c, ω)

E ′ = {e | e ∈ E : Λ(e) = {Vi}}
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H = (V,E, c, ω)
k = 7

7

3 4

1 2 2 2

1 1 1 11 1

V1

V2 V3 V4 V5 V6 V7

Worst case partition weights:

V1 =
c(V )·3·1

7·3 (1 + ε′)2 = c(V )
7 (1 + ε′)2

V2 =
c(V )·3·2·1

7·3·2 (1 + ε′)3 = c(V )
7 (1 + ε′)3

V3 =
c(V )·3·2·1

7·3·2 (1 + ε′)3 = c(V )
7 (1 + ε′)3

V4 =
c(V )·4·2·1

7·4·2 (1 + ε′)3 = c(V )
7 (1 + ε′)3

V5 =
c(V )·4·2·1

7·4·2 (1 + ε′)3 = c(V )
7 (1 + ε′)3

V6 =
c(V )·4·2·1

7·4·2 (1 + ε′)3 = c(V )
7 (1 + ε′)3

V7 =
c(V )·4·2·1

7·4·2 (1 + ε′)3 = c(V )
7 (1 + ε′)3

p = (7→ 3→ 2→ 1)

Level 1

Level 2

Level 3

Level 4

Figure 16: Example of a recursive bisection tree. The red path shows an example of a path
of partition sizes through each level of recursive bisection. On the right side an
example of the possible worst case parts weights is shown of each block.

we need to define a mapping f : Vi → V , which maps the hypernodes from H ′ to H. This
mapping is necessary, because our extraction method creates a new hypergraph and renumber
the hypernodes.

Definition 4.1. Assume we have to divide a hypergraph H = (V,E, c, ω) with recursive
bisection into k parts. Given an extraction chain of subhypergraphs U = {H0, H1, ..., Hl},
where H0 = H and Hi with 1 ≤ i ≤ l results from an extracted part of Hi−1. For all extraction
chains U exists a mapping chain M = {g0, ..., gl−1}, where gj : Vj+1 → Vj with 0 ≤ j ≤ l − 1.
We can map a hypernode from an subhypergraph Hi ∈ U with 1 ≤ i ≤ l to the original
hypergraph H with the following function f : V × U → V

f(v,Hi) =
f(gi−1(v), Hi−1) i > 0
v i = 0

(4.8)

The pesudocode of our recursive bisection implementation is given in algorithm 15. We imple-
mented recursive bisection with a stack. The extraction and mapping chain from defintion 4.1
are stored in stacks U and M . The stack O stores on top the range (k1, k2) of parts, which
the subhypergraph H ′ on top of U should be further divided. This means that H ′ should be
further divided into k′ = k2−k1 parts. The blocks, which are produced with recursive bisection
starting from H ′, represents blocks k1 until k2 on the original hypergraph H.
During recursive bisection each hypergraph on the stack is associated with one of three possible
states:

• unpartitioned (line 20-26): The hypergraph H is unpartitioned.
• partitionTwoExtracted (line 26-31): The hypergraph H is bisected and V2 is already

extracted.
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4.2 Recursive Bisection

• finished (line 18-19): The hypergraph H is finally divided in the range of parts (k1, k2)
on top of O, if H is on top of the stack U .

At the beginning, we push the base hypergraph H on top of stack U with the state unparti-
tioned and we push the range (1, k) on top of O. This means we want to divide hypergraph H
into k parts. We can now start recursive bisection. At the beginning of the While-Loop (line
4), we fetch the current hypergraph-state pair (H ′, S) and the range (k1, k2) of parts, which
the hypergraph H ′ should be further divided. Afterwards we calculate our current adaptive
epsilon ε′ and the part weight bounds w1 and w2 which bound the resulting part weights of the
bisection. If k2 − k1 ≡ 0, we have reached a subhypergraph H ′ which represents part Vk1 on
the original hypergraph. We assign all hypernodes from subhypergraph H ′ to block Vk1 in H.
To map the hypernodes of H ′ to H we use the mapping function f from definition 4.1 and our
mapping chain M .

Algorithm 15: Recursive Bisection
Data: (Hyper)graph H = (V,E, c, ω), ε, k, InitialPartitioner ip
Result: k-way partitioning P = (V1, ..., Vk)

1 Initalize hypergraph-state stack U , mapping stack M and partition size stack O
2 U.push((H, unpartioned)), O.push((1, k)) // means H should be further partitionen into

partition 1 until k
3

4 while U is not empty do
5 (H ′ = (V ′, E ′, c, ω), S)← U.top()
6 (k1, k2)← O.top()
7 k′ ← k2− k1 + 1 // Hypergraph H ′ should be further divided into k′ parts
8 ε′ ← (k′·c(V )

k·c(V ′)(1 + ε))log2(k′)−1 − 1
9 w1 ← c(V )

k
bk2c(1 + ε′), w2 ← c(V )

k
dk2e(1 + ε′)

10

11 if k2− k1 = 0 then
12 Initialize extraction chain U ′ from U and mapping chain M ′ from M
13 Initialize mapping function f ′ : V × U ′ → V // see definition 4.1
14 for v ∈ V ′ do
15 Vk1 ← Vk1 ∪ {f ′(v,H ′)}
16 U.pop(), M.pop(), O.pop()
17 else if S ≡ finish then
18 U.pop(), M.pop(), O.pop()
19 else if S ≡ unpartition then
20 (V1, V2)← ip.partition(H ′, 2, w1, w2) // c(V1) ≤ w1 ∧ c(V2) ≤ w2
21 (H ′′ = (V ′′, E ′′, c, ω), g′′)← extract partition V2 from H ′ // g′′ : V ′′ → V ′

22 U.pop()
23 U.push((H ′, partitionTwoExtracted)), U.push((H ′′, unpartition))
24 M.push(g′′), O.push((k1 + bk′2 c, k2))
25 else if S ≡ partitionTwoExtracted then
26 (H ′′ = (V ′′, E ′′, c, ω), g′′)← extract partition V1 from H ′ // g′′ : V ′′ → V ′

27 U.pop()
28 U.push((H ′, finish)), U.push((H ′′, unpartition))
29 M.push(g′′), O.push((k1, k1 + bk′2 c − 1))

30 return P = (V1, ..., Vk)
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If k2 − k1 6= 0, we have to decide based on the state of the current subhypergraph H ′ what
we have to do. If H ′ = (V ′, E ′, c, ω) is associated with the state unpartitioned, we have to
bisect it. We are able to run our initial partitioner several times in line 20 and take the
best bisection from all runs. After the bisection we extract part V2 as subhypergraph H ′′ =
(V ′′, E ′′, c, ω) and push it onto the stack U with state unpartioned. We push the corresponding
mapping g′ : V ′′ → V ′ on top of stack M and the range of blocks (k1 + bk2−k1

2 c, k2), which
the hypergraph H ′′ should be further divided, onto stack O. The state of hypergraph H ′

changes from unpartitioned to partitionTwoExtracted. If the state of subhypergraph H ′ is
partitionTwoExtracted, we have to extract block V1 as subhypergraph H ′′ and put it onto the
stack U with the state unpartioned. We push the corresponding mapping on top of stackM and
the range of parts (k1, k1 + bk2−k1

2 c− 1) on top of stack U . The state of hypergraph H ′ changes
from partitionTwoExtracted to finished. If the subhypergraph H ′ onto stack U is associated
with the state finished, we can remove the hypergraph H ′, mapping and part range from U , M
and O.

4.3 Recursive Bisection n-Level Hypergraph Initial Partitioning

We have presented in the sections before many direct k-way and recursive bisection initial par-
titioning algorithms for the n-level partitioning framework KaHyPar. Now we use KaHyPar
and our recursive bisection implementation to provide a recursive bisection n-level initial par-
titioning method. We use the n-level partitioning scheme on each bisection. We coarsen the
hypergraph until a predefined number of hypernodes are left. In the next step we choose one
of our initial partitioning algorithms to produce a bisection on the coarsened hypergraph. At
the end we uncontract the contracted hypernodes and use a local search heuristic to improve
the quality of the bisection. To use KaHyPar as initial partitioner, we have to evaluate the
best configuration of it for this use case.
The available coarsener are described in Section 3.5. For our recursive bisection n-level initial
partitioner we choose the partial coarsening method. For the coarsening phase we have to setup
the contraction limit t and the hypernode weight limit s. We contract hypernodes until k · t
hypernodes are left and no contraction of two hypernodes u and v should produce a hypernode
w with a weight c(w) > cmax := s c(V )

t·k . Furthermore we have to evaluate our initial partitioning
algorithms in the recursive bisection n-level partitioning context.
The last step is to choose a local search algorithm for the uncoarsening phase. Since we using
n-Level hypergraph partitioning in a recursive bisection context, we only perform a bisection
on the coarsest hypergraph. We have tested and evaluated two local search algorithms for our
recursive bisection n-Level initial partitioner. We tested a ScLap-based [12] and a FM local
search heuristic.

4.3.1 Pool Initial Partitioner

We implement an initial partitioner which calls a subset of our initial partitioning algorithms
sequentially and chooses the best partition of all runs. We call it pool initial partitioner. Since
the resulting hypergraph in the recursive bisection n-Level context has only 2t hypernodes left
at the end of the coarsening phase, initial partitioning becomes very fast and we can perform
more than one run of each initial partitioner. The pool initial partitioner contains a subset of
our partitioners A = {ip1, ..., ipl} and calls each partitioner n times.
The pseudocode of the pool partitioner is shown in Algorithm 16. Each partitioner performs n
initial partitioning runs. If an initial partitioner produces a partition with a better cut than
the cut of the current best partition, we only apply the new partition as our new best partition,
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if the imbalance of this partition P is less than or equal to ε or if the current imbalance is less
or equal than the imbalance from the best partition. The pool initial partitioner calls every
partitioner in A n = 20 times. In Section 5.3 we evaluate different compositions for A.

Algorithm 16: Pool Initial Partitioner
Data: (Hyper)graph H = (V,E, c, ω), ε, k, n
Result: k-way partitioning P = (V1, ..., Vk)

1 Pbest ← (∅, ..., ∅)
2 A← {ip1, ..., ipl}
3 for i from 1 until l do
4 P ← ipi.partition(H, ε, k) // Each partitioner call themselve n times.
5 if cut(P ) ≤ cut(Pbest) then
6 if imbalance(P ) ≤ ε ∨ imbalance(P ) ≤ imbalance(Pbest) then
7 Pbest ← P

8 return Pbest

45



5 Experimental Results

5 Experimental Results

In this chapter we present the experimental results of our work. In Section 5.2 we present the
results of the initial partitioning methods based on direct k-way and recursive bisection. We run
all partitioners in different configurations and outline the most interesting results. Furthermore
we test the quality and running time of our recursive bisection methods with multiple runs
at each bisection. In Section 5.3 we evaluate our recursive bisection n-level initial partitioner.
We have made numerous amounts of tests to find the best configuration for it. At the end we
integrated the final initial partitioning algorithm into KaHyPar and compare ourselves against
hMetis and PaToH as initial partitioner in Section 5.4.

5.1 Test-Environment

5.1.1 Instances

For our experiments we used instances of two benchmark sets from the two big application areas
of hypergraph partitioning. We used the ISPD98 Circuit Benchmark Suite [1] and a subset of
the Florida Sparse Matrix Collection [9]. We divide the benchmark sets in medium-sized and
large instances. The former are used for parameter tunning during our development process
and the latter are used for the final tests of our partitioner in KaHyPar as initial partitioner
in Section 5.4. An overview of our benchmark instances is shown in tables 15 and 16.

5.1.2 System

We implement our algorithms in C++ and compile it with gcc version 4.9.2 with the flags
-std=c++14 -O3 -mtune=native -march=native. The system used for parameter tunning
instance tests is running Ubuntu 12.04 and contains two Intel Xeon X5355 2.66 GHz processors
where each has four cores. Furthermore the system has four L1-Caches of size 32 KiB, two
L2-Cache of size 4 MiB and the main memory has a size of 24 GiB. Experiments where we only
have to verify a quality property is executed in parallel on several systems with the architecture
described above. Experiments regarding running time, we execute each on a single core on one
system.
The final tests of our initial partitioner in KaHyPar with the large benchmark instances used a
system with two Intel Xeon E5-2670 processors clocked at 2.6 GHz where each has eight cores.
The system has eight 256 KiB L2-Caches, one 20 MiB L3-Cache and the main memory has a
size of 64 GiB.

5.1.3 Methodology

We have coarsened the medium-sized benchmark instances with KaHyPar ten times with ten
different seeds for all k ∈ {2, 4, 8, 16, 32, 64}. For each hypergraph and k we have ten different
coarsened hypergraph versions of the initial input hypergraph with 160k hypernodes. For each
instance we execute our initial partitioner with five different seeds. If we analyse the overall
results (e.g. cut) of an experiment, we calculated the average results for each hypergraph and
k value and then the geometric mean overall average results. For each test we use imbalance
ε = 0.03. We compared the results of our algorithms in section 5.2 and 5.3 with the results
from the recursive bisection variant of hMetis and PaToH.
For the final tests in Section 5.4 we execute KaHyPar with our initial partitioner with ten
different seeds on each instance of the full benchmark set, with k ∈ {2, 4, 8, 16, 32, 64, 128} and
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ε = 0.03. We compare the results of KaHyPar with our initial partitioner against the usage of
the recursive bisection variants of hMetis and PaToH as initial partitioner.

5.2 Direct k-way and Recursive Bisection Initial Partitioners

In this section we present the experimental results of our direct k-way and recursive bisection
methods described in Section 4.1 and 4.2. The results of the first experiments are summarized
in Table 1. This table shows the cuts and the running times of each algorithm with different
configurations in comparison with hMetis and PaToH. We execute the algorithms with six
different configuration which are described in the first row of table 1. The first entry in each
configuration is either +1 or −1, which indicates, whether we assign all hypernodes to block V1
or leave all unassigned before initial partitioning. The next two parameters in the configuration
are R for rollback and FM for FM local search heuristic which are both described in section
4.1.5. With +/−, we denote whether (+) or not (−) we use the corresponding technique.
Furthermore we shorten the names of the Greedy, BFS, Random and Label Propagation initial
partitioner to greedy (section 4.1.3), bfs (section 4.1.2), random (section 4.1.1) and lp (section
4.1.4). The abbreviation RB in a name of an algorithm indicates that the recursive bisection
variant of this algorithm is used. The different greedy hypergraph growing variants are greedy-S
for sequential, greedy-G for global and greedy-R for round-robin. The different gain functions
are FM for the classical Fidducia-Mattheyeses (see Section 3.4.2), MP for Max-Pin and MN
for Max-Net gain function (both described in Section 4.1.3). The hyperedge cut in the column
Avg[%] of each initial partitioner is relative to the cut produced by hMetis and the running
times are measured in seconds. We seperate the direct k-way and recursive bisection methods
in Table 1 and the partitioners within the separation are sorted after their cuts of the first
experiment in ascending order.
In the first experiment (+1,−R,−FM) we evaluate the quality of our initial partitioner

without any improvement technique. In this test we assign all hypernodes to block V1 before
initial partitioning. Note that only the growing based partitioning algorithms are able to do
this. We recognized that nearly all greedy implementations are better than the remaining
methods. Within the greedy variants the recursive bisection implementations based on the FM
gain function produced the best results. Furthermore the Max-Pin performs better than the
Max-Net gain function. On the second lowest place of the first experiment is the direct k-way
greedy round-robin algorithm based on the FM gain function. If we assign a hypernode to
a block in a greedy method, we have to delete it from all remaining priority queues. For an
explanation of this worse result, we examined the number of hypernodes which are deleted from
the priority queues in line 1 of algorithm 10. We observed that the number of deleted hypernodes
are two times bigger than the number of the other direct k-way greedy FM variants. Therefore
many potentially maximum gain moves on top of a priority queue are deleted and the gain of a
chosen move is far worse than the gains of the greedy sequential or global variant. The random
initial partitioner produces the worst results. Furthermore the recursive bisection variant of
greedy global and round-robin have the same cut results, because we only move hypernodes
from V1 to V0 on each bisection. Note that in the first experiment all hypernodes are assigned
to block V1 before initial partitioning. Therefore moves to block V1 are not considered during a
bisection (V1 is disabled) and on this reason the global maximum gain move is the same, which
is chosen by the greedy round-robin partitioner (greedy-R ignores block V1).
The next experiment (−1,−R,−FM) evaluates the quality of the algorithms, if all hypernodes
are left unassigned before initial partitioning and no improvement technique is used. Most
variants seem to perform worse compared to the results of the first experiment. Except all direct
k-way greedy round-robin initial partitioners. The worse performance of the most FM -based
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Config. (+1,-R,-FM) (-1,-R,-FM) (+1,+R,-FM) (+1,-R,+FM) (-1,-R,+FM) (+1,+R,+FM)

Algorithm Avg.[%] t[s] Avg.[%] t[s] Avg.[%] t[s] Avg.[%] t[s] Avg.[%] t[s] Avg.[%] t[s]

hMetis 3518.88 2.494 3518.88 2.494 3518.88 2.494 3518.88 2.494 3518.88 2.494 3518.88 2.494

PaToH 3565.27 0.392 3565.27 0.392 3565.27 0.392 3565.27 0.392 3565.27 0.392 3565.27 0.392

R
ec
ur
siv

e
B
ise

ct
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n

greedy-RRB
F M 45.44 0.017 92.61 0.021 42.11 0.02 22.63 0.023 28.59 0.029 22.72 0.026

greedy-GRB
F M 45.44 0.017 102.2 0.021 42.11 0.02 22.63 0.023 29.13 0.029 22.72 0.026

greedy-SRB
F M 45.48 0.017 169 0.019 45.54 0.02 23.05 0.023 39.52 0.031 23.07 0.026

greedy-GRB
MP 95.05 0.034 86.88 0.047 91.06 0.037 27.84 0.042 26.47 0.054 27.4 0.045

greedy-RRB
MP 95.05 0.018 82.34 0.024 91.06 0.021 27.84 0.026 27.26 0.031 27.4 0.029

greedy-SRB
MP 95.61 0.019 94.19 0.023 95.56 0.021 27.67 0.026 27.33 0.03 27.62 0.029

lpRB 90.34 0.049 90.34 0.049 90.34 0.049 65.12 0.055 65.12 0.055 65.12 0.055

bfsRB 113.06 0.01 124.36 0.01 108.92 0.012 29.71 0.018 116.85 0.013 29.21 0.021

greedy-GRB
MN 120.04 0.011 110.49 0.015 116.26 0.014 39.46 0.021 38.04 0.023 38.66 0.023

greedy-RRB
MN 120.04 0.011 71.41 0.015 116.26 0.014 39.46 0.021 26.95 0.022 38.66 0.023

greedy-SRB
MN 120.34 0.011 119.12 0.014 120.34 0.014 39.22 0.02 38.88 0.022 39.19 0.023

randomRB 242.41 0.005 242.41 0.005 242.41 0.01 76.85 0.018 76.85 0.018 76.85 0.024

di
re
ct

k-
wa

y

greedy-SF M 53.24 0.016 179.55 0.02 53.24 0.018 42.95 0.019 130.83 0.023 42.93 0.021

greedy-GF M 61.9 0.018 94 0.021 61.15 0.02 50.81 0.024 73.14 0.028 50.49 0.026

greedy-GMP 83.05 0.016 82.35 0.017 82.24 0.018 62.45 0.022 60.21 0.023 61.91 0.024

greedy-SMP 83.56 0.015 82.34 0.015 83.55 0.016 57.22 0.018 57.07 0.018 57.18 0.02

greedy-RMP 84.22 0.018 79.84 0.018 82.43 0.019 62.6 0.02 62.92 0.021 62.3 0.022

lp 86.05 0.033 86.05 0.033 86.05 0.033 79.94 0.036 79.94 0.036 79.94 0.036

greedy-RMN 94.11 0.011 72.68 0.01 92.46 0.012 70.72 0.014 58.93 0.013 69.94 0.016

greedy-GMN 111.49 0.011 111.05 0.011 110.69 0.013 86.49 0.018 84.35 0.017 85.95 0.019

bfs 110.5 0.007 112.94 0.006 108.68 0.008 81.27 0.01 112.94 0.006 81.24 0.012

greedy-SMN 112.65 0.01 111.1 0.01 112.64 0.011 82.05 0.013 82.16 0.013 82.04 0.015

greedy-RF M 121.73 0.021 79.52 0.021 119.58 0.022 105.23 0.024 62.82 0.025 106.63 0.026

random 242.52 0.001 242.52 0.001 242.52 0.003 180.66 0.006 180.66 0.006 180.66 0.008

Table 1: Results of our direct k-way initial partitioners with different configurations. The
Avg.[%] column represents the geometric mean overall average cuts relative to the
results of hMetis. E.g. an value of 45% means that the cut of the corresponding ini-
tial partitioner is 45% larger than the result of hMetis. The best cut of each initial
partitioner is highlighted bold.

partitioners can be explained with the behaviour of the FM gain function, if all hypernodes
are left unassigned before initial partitioning. We outlined in Section 4.1.3 that in this case
a move can never decreases the cut of a partition, because these moves only increase the
connectivity of a hyperedge. Most moves are zero gain moves at the beginning and the choice
of the next hypernode which should be added to a growing block follows a random fashion. For
the significantly better quality of the direct k-way greedy round-robin initial partitioner we have
only a assumption which is derived from the observation of the first experiment. As mentioned
before, if we decide to left all hypernodes unassigned before initial partitioning, the assignment
of hypernodes is more random (because of many zero gain moves at the beginning) than if we
assign all to a block V1 before. This leads to a more uniform distribution of assigned hypernodes.
In this experiment we observed that the number of deleted hypernodes in algorithm 10 is much
less than the same of the greedy round-robin methods of the first experiment. We assume that
if we move only unassigned hypernodes during partitioning, we have a more evenly distributed
assignment of hypernodes and the blocks growing together more slowly. Two blocks Vi and Vj
growing together, if ∃e ∈ E : {Vi, Vj} ⊆ Λ(e). Therefore we have a significantly lower number of
deleted hypernodes into each priority and for this reason the gains of moves are higher compared
to the greedy-RFM partitioner of the first experiment. Based on this observation we did not
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assign all hypernodes before initial partitioning, if we use a direct k-way greedy round-robin
variant.
In the third column of Table 1 (+1,+R,−FM) we tested the rollback technique with the same
configuration as in the first experiment. Since we mentioned in Section 4.1.5 that rollback
only works, if we assign all hypernodes to a block before initial partitioning, we execute this
experiment only in the +1 configuration. We can compare the results of this configuration with
our first experiment (+1,−R,−FM). Nearly all variants benefit from the rollback technique.
The quality of the recursive bisection variants increased more with this technique as the direct
k-way initial partitioner. This can be explained that we are able to execute a rollback operation
after each bisection. A partition of a direct k-way initial partitioning method becomes an valid
partition only nearly at end of the partitioning process. There are only a small number of nodes
which can be used for rollback.
In the next two experiments (+1,−R,+FM) and (−1,−R,+FM) we activate our FM local
search heuristic without rollback. This technique improves the quality of the partitions more
than the rollback technique. We can see again that the recursive bisection variants benefit more
from FM local search than the direct k-way initial partitioning methods. We can execute this
technique after each bisection (recursive bisection) instead only at the end of the partitioning
process (direct k-way). If we rank the initial partitioners again according to their average
cut nearly all recursive bisection methods would have a better placement than all direct k-
way methods. The FM local search heuristic improved the average cut of the bfsRB initial
partitioner about 83% in comparison to the first experiment (+1,−R,−FM), which is in this
experiment (+1,−R,+FM) one of our best partitioning algorithms. The recursive bisection
variants of the greedy initial partitioner based on the Max-Pin and Max-Net gain function
benefits also from the FM local search technique. The quality of both gain functions in the
recursive bisection context increases between 70% and 90% in comparison with the results
of the first experiment. If we compare the quality of the direct k-way greedy-R partitioners of
experiment (+1,−R,+FM) and (−1,−R,+FM), we can observe the same behaviour as in the
corresponding experiments without the FM local search technique. This confirms our decision
to left the hypernodes unassigned before initial partitioning, if we run a direct k-way greedy
round-robin method. The running times of all initial partitioners increase with FM local search
by a factor of 2 on average. Our best initial partitioners are the recursive bisection variants of
the greedy algorithms based on the FM gain function, if we assign all hypernodes to block V1
before initial partitioning.
The last experiment uses the rollback and FM local search technique. Note that we first perform
rollback and than a FM local search. Comparing these results with the same experiment without
rollback, it can be observed that the results do not differ significantly. This leads to the
conclusion that a better initial partition not necessarily leads to a better solution after we
execute a FM local search. We have shown that the rollback technique in combination with a
FM local search technique did not lead to significantly better results. Therefore we only use
the FM local search algorithm without rollback in the following experiments.
For a conclusion of the first experiments we list the most interesting results at the following:
(i) Recursive bisection methods produce partitions with better quality than the direct k-way

variants.
(ii) The FM local search algorithm improved the quality of partitions of the recursive bisection

methods about 25% - 160% and of the direct k-way methods about 5% - 60%.
(iii) The direct k-way greedy round-robin partitioners performing better, if all hypernodes are

unassigned before initial partitioning.
(iv) A FM local search heuristic in combination with the rollback technique produces equal

cuts than without rollback on average.
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Based on this observations we applied the following adaptions for the next experiments:
(i) We focus on optimizing the recursive bisection methods ⇒ Using only the recursive bi-

section variants for further experiments.
(ii) If we use a greedy round-robin method, we left the hypernodes unassigned before initial

partitioning.
(iii) We disable rollback and enable the FM local search heuristic.

5.2.1 Multiple Runs

The lp initial partitioner in the experiment before only produced partitions with mediocre
quality. This algorithm has the slowest running time of all partitioners. This is caused by
the fact that in each round we have to calculate the gain of a move to all adjacent blocks for
each hypernode. Since this partitioner did not assign all hypernodes to a block before initial
partitioning, the rollback technique cannot be used. The direct k-way label propagation initial
partitioner seems to not profit very well from the FM local search technique. An interesting
behaviour of the label propagation initial partitioner is shown in table 2.
Table 2 shows the minimum, average and maximum cuts of each recursive bisection method

Config. (+1,-R,+FM) (-1,-R,+FM)

Algorithm Min.[%] Avg.[%] Max.[%] Min.[%] Avg.[%] Max.[%]

hMetis 1029.69 1099.11 1170.04 1029.69 1099.11 1170.04

PaToH 1053.49 1131.04 1201.88 1053.49 1131.04 1201.88

bfsRB 3.29 29.79 97.33 79.03 170.15 281.13

greedy-SRB
MN 4.02 37.62 88.9 3.24 37.23 85.4

lpRB 4.15 56.3 160.03 4.15 56.3 160.03

greedy-SRB
MP 4.42 23.36 59.57 4.4 22.39 60.74

greedy-GRB
MP 5.06 23.4 57.81 4.22 21.41 55.62

greedy-RRB
MP 5.06 23.4 57.81 4.29 23.94 74.52

greedy-GRB
MN 5.76 37.67 85.66 5.24 34.07 85.77

greedy-RRB
MN 5.76 37.67 85.66 3.3 23.26 83.46

greedy-RRB
F M 6.69 34.84 71.89 3.88 25.37 76.58

greedy-GRB
F M 6.69 34.84 71.89 3.82 27 73.16

greedy-SRB
F M 7.19 34.44 80.27 3.26 38.9 108.47

randomRB 7.66 66.79 139.3 7.66 66.79 139.3

Table 2: Min., Avg. and Max. cuts of our initial partitioners for k = 2 with a FM local search
algorithm. The cut of each initial partitioner is relative to the cut of hMetis.

relative to the corresponding result of hMetis for k = 2. We take the results from the FM
local search experiments (+1,−R,+FM) and (−1,−R,+FM). The partitioners are sorted
according to their minimum cut in ascending order. The label propagation initial partitioner
has the biggest range between the minimum and maximum cut. In general we can observe that
the minimum and maximum cut of each initial partitioner significantly differ and the minimum
cuts come very close to the minimum cut of hMetis. We want to show with this table that we
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have to introduce for our recursive bisection methods multiple runs of each initial partitioner
on each bisection to converge against the minimum cut.

random RB bfsRB greedy-SRB
F M greedy-GRB

F M greedy-RRB
F M greedy-SRB

MP

runs Avg.[%] t[s] Avg.[%] t[s] Avg.[%] t[s] Avg.[%] t[s] Avg.[%] t[s] Avg.[%] t[s]

hMetis 3518.88 2.494 3518.88 2.494 3518.88 2.494 3518.88 2.494 3518.88 2.494 3518.88 2.494

1 76.85 0.038 29.71 0.034 23.05 0.045 22.63 0.045 28.59 0.055 27.67 0.050

2 66.09 0.056 19.73 0.050 15.24 0.071 15.28 0.071 18.69 0.092 20.28 0.081

5 57.05 0.102 12.82 0.095 10.62 0.143 10.87 0.144 10.65 0.194 15.20 0.167

10 52.12 0.175 9.19 0.164 8.36 0.260 8.36 0.260 7.20 0.356 13.05 0.305

15 49.29 0.246 7.78 0.229 7.34 0.369 7.23 0.372 5.75 0.511 12.09 0.437

20 47.57 0.313 6.88 0.294 6.68 0.476 6.67 0.481 4.94 0.663 11.56 0.565

25 46.25 0.380 6.33 0.359 6.36 0.588 6.16 0.594 4.43 0.818 11.16 0.695

50 42.34 0.718 4.90 0.677 5.24 1.118 5.12 1.133 3.11 1.581 10.15 1.339

75 40.34 1.057 4.22 0.997 4.72 1.652 4.59 1.668 2.53 2.335 9.66 1.981

greedy-GRB
MP greedy-RRB

MP greedy-SRB
MN greedy-GRB

MN greedy-RRB
MN lpRB

runs Avg.[%] t[s] Avg.[%] t[s] Avg.[%] t[s] Avg.[%] t[s] Avg.[%] t[s] Avg.[%] t[s]

hMetis 3518.88 2.494 3518.88 2.494 3518.88 2.494 3518.88 2.494 3518.88 2.494 3518.88 2.494

1 27.84 0.050 27.26 0.059 39.22 0.040 39.46 0.039 26.95 0.038 65.12 0.095

2 20.51 0.082 17.49 0.100 31.51 0.063 32.42 0.061 16.87 0.061 46.37 0.154

5 15.82 0.171 11.22 0.211 26.66 0.121 27.68 0.119 10.79 0.118 28.23 0.333

10 13.36 0.310 8.10 0.388 24.07 0.216 24.72 0.209 7.79 0.207 19.92 0.624

15 12.38 0.443 6.96 0.559 23.15 0.309 23.51 0.296 6.76 0.294 16.47 0.911

20 11.77 0.574 6.23 0.728 22.53 0.396 22.91 0.381 6.05 0.378 14.51 1.201

25 11.44 0.709 5.85 0.891 21.93 0.487 22.41 0.468 5.63 0.464 12.81 1.503

50 10.35 1.357 4.63 1.719 20.60 0.924 21.19 0.887 4.62 0.881 9.14 2.951

75 9.75 2.012 4.10 2.550 20.00 1.360 20.40 1.305 4.14 1.300 7.58 4.317

Table 3: Results of the multiple runs experiment of our recursive bisection variants. The cuts
are relative to the results of hMetis.

In Table 3 we see the convergence behavior of each recursive bisection variant, if we use multiple
runs on each bisection. The best result is shown by greedy-RRB

FM which is only 2.53% worse than
hMetis with 75 runs on each bisection. Nearly all partitioners seem to converge against the
minimum cut, which is presented in table 2 except the lpRB initial partitioner. This is caused
by the huge difference of its minimum and maximum cut. Note, we execute this experiment in
parallel on several systems. The running times are only approximate values in Table 3. The
running time of each partitioner increases linear with the number of repetitions. For the final
choice of the multiple runs parameter, we have to evaluate the running time and quality of our
initial partitioners in the recursive bisection n-level context. Furthermore we have to take care
that the average running time of our final recursive bisection n-level initial partitioner, which
we integrated into KaHyPar, did not exceed the average running time of hMetis.

5.2.2 Adaptive Epsilon

At the end of this section we want to show that in practice our partitions are balanced, if we
adapt the initial imbalance ε on each bisection to ε′ (see Section 4.2.1). We take the imbalance
values of our first experiment (+1,−R,−FM) without an execution of a FM local search
algorithm and rollback. Table 4 shows the average and maximum imbalance of each tested
hypergraph with input ε = 0.03. The last column shows how many test runs produced an
imbalanced partition. For each hypergraph we execute 7200 test runs (6 k values · 10 different
coarsened instances · 5 different seeds · 24 initial partitioners = 7200). Only 32 partitions of
93600 have an imbalance greater than ε = 0.03. If we have look at the maximum imbalance
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values this is only caused by the fact that in some cases a hypernode with maximum weight
has to be assigned at the end of the partitioning process.

Hypergraph Avg. imbalance Max. imbalance count

bcsstk29 0.023 0.03 0
bcsstk30 0.024 0.03 0
bcsstk31 0.024 0.03 0
bcsstk32 0.024 0.03 0
ibm01 0.024 0.03 2
ibm02 0.024 0.029 0
ibm03 0.025 0.033 8
ibm04 0.025 0.032 4
ibm05 0.024 0.029 0
ibm06 0.025 0.031 2
ibm07 0.025 0.033 4
memplus 0.024 0.032 12
vibrobox 0.023 0.03 0

Table 4: Average and maximum imbalance of our first experiment without refinement and roll-
back with ε = 0.03. The last coloumn shows the amount of imbalanced hypergraphs.
On each hypergraph we perform 7200 test runs.

5.3 Recursive Bisection n-Level Initial Partitioner

In this section we evaluate the optimum parameter configuration for our recursive bisection
n-Level initial partitioner (RBNL). We conclude this chapter with the results of our final initial
partitioner on the medium sized instances in comparison with hMetis and PaToH. Since the
recursive bisection algorithms produce better results than the direct k-way methods we con-
tinue only with the RB methods. Furthermore we include our pool initial partitioner into the
experiments, since this partitioner is a result of our n-level development process. We used the
basic algorithm set in our pool initial partitioner for the following experiments, which is shown
in Table 8.

5.3.1 Evaluation of the Coarsening Configuration

In this experiment we want to find the optimum parameter setting for the contraction limit
t and the hypernode weight limit s for the coarsening phase of our RBNL initial partition-
ers. We contract the hypergraph in the coarsening process at each bisection until 2t hy-
pernodes are left and no hypernode v resulting from a contraction should be heavier than
cmax := s · c(V )

2t . Since the parameters s and t correlate with each other we have to test
several combinations. The testing parameters are s ∈ {1.0, 1.5, 2.0, 2.5, 3.0, 3.5} =: S and
t ∈ {25, 50, 75, 100, 125, 150, 200, 250, 300} =: T . We test each possible combination ⇒ Test-
Set Mst = {(s, t) ∈ S × T}. Further we execute each initial partitioner 20 times on each
bisection. The pool partitioner executes each algorithm in its initial partitioner set 20 times on
each bisection, too. In the uncoarsening phase we used a FM local search heuristic.
The heatmap in Figure 17 shows the result of the experiment for our RBNL pool initial par-
titioner. The brighter the color in the heatmap, the better the quality of results. The best
results are archived between t = 150 and t = 200. If we set s = 2.5 with t = 150 or s = 3.5
with t = 200 we can reach the optimum results. The smaller our contraction limit, the worse is

52



5.3 Recursive Bisection n-Level Initial Partitioner

the result of the quality of the partitions. If we use a small value for t, the initial partitioning
is less important, because the coarsened hypergraph is very small and the local search heuristic
changes the solution during uncontraction much more than with a larger value for t. Further
the weight of the hypernodes would become heavier, if t is small. Therefore the initial parti-
tioning becomes harder, because we have to take care that we fulfil the imbalance. To choose a
parameter assignment for s and t we have to analyse the results of the other initial partitioning
methods in the recursive bisection n-Level context.
The heatmap in Figure 18 shows the result of our RBNL greedy global FM initial partitioner.

25 50 75 100 125 150 200 250 300
t

3.
5

3.
0

2.
5

2.
0

1.
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0

s

3534.95 3513.78 3507.54 3500.1 3500.53 3500.93 3492.96 3495.32 3501.24

3534.89 3514.5 3506.36 3497.9 3499.66 3497.31 3493.47 3496.15 3503.15

3533.44 3515.11 3503.2 3498.07 3497.1 3492.96 3493.46 3496.76 3504.42

3532.17 3513.81 3503.75 3498.01 3493.8 3493.09 3495.84 3498.11 3504.6

3535.16 3513.16 3503.65 3496.67 3496.57 3494.59 3499.12 3501.09 3506.51

3532.76 3512.43 3503.69 3500.8 3500.72 3499.17 3504.17 3511.37 3510.73
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Figure 17: Results of the experiment with parameter s and t of our RBNL pool initial
partitioner.
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3563.06 3566.87 3592.64 3615.48 3631.33 3666.97 3669.31 3666.78 3681.78

3564.64 3570.9 3594.14 3618.25 3640.81 3663.44 3668.48 3671.6 3683.69

3562.96 3571.5 3592.64 3618.39 3644.96 3663.15 3670.11 3672.8 3687.82

3565.95 3571.43 3592.47 3619.73 3636.55 3664.73 3676.78 3677.22 3693.03

3564.13 3573.94 3588.84 3605.84 3620.4 3661.23 3679.66 3677.89 3695.49

3563.36 3575.79 3586.08 3606.6 3632.62 3667.36 3681.22 3693.77 3705.08

3570

3600

3630

3660

3690

Figure 18: Results of the experiment with parameter s and t of our greedy global FM initial
partitioner with 20 runs at each bisection step.

All other algorithms produced similiar results (except the pool initial partitioner). If we inter-
pret the results it seem to be advantageous to use the smallest t value for this initial partitioning
method to archieve the best results. On the first view this seem to conflict with the results in
Figure 17. As mentioned before using a small value for t means to let the local search heuristic
during the refinement phase do most of the partitioning work. The initial partitioning result is
then less important. Further we destroy with a small t value a large part of the structure of the
hypergraph and therefore limit the quality of the solution. We assume that the t value, where
the RBNL method of an initial partitioner produces the best results, is a measure for the quality
of an initial partitioning method. If the best cut result in the RBNL context is archieved with
a large t value, the quality of the produced partitions of the corresponding initial partitioner
is very well. If we have a good initial partitioning algorithm we can take away the work from
the local search algorithm during the uncontraction phase. We can show this behavior, if we
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execute the same experiment with the RBNL greedy global FM initial partitioner with 100 runs
on each bisection instead of 20. The result of this experiment is shown in the heatmap in Figure
19. Note, if we execute the initial partitioner with 100 runs on each bisection the quality of the
partitions are better than with only 20 runs (see Table 3). In this experiment with 100 runs the
optimum t value moves from t = 25 (with 20 runs) to t = 50 and t = 75 (with 100 runs). This
verifies our assumption that the optimum t value, where the initial partitioner in the RBNL
context produces the best results, is a measure for the quality of the initial partitioner.
We can conclude that all initial partitioning methods (except the pool initial partitioner) are
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Figure 19: Results of the experiment with parameter s and t of our greedy global FM initial
partitioner with 100 runs at each bisection step.

not strong enough to allow a greater t value than 50. If we use our pool initial partitioner,
we have a method which is strong enough. It is desirable to choose t greater than 50, because
we did not destroy the structure of a hypergraph as much as with t ≤ 50. Furthermore we
can take away the work from the local search algorithm during the refinement phase. The only
initial partitioning method which allows a greater t value than 50 is the pool partitioner. It
seems that this method becomes our initial partitioner, which we want to integrate in KaHyPar.
Therefore we set t = 150 and s = 2.5. We choose s = 2.5, because if we use a greater value
for s the contracted hypernodes become heavier and this makes it harder to fulfil the imbalance.

5.3.2 Evaluation of the Local Search Configuartion

In the next experiment we evaluate which local search heuristic we have to choose for the
refinement phase of our recursive bisection n-level initial partitioner. The framework currently
supports a FM local search and a ScLap-based algorithm. The FM local search is based on the
Fiduccia-Matheysses algorithm described in section 3.4.2. For detail implementation details we
refer the reader to [13]. The basic idea of Label Propagation is described in section 3.3.4 and
the adaption to use it as a local search heuristic is described by Henne [12]. The ScLap-based
refinement algorithm is two times faster than the FM local search algorithm. Table 5 shows the
minimum and average cuts of our recursive bisection n-level initial partitioner in comparison
with hMetis and PaToH. We use 20 runs of each initial partitioner on each bisection. The
contraction limit of our n-Level recursive bisection initial partitioner is set to t = 160. Further
we use 20 fruitless moves of our FM local search algorithm (see Section 4.3) and the maximum
number of iterations of the ScLap-based algorithm is set to 3. The Pool initial partitioner
executes each partitioner in his algorithm set 20 times. Both columns of the table are sorted
according to the average cut of each partitioner and the resulting cuts of each initial partitioner
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5.3 Recursive Bisection n-Level Initial Partitioner

is relative to the cut of the partitioner which produces the best results.
First we note that our RBNL pool initial partitioner with the FM local search heuristic produces
in average 0.73% better cuts than hMetis on the medium sized benchmark set. The minimum
cut is also 1% better than the cut produced by hMetis. With the ScLap-based algorithm
the result of our RBNL pool initial partitioner is 2.7% worse than hMetis. The pool initial
partitioner combines all advantages of each developed partitioning algorithm. If one partitioner
produces worse results another method working better. The second best variant is our RNBL
bfs initial partitioner with the FM local search algorithm. All variants, except the random
initial partitioner, produces average cuts which are only 10% worse than the cuts of hMetis,
when used together with FM. If we have a look at the same results of the ScLap-based local
search algorithm the most partitioners have average cuts which are more than 10% worse than
the cuts of hMetis. The advantage of the ScLap-based algorithm is the running time, but our
first goal is to optimize the quality and we decided to use the FM local search algorithm.

FM local search ScLap-based local search
Algorithm Min.[%] Avg.[%] Algorithm Min. [%] Avg.[%]

pool 3362.5 3493.23 hMetis 3396.49 3518.88
hMetis 1.01 0.73 PaToH 1.33 1.31
PaToH 2.36 2.06 pool 1.14 2.7
bfsRB 1.29 2.25 greedy-RRB

F M 3.01 5.82
greedy-RRB

F M 1.35 2.4 greedy-RRB
MP 5.73 8.86

greedy-RRB
MP 2.16 3.17 greedy-RRB

MN 5.1 10.02
greedy-RRB

MN 1.86 3.31 greedy-GRB
F M 5.35 10.21

lpRB 1.75 3.39 lpRB 5.27 10.37
greedy-GRB

F M 1.87 4.85 greedy-SRB
F M 5.22 10.49

greedy-SRB
F M 1.93 4.86 bfsRB 6.01 11.2

greedy-GRB
MP 3.04 5.09 greedy-SRB

MP 10.66 16.17
greedy-SRB

MP 3.27 5.1 greedy-GRB
MP 11.41 17.22

greedy-SRB
MN 5.27 10.27 greedy-SRB

MN 22.79 35.07
greedy-GRB

MN 5.46 10.48 greedy-GRB
MN 23.95 36.74

randomRB 8.26 15.92 randomRB 34.65 48.75

Table 5: Results of our experiments with the FM and ScLap-based local search heuristic. The
cut values are relative to best cut in the first row of the table. Both Columns of the
table are sorted after the average cut in ascending order.

In the next experiment we evaluate the maximum number of fruitless moves f of our FM local
search algorithm during the refinement phase. This parameter limits the maximum number
of moves which the FM heuristic can make without improving the cut. If we reach f fruitless
moves after one uncontraction step the FM algorithm stops and performs a rollback operation
to best cut. The results of this experiment are summarized in Table 6 and 7. Table 6 presents
the cut of each RBNL initial partitioner for f ∈ {5, 10, 20, 30, 40, 50, 75, 100, 150, 200, 300}. The
results are sorted according to the cut with f = 5 in ascending order. All cut values are relative
to the result of the RBNL pool initial partitioner. Table 7 shows the running times of each
initial partitioner. Since we execute this experiment in parallel on several systems these values

55



5 Experimental Results

are only approximate values.
We notice that the quality of each partitioner increase significantly until f = 50. Note that

f = 5 f = 10 f = 20 f = 30 f = 40 f = 50 f = 75 f = 100 f = 150 f = 200 f = 300

Algorithm Avg.[%] Avg.[%] Avg.[%] Avg.[%] Avg.[%] Avg.[%] Avg.[%] Avg.[%] Avg.[%] Avg.[%] Avg.[%]

pool 3520.43 3502 3493.23 3491.02 3490.02 3489.56 3488.82 3488.54 3488.55 3487.85 3486.02

greedy-RRB
F M 2.62 2.53 2.4 2.36 2.32 2.31 2.3 2.28 2.28 2.27 2.22

bfsRB 3.18 2.6 2.25 2.14 2.09 2.07 2.04 2.02 2 1.98 1.9

greedy-RRB
MP 4.3 3.75 3.17 2.99 2.91 2.85 2.81 2.78 2.75 2.73 2.56

greedy-RRB
MN 4.36 3.65 3.31 3.14 3.08 3.03 2.96 2.94 2.92 2.89 2.69

greedy-GRB
F M 6.71 5.76 4.85 4.41 4.17 4.03 3.68 3.53 3.31 3.18 2.78

greedy-SRB
F M 6.96 5.86 4.86 4.47 4.16 3.94 3.68 3.51 3.19 3.12 2.73

greedy-SRB
MP 7.69 6.25 5.1 4.62 4.35 4.24 4.07 3.98 3.91 3.86 3.63

greedy-GRB
MP 7.73 6.35 5.09 4.67 4.46 4.33 4.16 4.06 4 3.92 3.65

lpRB 9.75 7.49 4.86 3.73 3.25 2.99 2.79 2.71 2.69 2.67 2.52

greedy-SRB
MN 15.64 12.4 10.27 9.15 8.51 8.22 7.51 7.22 6.74 6.41 5.85

greedy-GRB
MN 16.14 12.64 10.48 9.39 8.82 8.47 7.93 7.5 6.97 6.55 6.03

randomRB 23.02 18.94 15.92 14.51 13.46 12.86 11.92 11.45 10.91 10.49 9.22

Table 6: Cut values of our RBNL initial partitioners with different maximum numbers of fruit-
less moves.

f = 5 f = 10 f = 20 f = 30 f = 40 f = 50 f = 75 f = 100 f = 150 f = 200 f = 300

Algorithm t[s] t[s][%] t[s][%] t[s][%] t[s][%] t[s][%] t[s][%] t[s][%] t[s][%] t[s][%] t[s][%]

bfsRB 0.4 0.44 0.5 0.56 0.61 0.67 0.8 0.94 1.21 1.48 1.99

randomRB 0.41 0.45 0.52 0.58 0.64 0.69 0.83 0.96 1.23 1.48 1.96

greedy-RRB
MN 0.45 0.49 0.55 0.61 0.67 0.72 0.86 1 1.28 1.55 2.08

greedy-SRB
MN 0.46 0.5 0.57 0.63 0.69 0.74 0.88 1.02 1.3 1.57 2.08

greedy-GRB
MN 0.46 0.5 0.57 0.63 0.69 0.74 0.89 1.02 1.3 1.57 2.08

greedy-SRB
F M 0.48 0.52 0.6 0.66 0.72 0.78 0.92 1.06 1.33 1.61 2.13

greedy-GRB
F M 0.49 0.53 0.6 0.66 0.72 0.78 0.92 1.06 1.34 1.61 2.13

greedy-SRB
MP 0.51 0.55 0.62 0.69 0.74 0.79 0.94 1.08 1.34 1.62 2.16

greedy-GRB
MP 0.51 0.56 0.62 0.69 0.74 0.8 0.94 1.07 1.35 1.63 2.16

greedy-RRB
F M 0.58 0.62 0.69 0.75 0.81 0.86 1.01 1.15 1.43 1.71 2.26

greedy-RRB
MP 0.58 0.62 0.68 0.75 0.81 0.86 1.01 1.16 1.43 1.71 2.24

lpRB 0.81 0.83 0.9 0.98 1.06 1.13 1.31 1.49 1.84 2.21 2.86

pool 1.82 1.93 2.06 2.19 2.29 2.4 2.68 2.96 3.51 4 4.8

Table 7: Running times of our RBNL initial partitioners with different maximum numbers of
fruitless moves.

our bfsRB n-level initial partitioner becomes our second best method for f ≥ 20. The running
times of each partitioner in Table 7 increase near linearly. If we increase the maximum number
of fruitless moves from f = 20 to f = 50, the running times of each initial partitioner would
increase about 20%−35%. For the final assignment of parameter f we have to make a trade off
between running time and quality. The quality of the cut of each initial partitioner increases
only until f = 50 significantly. With the focus that our pool initial partitioner becomes the
final initial partitioner, we choose therefore f = 50 as our final maximum number of fruitless
moves.
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5.3 Recursive Bisection n-Level Initial Partitioner

5.3.3 Composition of the Pool Initial Partitioner

The pool initial partitioner produced the best results in the RBNL context. Since this par-
titioner executes a subset of our developed initial partitioning algorithms and take the best
result from all executions, we have to find the best subset of algorithms for it. Table 8 shows
the results of our experiment with different compositions of subsets. The composition full with
all initial partitioning algorithms produces the best quality. The basic set is the composition
we used in the experiment before. The running times and values indicates that the quality of
the pool initial partitioner depends on the number of different initial partitioning algorithms
which are used. The final composition of our RBNL pool initial paritioner is the mix3 set. The
quality of this variant is close to full and the running time is about 20% faster.
In the last experiment we evaluate the number of multiple runs, which each initial partitioner

Pool-Type Avg.[%] P ool−T ype t[s]
full t[s] Composition

full 3476.84 1 greedy-RRB
F M , greedy-GRB

F M , greedy-SRB
F M , greedy-RRB

MP ,
greedy-GRB

MP , greedy-SRB
MP , greedy-RRB

MN , greedy-GRB
MN ,

greedy-SRB
MN , bfsRB , lpRB , randomRB

mix3 3479.6 0.79 greedy-RRB
F M , greedy-SRB

F M , greedy-RRB
MP , greedy-GRB

MP ,
greedy-RRB

MN , greedy-GRB
MN , bfsRB , lpRB , randomRB

mix1 3482.03 0.78 greedy-GRB
F M , greedy-SRB

F M , greedy-RRB
MP , greedy-SRB

MP ,
greedy-RRB

MN , greedy-SRB
MN , bfsRB , lpRB , randomRB

greedy_full 3482.09 0.81 greedy-RRB
F M , greedy-GRB

F M , greedy-SRB
F M , greedy-RRB

MP ,
greedy-GRB

MP , greedy-SRB
MP , greedy-RRB

MN , greedy-GRB
MN ,

greedy-SRB
MN

basic 3489.56 0.63 greedy-GRB
F M , greedy-SRB

F M , greedy-GRB
MP , greedy-GRB

MN ,
bfsRB , lpRB , randomRB

mix2 3490.94 0.58 greedy-RRB
F M , greedy-GRB

MP , greedy-SRB
MN , bfsRB , lpRB ,

randomRB

adaptive 3495.17 0.57 Contains the full set and choose at each partitioning a sub-
set of six initial partitioner random.

greedy 3510.53 0.39 greedy-RRB
F M , greedy-GRB

F M , greedy-SRB
F M

no_greedy 3526.6 0.35 bfsRB , lpRB , randomRB

greedy_maxpin 3533.51 0.39 greedy-RRB
MP , greedy-GRB

MP , greedy-SRB
MP

greedy_maxnet 3537.74 0.34 greedy-RRB
MN , greedy-GRB

MN , greedy-SRB
MN

Table 8: Experiment results with different compositions of the pool initial partitioner.

of the pool partitioner algorithm subset (mix3 variant, see Table 8) should be executed on each
bisection. Table 9 shows the results of this experiment. We choose for our final partitioner 20
runs. The quality of the partitions is only 0.32% worse than with 75 runs and the running time
is 3 times faster with 20 runs. Furthermore with 20 runs we are still 20% faster than hMetis
(2.49s). Note, that the cut values did not accord with the cut values in Table 8, because the
code base changed between these two experiments.
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runs Min.[%] Avg.[%] t[s]

75 3356.688 3484.424 6.53
50 +0.003 +0.06 4.51
40 +0.17 +0.14 3.7
30 +0.14 +0.19 2.89
20 +0.17 +0.32 2.07
10 +0.21 +0.54 1.24

Table 9: Multiple runs experiment with our RBNL pool initial partitioning algorithm with the
mix3 composition.

5.3.4 Experimental Results of the Final Initial Partitioner

In this subsection we evaluated the best configuration of our recursive bisection n-level initial
partitioner with several experiments. In the following we list the main adaptions:

(i) Coarsening phase: Contraction Limit t = 150 and hypernode contraction weight limit
s = 2.5.

(ii) Initial Partitioning phase: As final initial partitioner for our RBNL partitioner we use
the pool initial partitioner with the mix3 composition (see Table 8). We execute each
algorithm of the mix3 set 20 times on each bisection and take the best from all runs as
final partition.

(iii) Uncoarsening phase: We use a FM local search heuristic during the uncontraction phase
and set the maximum number of fruitless moves to f = 50.

We conclude this chapter with the final results of our recursive bisection n-Level initial parti-
tioner with all adaptions described in this section in comparison with hMetis and PaToH on the
coarsened instances of the medium sized benchmark set in Table 10 and 11. Our RBNL initial
partitioner produces 1.13% better cuts in average than hMetis and the runtime is about 20%
faster. For all k we produce better minimum and average cuts as hMetis and PaToH except
for k = 2 where hMetis produces 0.18% better cuts in average.

All Benchmarks VLSI Benchmarks SPM Benchmarks

Algorithm Min. Avg. t[s] Min. Avg. t[s] Min. Avg. t[s]

KaHyPar-Pool 3354.82 3479.6 2.09 2816.18 2907.87 2.35 3897.85 4070.47 1.56

hMetis +1.24 +1.13 2.49 +0.76 +0.45 3.05 +1.96 +2.16 1.61

PaToH +2.6 +2.46 0.39 +2.19 +1.9 0.45 +3.09 +3.15 0.3

Table 10: Result of our final initial partitioner on the coarsened instances of the medium sized
benchmark set.
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KaHyPar hMetis PaToH

k Min. Avg. t[s] Min. Avg. t[s] Min. Avg. t[s]

2 1031.24 1101.19 0.34 1029.69 1099.11 0.24 1053.49 1131.04 0.08

4 2086.75 2216.44 0.87 2133.78 2236.13 0.77 2151.2 2273.64 0.19

8 3375.6 3493.35 1.75 3444.04 3583.31 1.93 3478.19 3588.59 0.32

16 4704.33 4804.84 3.14 4737.98 4869.03 4.31 4797.94 4897.67 0.57

32 5882.26 5999.77 5.41 5947.57 6059.23 8.82 6014.21 6122.68 0.89

64 7092.36 7221.06 9.27 7199.91 7307.08 18.19 7309.33 7421.74 1.44

Table 11: Result of our final initial partitioner on the coarsened instances of the medium sized
benchmark set for each k.
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5.4 Experimental Results of our Initial Partitioner in KaHyPar

We integrate our initial partitioning framework into KaHyPar and compare our best (Pool ini-
tial partitioner) and second best initial partitioner (BFS initial partitioner) with hMetis and
PaToH as initial partitioner in this framework. We evaluate the results on the full benchmark
set. Table 12 and 13 show the results of the n-Level hypergraph partitioning framework KaHy-
Par with different initial partitioners.
In table 12 we can see the results of KaHyPar on the overall benchmark set. Our initial

All Benchmarks VLSI Benchmarks SPM Benchmarks Large Benchmarks

Initial Partitioner Min. Avg. t[s] Min Avg. t[s] Min. Avg. t[s] Min. Avg. t[s]

hMetis 7937.32 8110.24 3.42 4506.62 4615.9 4.35 13979.69 14249.87 2.69 12812.13 13086.39 3.93

KaHyPar-Pool 7936.92 8118.07 2.94 4511.43 4627.93 3.43 13963.38 14240.28 2.52 12841.49 13135.2 3.51

PaToH 7973.8 8198.2 0.63 4529.33 4685.88 0.63 14037.7 14343.23 0.64 12902.29 13254.4 0.85

KaHyPar-BFS 8321.3 8938.15 0.45 4794.89 5174.52 0.6 14441.22 15439.22 0.34 13437.26 14513.6 0.53

Table 12: Result of KaHyPar on the full benchmark set with different initial partitioning algo-
rithms. The column t[s] shows the running time of the initial paritioners.

KaHyPar-Pool hMetis PaToH KaHyPar-BFS

k Min. Avg t[s] Min. Avg. t[s] Min. Avg t[s] Min. Avg t[s]

2 1650.14 1701.07 0.31 1653.69 1703.19 0.23 1647.86 1712.91 0.11 1666.48 1882.64 0.01

4 3534.75 3651.96 0.83 3524.77 3650 0.66 3522.35 3692.98 0.21 3651.483 4197.328 0.08

8 6032.93 6230.13 1.72 6048.9 6219.74 1.68 6081.94 6303.51 0.38 6329.843 6985.93 0.24

16 9303.81 9535.33 3.27 9249.73 9472.36 3.94 9325.06 9597.27 0.67 9835.25 10492.19 0.61

32 13291.17 13524.3 6.06 13288.52 13495.93 8.68 13355.2 13631.6 1.13 14085.37 14603.72 1.4

64 18486.78 18713.81 10.87 18462.37 18671.37 18.48 18674.79 18934.47 1.91 19674.55 20154 2.92

128 24664.56 24877.79 19.69 24806.41 25007.44 33.41 24963.45 25199.37 3.14 26315.82 26734.76 6.03

Table 13: Result of KaHyPar on the full benchmark set for each k with different initial parti-
tioning algorithms. The column t[s] shows the running time of the initial paritioners.

partitioner produces results comparable to those of hMetis (0.09% worse). We archieve 1%
better results than PaToH. On the sparse matrix instances our initial partitioner produces the
best solutions. Also the running time is about 16.33% faster than hMetis. With our Pool initial
partitioner KaHyPar archieves the best minimum cut in comparison with hMetis and PaToH.
If we have a look on Table 13, we can see that the KaHyPar-Pool initial partitioner computes

All Benchmarks

Initial Partitioner Init. Min. Min. Init Avg. Avg.

KaHyPar-Pool 10655.34 7936.92 10957.09 8118.07

hMetis 10738.71 7937.32 11024.4 8110.19

Table 14: Initial cuts (Init. Min. & Avg.) and final cuts of KaHyPar with hMetis and the Pool
partitioner as initial partitioner on the full benchmark set.

the best partitions for k = 2 and k = 128. Our cuts are 0.52% better for k = 128 than the cuts
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of hMetis and 1.28% better than PaToH. On maximum we are only 0.66% worse than hMetis
for k = 16. We produce the best minimum cuts for k = 8 and k = 128.
Table 14 shows the average initial partitioning cuts of our Pool initial partitioner and hMetis
in comparison with the final cuts of KaHyPar on the full benchmark set. We can see that
the Pool initial partitioner produces 0.61% better initial cuts as hMetis, but the final cuts of
KaHyPar are nearly the same as with hMetis.
The goal of this work was to replace hMetis as initial partitioner in KaHyPar with an own
initial partitioner which produces the same results in the same amount of time. With this final
experiment we have shown that our initial partitioner archieves the same results in the n-Level
context as hMetis and is about 16% faster.
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6 Conclusion

In this thesis we developed several direct k-way and recursive bisection initial partitioning
methods for the n-level hypergraph partitioning framework called KaHyPar. We implemented
several standard partitioning techniques which are the BFS, random and greedy hypergraph
growing initial partitioners. We introduce three different greedy hypergraph growing implemen-
tation techniques and provide three different gain functions. Further we adapt the idea of Label
Propagation to a working initial partitioning algorithm. Also we developed a Recursive Bisec-
tion implementation which can use one of our implemented partitioning algorithms to produce
bisections. We work out a new imbalance definition for our recursive bisection method, which
allows us to calculate an ε′ before each bisection to ensure that every resulting block at the end
of that process fulfil our predefined imbalance with the initial imbalance ε. The advantage is
that we do not restrict the solution space on each bisection that much as if we use a uniform ε′

for each bisection. At the end we use the existing n-level hypergraph partitioning framework
KaHyPar to develop a recursive bisection n-level initial partitioner which uses one of our pro-
vided algorithms as initial partitioner. For the n-level context we implemented the pool initial
partitioner which executes a subset of our developed initial partitioning methods and chooses
the best partition of all executed variants as final partition. We extensively evaluate different
configurations of our methods. We finally choose the pool initial partitioner for our recursive
bisection n-Level partitioner.
We integrate our initial partitioner into KaHyPar and compare the results of the overall frame-
work with our partitioner against the usage of hMetis and PaToH as initial partitioner. For
the comparison we use the recursive bisection variants of hMetis with default parameters and
PaToH with the default quality preset.
Our initial partitioner produce 0.61% better initial cuts on average than hMetis on the full
benchmark instances and is about 16% faster. KaHyPar produces comparable cuts with our
initial partitioner on average as with hMetis and 1% better cuts as PaToH as initial partitioner.
Also KaHyPar generates the best solutions on average for k = 2 and k = 128 with our initial
partitioner and produces the best minimum cuts. On the sparse matrix instances KaHyPar
works best with the pool initial partitioner.

6.1 Future Work

During our work on the initial partitioning framework for KaHyPar we find several interesting
approaches and adaptions in different areas.
We have thought about a new variant of recursive bisection where we choose a huge ε′ at
beginning and decide based on the weight of the resulting blocks in how many parts we further
divide the resulting parts. This approach has several advantages. First we do not restrict our
ε′ as much as with the adaptive epsilon ε′. This leads to a greater exploration of the solution
space. Furthermore, the rollback technique gains more importance, because with a large ε′
we can explore more feasible solutions during the bisection process. After a subhypergraph is
bisected, we have to decide in how many parts we further divide the resulting blocks V1 and V2.
For this decision we define the partition weight bound for a single block wmax = c(V )

k
(1+ ε). We

further divide block V1 in k1 = min{i | c(V1) ≤ i ·wmax} and V2 in k2 = min{i | c(V2) ≤ i ·wmax}
parts. Note that if we divide Vi in k′ < ki parts one of the resulting blocks at end of recursive
bisection is imbalanced, since c(Vi)

k′
> wmax with i ∈ {1, 2}. If we want to further divide the

two resulting parts of a bisection in k1 and k2 parts, they must fulfil the condition k1 + k2 = k.
Assume the situation where the weight of the hypergraph is c(V ) = 200, ε = 0.1 and we want
to divide the hypergraph in k = 4 parts. The partition weight bound is wmax = 55. The first
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bisection produces a weight of the two resulting blocks of c(V1) = 125 and c(V2) = 75. We
have to choose k1 = 3 and k2 = 2 with the definition above ⇒ k1 + k2 = 3 + 2 = 5 > 4 = k.
If k1 + k2 > k, we have to move hypernodes from one block to the other until k1 + k2 = k.
It is not possible to choose one ki smaller without moving a hypernode, because than one of
the resulting blocks is imbalanced at the end. If k1 + k2 < k, we can increase k1 or k2 until
k1 + k2 = k. Note that this procedure do not produce an imbalanced partition at the end.
We believe that this variant produces better cuts as our actual method, because we explore a
greater solution space and the rollback technique takes more effect.
The next open task in our work is a redefinition of the FM gain. The FM gain function takes
a move into account, if they increase or decrease the cut. Maybe it is more advantageously
to take the gain in the future, which a move can produce into the calculation. Their exists
several concept e.g. higher-level gains, but they are all runtime intensive and slow down the
partitioning process. We focus on an other gain function which describes the gain and potential
in the future in one function. This function g : V ×E ×P ×P → R describes the potential for
moving a hypernode v, which is contained in a net e, from block Vi to Vj

g(v, e, Vi, Vj) = ω(e) · 1 + |e ∩ Vj| − |e ∩ Vi|
|e| − 1 (6.1)

We can define the gain of a move as follows:

g′(v, Vi, Vj) =
∑
e∈I(v)

g(v, e, Vi, Vj) (6.2)

The gain function in equation 6.1 has interesting properties, which we summarize in the fol-
lowing listing:
(i) If λ(e) = 2, |e ∩ Vi| = 1 and |e ∩ Vj| = |e| − 1, than g(v, e, Vi, Vj) = ω(e)
(ii) If λ(e) = 1, |e ∩ Vi| = |e| and |e ∩ Vj| = 0, than g(v, e, Vi, Vj) = −ω(e)
(iii) If |e ∩ Vi| > |e ∩ Vj| than g(v, e, Vi, Vj) ≤ 0
(iv) If |e ∩ Vi| ≤ |e ∩ Vj| than g(v, e, Vi, Vj) > 0
(v) For all moves of a hypernode v in a net e from Vi to Vj the value of the gain is within
−ω(e) ≤ g(v, e, Vi, Vj) ≤ ω(e)

Property i) and ii) ensures that if a move decrease or increase the cut, this modified gain
function behave like the original FM gain function. The next two properties are important for
the future gain of a move. It is more promising to move a hypernode v, which is contained in a
net e, from his current block Vi to an other Vj, where |e∩Vi| ≤ |e∩Vj|. We can remove Vi from
e with less moves than Vj. The last property means that the maximum and minimum value of g
is reached, if a move decrease or increase the cut. In all other situation the gain is between those
two values. This function seem to open a promising area for future work. It is possible to use
this function in our greedy initial partitioner or in the uncoarsening phase as gain function for a
local search algorithm in a multilevel partitioning framework. A open question for this function
is the implementation of delta gain updates to provide acceptable running times. We integrate
this function without delta gain updates in our greedy initial partitioner and test it manually.
On the first view it decrease the cut on the sparse matrix instances in comparison with the FM
variant by a huge amount. At the VLSI instances the modify gain function provides near equal
results, because these instances has a low average hyperedge size and in this case the behaviour
is near equal to the FM gain function.
In the future we want to test and evaluate an adaption of the Iterative Local Search (ILS)
algorithm from Cong [8]. An ILS algorithm normally create an initial solution for a problem
and repeat a loop where the solution is pertubated and than the solution is improved with a
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6 Conclusion

local search technique. To pertubate a solution means to change the existing solution in a way
that we move away from the neighbourhood of this solution, but not to change them completely.
In combination with a local search heuristic we have the advantage to jump out of local minima
and explore an other one near to the old one. We implement a first version and using the
Stable Net Removal technique [8] to pertubate the solution. Stable Nets are hyperedges which
are before the execution of local search algorithm cut edges and after. Shibuya [27] has shown
that about 80% of the cut edges are stable nets and hard to remove from the cut. By removing
a small amount of these nets from the cut we can perturbate our solution. As local search
heuristic we used the ScLap-based algorithm which provides very fast local searches on small
hypergraphs and therefore we can make much more iterations than with a FM local search
algorithm. The tuning and evaluation of this technique is a task for the future.
Finally we want to provide different multiple runs parameters for each initial partitioner in the
algorithm set of the pool initial partitioner. Every partitioning method has different running
times and qualities. If we choose different multiple runs parameters for each partitioner we can
maybe decrease the running time and increase the quality of the pool initial partitioner. The
pool partitioner also offers the possibility to parallize the execution of the initial partitioner
and further speed up the partitioning process.
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B Detailed Parameter Tuning results

B Detailed Parameter Tuning results

B.1 Contraction Limit and Hypernode Weight Bound
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Figure 23: Results of the experiment with parameter s and t of our bfs initial partitioner with
20 runs at each bisection step.
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Figure 24: Results of the experiment with parameter s and t of our lp initial partitioner with
20 runs at each bisection step.
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B.1 Contraction Limit and Hypernode Weight Bound
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Figure 20: Results of the experiment with parameter s and t of our RBNL pool initial
partitioner.
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Figure 21: Results of the experiment with parameter s and t of our greedy global FM initial
partitioner with 20 runs at each bisection step.
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Figure 22: Results of the experiment with parameter s and t of our random initial partitioner
with 20 runs at each bisection step.
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B.2 Fruitless Moves of the FM Local Search algorithm
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Figure 25: Cut values of our RBNL initial partitioners with different maximum numbers of
fruitless moves.
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Figure 26: Running times of our RBNL initial partitioners with different maximum numbers of
fruitless moves.
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C Detail Results

C Detail Results

C.1 Initial Partitioning results on the medium sized benchmark set

All Benchmarks VLSI Benchmarks SPM Benchmarks

Algorithm Min. Avg. t[s] Min. Avg. t[s] Min. Avg. t[s]

KaHyPar-Pool 3354.82 3479.6 2.09 2816.18 2907.87 2.35 3897.85 4070.47 1.56

hMetis +1.24 +1.13 2.49 +0.76 +0.45 3.05 +1.96 +2.16 1.61

PaToH +2.6 +2.46 0.39 +2.19 +1.9 0.45 +3.09 +3.15 0.3

Table 17: Result of our final initial partitioner on the coarsened instances of the medium sized
benchmark set.

KaHyPar hMetis PaToH

k Min. Avg. t[s] Min. Avg. t[s] Min. Avg. t[s]

2 1031.24 1101.19 0.34 1029.69 1099.11 0.24 1053.49 1131.04 0.08

4 2086.75 2216.44 0.87 2133.78 2236.13 0.77 2151.2 2273.64 0.19

8 3375.6 3493.35 1.75 3444.04 3583.31 1.93 3478.19 3588.59 0.32

16 4704.33 4804.84 3.14 4737.98 4869.03 4.31 4797.94 4897.67 0.57

32 5882.26 5999.77 5.41 5947.57 6059.23 8.82 6014.21 6122.68 0.89

64 7092.36 7221.06 9.27 7199.91 7307.08 18.19 7309.33 7421.74 1.44

Table 18: Result of our final initial partitioner on the coarsened instances of the medium sized
benchmark set for each k.

C.2 Initial and Final Cuts of KaHyPar

All Benchmarks

Initial Partitioner Init. Min. Min. Init Avg. Avg.

KaHyPar-Pool 10655.34 7936.92 10957.09 8118.07

hMetis 10738.71 7937.32 11024.4 8110.19

Table 19: Initial cuts (Init. Min. & Avg.) and final cuts of KaHyPar with hMetis and the Pool
partitioner as initial partitioner on the full benchmark set.
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C Detail Results

VLSI Benchmarks SPM Benchmarks

Initial Partitioner Init. Min. Min. Init Avg. Avg. Init. Min. Min. Init Avg. Avg.

KaHyPar-Pool 5919.57 4511.43 6073.54 4627.93 19179.8 13963.38 19767.37 14240.28

hMetis 5962.62 4506.62 6101.4 4615.9 19340.48 13979.69 19919.61 14249.71

Table 20: Initial cuts (Init. Min. & Avg.) and final cuts of KaHyPar with hMetis and the
Pool partitioner as initial partitioner on the VLSI and Sparse Matrix instances. Best
result in a column is highlighted bold.

KaHyPar-Pool hMetis

k Init. Min. Min. Init Avg. Avg. Init. Min. Min. Init Avg. Avg.

2 2588.72 1650.14 2757.07 1701.07 2588.27 1653.69 2749.35 1703.19

4 5330.4 3534.75 5595.95 3651.96 5399.72 3524.77 5646.43 3650

8 8732.07 6032.93 8995.53 6230.13 8801.99 6048.9 9054.69 6219.74

16 12520.4 9303.81 12776.48 9535.33 12606.31 9249.73 12857.1 9471.91

32 16767.86 13291.17 17031.4 13524.3 16882.48 13288.52 17121.25 13495.93

64 22013.75 18486.78 22250.24 18713.81 22170.46 18462.37 22387.06 18671.54

128 28003.9 24664.56 28217.73 24877.79 28372.97 24806.41 28571.41 25007.44

Table 21: Initial cuts (Init. Min. & Avg.) and final cuts of KaHyPar with hMetis and the Pool
partitioner as initial partitioner on the full benchmark set for each k. Best results in
comparison are highlighted bold.

C.3 Overall Results of KaHyPar with different initial partitioner

Overall results of our final experiment of KaHyPar with the BFS and Pool initial partitioner
and hMetis and PaToH as initial partitioner. The running time in the following table is the
running time of the initial partitioner.

KaHyPar-BFS KaHyPar-Pool PaToH hMetis
H k Min Avg t Min Avg t Min Avg t Min Avg t

G
3_

ci
rc
ui
t

2 2142 2238.0 0.02 2142 2204.6 0.13 2142 2234.1 0.08 2142 2212.50 0.10
4 5353 6050.7 0.03 5376 5476.8 0.40 5370 5552.6 0.15 5368 5482.20 0.26
8 9654 10760.5 0.09 9666 9827.4 0.98 9720 9905.4 0.30 9694 9839.10 0.70
16 16849 17747.4 0.22 15424 15800.6 2.19 15605 16166.7 0.63 15369 15966.20 1.91
32 25720 26862.4 0.60 23319 24073.0 4.69 23526 24145.3 1.41 23240 23712.30 5.36
64 39201 40871.8 1.46 37189 37698.4 9.92 37304 37901.4 2.95 36726 37572.00 14.34
128 63630 64560.9 3.71 61487 61999.7 20.53 61149 62074.4 5.61 61668 61916.10 34.84

af
_
sh
el
l1
0

2 5250 5250.0 0.01 5250 5250.0 0.09 5250 5250.0 0.07 5250 5250.00 0.09
4 11170 12082.0 0.02 10855 11094.5 0.25 11020 11190.0 0.12 10830 11202.00 0.21
8 20225 21552.0 0.05 20715 21275.0 0.58 20090 21088.0 0.21 20830 21161.50 0.52
16 32835 34647.5 0.11 32095 32954.5 1.25 32305 32747.5 0.40 31585 32451.50 1.44
32 52010 54078.5 0.28 50170 51221.0 2.64 50045 50991.0 0.77 50475 51560.50 3.60
64 77560 79550.0 0.70 74185 75300.0 5.55 74780 75533.5 1.50 73175 75137.00 8.87
128 115135 116681.5 1.80 110525 111875.5 11.71 110305 111238.0 2.98 111035 111796.00 19.38

af
_
sh
el
l9

2 1810 2152.5 0.01 1810 1869.0 0.08 1810 1870.0 0.04 1810 1869.00 0.06
4 4480 5691.5 0.01 4420 4460.0 0.23 4270 4441.0 0.07 4430 4456.00 0.17
8 8335 9744.5 0.03 8530 8567.5 0.55 8525 8597.5 0.14 8305 8556.00 0.47
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C.3 Overall Results of KaHyPar with different initial partitioner

KaHyPar-BFS KaHyPar-Pool PaToH hMetis
H k Min Avg t Min Avg t Min Avg t Min Avg t

16 16655 17406.0 0.10 15745 16061.5 1.24 15680 15920.0 0.29 15660 16028.00 1.32
32 26800 27668.0 0.26 25800 26370.0 2.68 26020 26294.5 0.55 25860 26291.00 3.41
64 41000 42911.0 0.74 40640 41073.5 5.75 40140 40850.5 1.33 40570 40859.00 9.12
128 62510 63981.0 1.99 59690 60604.5 12.44 59540 60420.0 2.79 60530 60711.50 21.03

au
di
kw

_
1

2 10563 12471.3 0.02 10563 10643.4 0.35 10563 10643.4 0.15 10563 10643.40 0.21
4 32073 35247.3 0.07 31917 32148.9 1.21 32094 32199.0 0.39 32085 32189.40 0.81
8 74730 78999.3 0.36 74406 75081.9 3.38 74916 75208.2 1.10 74817 75060.60 3.07
16 124920 130746.3 1.49 123402 124444.2 8.49 122382 124246.8 2.69 122547 124431.00 10.61
32 184194 189902.7 4.63 180918 183517.8 19.48 182397 183739.2 5.99 181539 183848.40 31.29
64 262887 265367.7 11.85 256731 258853.8 39.78 256581 258495.6 10.77 257145 258365.70 77.17
128 361593 366080.7 25.01 357555 358993.8 71.06 357834 359432.1 18.82 357438 358449.90 151.63

b
cs
st
k2

9

2 360 362.4 0.00 360 361.2 0.10 360 361.2 0.07 360 361.80 0.10
4 1080 1104.0 0.01 1080 1088.4 0.30 1080 1092.0 0.06 1080 1093.20 0.22
8 2226 2377.2 0.06 2184 2221.8 0.65 2190 2221.7 0.11 2184 2228.40 0.64
16 3552 3860.2 0.16 3576 3630.9 1.24 3580 3668.4 0.20 3558 3638.60 1.63
32 5604 5742.0 0.52 5166 5225.7 2.52 5156 5300.6 0.38 5202 5275.80 4.46
64 8248 8465.5 2.45 6972 7089.2 6.86 7497 7625.5 0.93 6998 7108.40 14.50
128 10839 10994.3 8.03 9479 9537.1 18.31 9865 9865.0 2.29 10782 10823.30 26.10

b
cs
st
k3

0

2 527 569.5 0.00 527 529.2 0.17 527 529.2 0.06 527 529.20 0.11
4 1486 1802.3 0.04 1482 1524.7 0.56 1482 1536.9 0.14 1482 1521.20 0.41
8 3362 4187.5 0.12 3103 3206.0 1.31 3080 3199.6 0.26 3103 3154.70 1.26
16 7210 7665.2 0.36 6567 6690.9 2.65 6648 6763.8 0.48 6555 6668.00 3.30
32 11259 11783.7 0.89 10139 10270.1 4.78 10498 10639.7 0.72 10201 10354.70 7.88
64 16578 16915.0 2.28 14212 14457.0 17.06 14550 14850.0 1.18 14526 14724.70 18.60
128 21346 21614.8 7.08 18718 19017.8 17.11 19317 19597.2 2.32 19789 20048.30 33.84

b
cs
st
k3

1

2 665 772.7 0.01 665 682.1 0.20 664 691.9 0.07 664 685.70 0.11
4 1782 1998.7 0.04 1628 1721.3 0.62 1628 1738.4 0.15 1628 1690.60 0.41
8 3418 3884.6 0.14 3198 3328.1 1.43 3284 3420.9 0.29 3236 3351.00 1.28
16 5718 6406.3 0.39 5699 5760.3 2.79 5523 5723.3 0.52 5596 5716.20 3.53
32 9424 9791.6 0.87 8767 8975.8 5.01 8806 9024.8 0.90 8826 8934.30 8.56
64 13594 14124.1 1.91 12831 13034.4 8.66 13110 13231.1 1.54 12935 13059.90 19.12
128 19697 19909.3 4.23 17907 18016.2 15.16 18335 18473.3 2.34 17991 18080.70 37.44

b
cs
st
k3

2

2 946 1023.4 0.01 831 872.7 0.14 831 901.5 0.04 831 831.60 0.10
4 1677 2370.2 0.03 1594 1778.2 0.39 1648 1838.2 0.09 1594 1741.60 0.30
8 3749 4353.7 0.10 3627 3711.2 0.96 3567 3773.9 0.19 3615 3731.40 0.90
16 6649 7089.4 0.26 6181 6395.4 1.98 6288 6452.5 0.35 6170 6339.60 2.40
32 10447 10742.7 0.63 9836 10001.0 3.67 9924 10039.2 0.69 9840 9951.50 5.79
64 15336 15788.8 1.39 14072 14363.0 6.72 14276 14557.6 1.15 14013 14302.00 13.83
128 21875 22453.3 3.28 19847 20108.0 12.15 20297 20548.8 1.84 19834 20018.00 29.04

ec
ol
og
y1

2 2000 2000.0 0.01 2000 2000.0 0.09 2000 2000.0 0.10 2000 2000.00 0.27
4 3676 3939.4 0.02 3700 3735.9 0.25 3636 3730.6 0.08 3690 3743.90 0.19
8 6151 7053.7 0.04 6424 6640.5 0.58 6512 6791.0 0.16 6487 6635.00 0.51
16 10443 10809.1 0.11 10126 10347.3 1.24 10094 10321.0 0.30 10160 10288.80 1.36
32 15905 16198.8 0.28 15483 15971.9 2.63 15714 16013.1 0.61 15689 15983.20 3.55
64 22728 23475.0 0.71 22441 22845.9 5.46 22579 22857.3 1.28 22750 22900.10 8.74
128 33129 33985.9 1.78 32915 33374.8 11.41 32230 33067.7 2.62 32833 33291.70 19.71

ec
ol
og
y2

2 1998 1999.8 0.01 1998 1999.6 0.09 1998 1999.6 0.05 1998 1999.60 0.07
4 3689 3884.8 0.02 3630 3721.2 0.25 3652 3720.9 0.08 3673 3734.20 0.19
8 6363 6849.7 0.05 6368 6660.8 0.58 6487 6688.1 0.15 6533 6631.20 0.51
16 10393 10769.3 0.11 10100 10310.1 1.26 10102 10298.5 0.30 10141 10318.50 1.35
32 15651 16234.1 0.29 15577 15844.1 2.64 15387 15959.1 0.58 15381 15983.10 3.43
64 22736 23329.8 0.70 22645 22876.3 5.50 22380 22749.2 1.31 22380 22818.90 8.73
128 32367 33814.7 1.77 33003 33251.3 11.47 32526 32890.4 2.69 32625 33246.80 19.28

fi
na

n5
12

2 146 146.0 0.00 146 146.0 0.18 146 146.0 0.06 146 146.00 0.10
4 292 343.1 0.04 292 292.0 0.67 292 292.0 0.15 292 292.00 0.38
8 584 737.3 0.17 584 591.3 1.78 584 584.0 0.40 584 591.30 1.25
16 1314 1539.8 0.47 1168 1175.3 3.77 1168 1182.6 0.71 1168 1168.00 4.10
32 2336 2524.9 0.93 2336 2336.0 6.81 2336 2336.0 1.27 2336 2336.00 10.45
64 9500 9766.4 2.05 9056 9111.6 12.24 9068 9212.5 2.15 9049 9120.80 23.71
128 20156 20517.0 8.69 18303 18560.9 41.85 20094 20634.3 3.52 18255 18452.70 43.39

ib
m
01

2 203 290.3 0.01 203 245.7 0.18 205 258.9 0.29 203 248.40 0.14
4 513 621.2 0.05 520 601.5 0.47 515 589.9 0.09 583 599.20 0.39
8 931 1024.8 0.14 879 895.9 0.86 868 898.4 0.16 862 880.60 0.99
16 1309 1410.1 0.30 1249 1269.0 1.51 1258 1278.4 0.24 1242 1265.50 2.07
32 1827 1910.2 0.56 1651 1680.8 2.51 1659 1709.4 0.36 1653 1683.40 4.10
64 2568 2629.1 1.00 2218 2250.9 4.15 2243 2291.7 0.61 2229 2241.40 8.19
128 3500 3565.0 1.19 2922 2947.2 6.02 2973 2973.0 0.78 2959 2973.10 11.22

ib
m
02

2 350 411.2 0.01 356 369.2 0.35 352 368.5 0.52 352 365.50 0.31
4 748 987.4 0.07 705 717.1 0.87 698 741.3 0.19 704 721.50 0.83
8 2111 2280.5 0.20 2004 2077.1 1.55 2000 2110.4 0.33 2002 2060.20 2.21
16 3479 3582.4 0.47 3395 3427.3 2.52 3379 3459.5 0.48 3372 3409.50 5.06
32 4463 4594.1 0.96 4340 4370.7 3.76 4283 4382.2 0.62 4371 4403.30 8.92
64 5349 5406.1 1.67 5137 5158.1 5.63 5136 5185.7 0.84 5179 5218.70 14.04
128 6203 6348.8 3.00 5902 5934.3 8.78 6027 6027.0 1.31 6087 6113.20 19.90

ib
m
03

2 957 976.7 0.01 957 966.9 0.35 954 974.4 0.08 957 967.70 0.28
4 1829 2032.2 0.09 1753 1817.9 0.78 1699 1808.8 0.17 1721 1776.20 0.79
8 2693 2968.0 0.29 2646 2719.9 1.41 2580 2693.3 0.25 2513 2641.10 1.70
16 3543 3664.3 0.57 3321 3398.1 2.40 3305 3433.9 0.38 3307 3383.90 3.29
32 4265 4352.8 2.28 4025 4075.0 7.52 4072 4098.7 0.54 4020 4052.30 5.91
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C Detail Results

KaHyPar-BFS KaHyPar-Pool PaToH hMetis
H k Min Avg t Min Avg t Min Avg t Min Avg t

64 5030 5135.0 1.86 4679 4741.8 5.90 4773 4798.8 0.79 4708 4750.90 10.90
128 6221 6295.4 3.07 5659 5683.8 9.34 5756 5791.3 1.17 5776 5809.50 16.96

ib
m
04

2 593 619.2 0.01 590 609.0 0.33 585 612.1 0.08 590 607.60 0.25
4 1805 1875.8 0.08 1754 1782.0 0.87 1747 1789.5 0.18 1757 1787.50 0.85
8 3094 3202.1 0.25 2860 2946.2 1.61 2901 2986.9 0.33 2860 2916.40 1.95
16 4055 4225.0 0.57 3876 3921.1 2.64 3837 3947.5 0.48 3778 3869.00 3.87
32 5248 5357.6 1.10 4994 5053.4 4.23 5039 5092.2 0.65 4982 5045.20 6.95
64 6459 6565.4 3.74 6126 6178.4 6.37 6186 6223.7 1.06 6091 6126.10 12.15
128 7800 7934.8 3.22 7260 7294.2 9.99 7353 7440.4 1.44 7314 7375.90 18.87

ib
m
05

2 1725 1777.5 0.01 1727 1735.3 0.52 1725 1734.7 0.17 1727 1735.30 0.44
4 3034 3295.2 0.10 2966 3013.4 1.07 2938 3055.3 0.20 2979 3023.30 1.16
8 4362 4663.1 0.34 4230 4331.7 1.74 4302 4535.9 0.34 4405 4572.60 2.60
16 5573 5756.2 0.83 5467 5558.0 2.78 5486 5571.2 0.45 5269 5408.30 4.50
32 6166 6273.1 1.60 5974 6090.1 4.20 6046 6127.7 0.60 5900 5992.40 7.82
64 6793 6946.8 2.80 6584 6645.2 6.39 6496 6565.3 0.85 6445 6530.10 14.11
128 7507 7610.9 4.35 7218 7277.5 10.00 7087 7181.4 1.30 7116 7225.80 20.73

ib
m
06

2 982 1109.1 0.01 982 1040.7 0.44 982 1034.5 0.10 1043 1068.10 0.35
4 1665 1852.0 0.09 1481 1594.0 0.96 1493 1651.0 0.18 1509 1637.50 0.95
8 2412 2575.9 0.35 2345 2393.8 1.80 2346 2392.5 0.34 2370 2397.90 2.11
16 3339 3538.8 0.66 3186 3226.6 2.88 3180 3260.8 0.50 3231 3255.60 4.19
32 4444 4528.5 1.43 4159 4197.1 4.75 4238 4276.9 0.66 4160 4226.80 7.62
64 5483 5656.1 2.50 5123 5193.4 7.14 5211 5250.0 0.95 5122 5164.50 13.31
128 6833 6918.2 7.14 6225 6258.7 22.14 6314 6379.9 1.48 6313 6347.20 20.24

ib
m
07

2 931 964.2 0.02 934 965.5 0.50 912 954.4 0.10 931 957.30 0.37
4 2283 2598.6 0.13 2264 2293.4 1.22 2201 2319.8 0.27 2253 2298.20 1.13
8 3549 3834.7 0.45 3410 3478.8 2.15 3415 3547.0 0.38 3391 3452.80 2.46
16 4977 5178.6 0.88 4710 4833.6 3.53 4734 4898.9 0.64 4600 4782.80 5.05
32 6284 6483.0 1.55 5998 6130.4 5.40 6108 6191.1 0.91 5979 6069.50 9.09
64 7928 8091.7 2.68 7571 7633.5 8.31 7564 7664.5 1.29 7516 7588.90 16.46
128 9693 9816.8 8.21 9110 9162.0 24.46 9195 9233.3 1.79 9133 9177.80 24.61

ib
m
08

2 1146 1362.8 0.01 1146 1165.7 0.43 1163 1168.5 0.13 1146 1166.10 0.34
4 2409 2651.0 0.08 2341 2364.0 1.04 2343 2381.5 0.26 2344 2369.20 0.99
8 3707 3863.8 0.32 3486 3532.0 1.86 3504 3564.1 0.38 3496 3541.60 2.16
16 4888 5123.4 0.63 4438 4680.6 3.06 4624 4751.7 0.55 4595 4645.00 4.35
32 6392 6575.3 1.33 6033 6132.3 4.95 5976 6148.6 0.82 5968 6068.00 8.95
64 8257 8436.7 2.28 7751 7834.3 7.93 7846 7906.8 1.33 7778 7882.40 16.18
128 10019 10119.9 3.74 9321 9371.8 12.33 9392 9455.7 1.80 9466 9503.70 27.28

ib
m
09

2 621 667.5 0.01 621 623.4 0.37 621 624.6 0.09 621 624.30 0.23
4 1795 2294.4 0.11 1701 1739.5 0.96 1732 1789.5 0.20 1694 1724.00 0.78
8 2942 3246.5 0.33 2782 2889.1 1.82 2824 2909.9 0.34 2682 2836.20 1.81
16 4431 4621.6 0.76 3980 4039.8 3.18 3914 4063.1 0.54 3943 4014.40 4.11
32 6062 6260.1 1.49 5466 5565.9 5.48 5414 5604.9 0.94 5485 5533.20 8.23
64 7901 8120.6 2.61 7301 7419.4 8.65 7498 7570.3 1.24 7327 7381.00 15.93
128 10177 10384.3 4.39 9441 9494.9 13.61 9509 9647.8 1.99 9393 9477.90 25.41

ib
m
10

2 1296 1623.5 0.02 1289 1307.4 0.53 1295 1458.0 0.14 1293 1383.00 0.36
4 2453 2905.9 0.14 2489 2574.4 1.28 2431 2555.6 0.33 2419 2528.60 1.11
8 4493 4899.2 0.46 4064 4295.3 2.44 4188 4368.0 0.54 4198 4288.70 2.87
16 6568 6982.1 1.03 6025 6182.9 4.32 5970 6216.7 0.87 6048 6244.00 5.66
32 8986 9499.9 2.08 8369 8531.6 6.98 8495 8655.0 1.22 8547 8631.10 11.02
64 12362 12574.5 3.39 11619 11768.5 10.64 11676 11863.8 1.74 11729 11795.00 20.61
128 15410 15585.5 5.83 14600 14699.1 16.38 14708 14822.5 2.62 14645 14777.30 32.55

ib
m
11

2 1076 1383.4 0.02 1073 1145.7 0.48 1067 1179.8 0.11 1077 1171.00 0.34
4 2841 3088.7 0.13 2472 2574.4 1.19 2546 2833.0 0.25 2436 2530.60 0.99
8 3989 4219.5 0.42 3548 3794.9 2.20 3582 3845.9 0.45 3549 3783.90 2.28
16 5735 6326.5 0.94 5245 5427.7 3.90 5304 5502.8 0.70 5116 5364.40 5.02
32 8102 8486.6 1.76 7507 7582.9 6.47 7349 7630.5 1.07 7351 7524.90 9.87
64 10650 10821.1 3.26 9659 9779.1 10.03 9897 9989.1 1.72 9659 9722.30 18.67
128 13791 14004.3 5.35 12729 12850.0 15.48 12887 13026.8 2.41 12780 12834.10 30.23

ib
m
12

2 1951 2389.3 0.02 1939 2041.0 0.62 1937 2045.8 0.15 2040 2055.30 0.39
4 4014 4643.0 0.19 4006 4128.5 1.52 3952 4111.0 0.36 3840 4130.10 1.18
8 6271 6940.0 0.54 6123 6324.4 2.89 6073 6411.6 0.50 6194 6319.60 2.97
16 8938 9358.8 1.27 8261 8492.9 4.74 8408 8719.4 0.84 8519 8770.30 5.54
32 11519 11910.7 2.34 10800 11021.7 7.69 10920 11159.6 1.40 10727 10941.00 11.33
64 15267 15454.0 4.44 14248 14386.7 12.02 14575 14783.7 2.06 14185 14311.30 21.90
128 19409 19568.4 6.71 18286 18484.2 18.03 18400 18665.2 2.72 18123 18258.10 36.30

ib
m
13

2 832 1101.6 0.02 832 832.2 0.52 832 860.5 0.19 832 832.20 0.34
4 2211 2396.7 0.14 2006 2148.2 1.29 1915 2175.3 0.29 1940 2085.60 1.04
8 3691 3958.3 0.39 3050 3400.8 2.47 3153 3565.7 0.52 2969 3159.30 2.58
16 6075 6626.1 1.04 5362 5705.0 4.46 5641 5950.1 0.91 5540 5745.60 5.97
32 8510 9044.9 2.07 7800 7989.3 7.32 7887 8068.0 1.23 7835 7958.70 11.69
64 12758 13123.2 3.48 12026 12139.7 11.59 12225 12335.7 1.97 12012 12053.60 22.40
128 16675 16862.7 11.80 15500 15623.6 35.22 15671 15819.9 2.85 15428 15511.60 35.26

ib
m
14

2 1914 2216.1 0.03 1890 1924.3 0.80 1891 1954.9 0.18 1891 1927.70 0.50
4 3624 4226.0 0.21 3402 3446.6 1.88 3357 3469.0 0.40 3344 3417.20 1.40
8 5802 6489.8 0.69 5139 5334.3 3.59 5165 5394.6 0.68 5170 5290.60 3.60
16 8812 9537.9 1.53 8407 8538.1 6.18 8457 8669.9 1.20 8330 8527.60 8.05
32 13255 13799.3 3.20 13025 13169.6 10.20 12906 13220.1 1.98 12823 13079.40 15.74
64 18532 18885.6 5.62 17634 17773.9 15.89 17746 17870.1 2.79 17505 17666.80 28.90
128 23719 23901.8 9.53 22363 22509.3 23.94 22524 22734.5 3.94 22192 22408.60 45.95
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C.3 Overall Results of KaHyPar with different initial partitioner

KaHyPar-BFS KaHyPar-Pool PaToH hMetis
H k Min Avg t Min Avg t Min Avg t Min Avg t

ib
m
15

2 2814 3433.1 0.03 2747 2762.5 0.76 2747 2777.9 0.16 2747 2762.40 0.50
4 5409 6388.1 0.21 5043 5131.8 1.81 5060 5370.5 0.47 5039 5167.90 1.48
8 7676 8543.2 0.68 6712 6970.8 3.43 6858 7232.8 0.71 6777 6975.30 3.58
16 10066 11003.5 1.44 9037 9359.4 6.04 9239 9576.6 1.34 8716 9206.00 7.70
32 15685 16224.5 3.13 13497 13837.7 10.27 13964 14327.7 1.95 13833 13963.70 16.19
64 20377 21027.9 5.90 18657 18857.9 16.61 18874 19168.5 2.93 18655 18891.10 30.74
128 27280 27545.2 9.43 24913 25251.1 25.88 25307 25611.1 4.50 25003 25205.40 51.27

ib
m
16

2 1976 2446.2 0.03 1957 2042.6 0.82 2017 2080.5 0.18 1981 2084.40 0.52
4 4706 5222.0 0.26 4274 4430.7 2.11 4217 4410.3 0.47 4261 4379.20 1.66
8 7453 8357.1 0.76 6851 7049.2 4.06 6964 7217.9 0.78 6692 6986.10 4.12
16 11738 12344.0 1.95 10993 11183.2 7.01 10643 11014.1 1.34 10780 11002.70 8.81
32 16580 17285.8 3.74 15330 15584.4 11.35 15350 15747.0 2.23 15206 15442.20 16.85
64 22283 22803.8 6.86 20739 20858.2 18.15 20866 21129.7 2.99 20509 20643.20 31.88
128 28477 28796.0 11.31 26571 26704.6 27.46 26815 27019.5 4.87 26260 26469.70 51.10

ib
m
17

2 2570 3207.6 0.04 2429 2505.7 1.03 2348 2541.4 0.26 2376 2503.00 0.68
4 5954 7404.8 0.30 5884 6015.1 2.54 5700 6048.5 0.61 5604 5928.30 2.12
8 10524 12096.2 0.96 9630 10051.5 4.60 9766 10134.7 1.02 9573 9915.20 4.85
16 16736 17558.0 2.13 14732 15250.5 7.92 14784 15447.8 1.82 14511 14906.40 10.52
32 21785 22395.2 4.27 19883 20166.0 13.21 20411 20596.0 2.72 19705 19961.20 20.49
64 28197 28944.8 7.93 26492 26801.8 20.88 26459 27045.4 3.73 26481 26886.90 37.38
128 36450 37175.5 13.08 34899 35047.8 32.39 35077 35308.7 5.10 34548 34796.40 63.59

ib
m
18

2 1742 2176.3 0.03 1548 1838.7 0.68 1542 1705.5 0.16 1542 1746.20 0.51
4 3345 4599.2 0.16 3081 3279.8 1.63 3089 3313.6 0.43 3098 3220.00 1.56
8 6626 7315.5 0.50 5757 6010.7 3.34 5902 6154.3 0.72 5819 6031.90 4.02
16 9427 10591.8 1.28 8740 8963.3 5.78 8807 9022.0 1.25 8724 8853.10 8.99
32 14195 15165.1 2.75 13017 13224.8 9.76 13022 13243.8 1.85 13008 13323.40 17.29
64 19871 20328.1 4.40 18271 18578.6 15.18 18093 18689.9 2.81 18224 18483.20 32.16
128 25529 26188.3 7.65 24161 24357.6 23.19 24465 24585.1 3.97 24154 24258.50 54.12

kk
t_

p
ow

er

2 10097 11294.5 0.26 10097 10923.6 4.38 10097 10933.7 0.69 10097 11049.80 1.89
4 17307 21066.5 3.38 17291 19012.1 11.85 18693 19315.5 1.79 17291 18972.60 6.30
8 33999 38914.1 9.41 31879 35168.7 26.17 33397 35589.1 3.33 33270 34824.00 12.18
16 58714 71761.2 19.44 62532 68753.7 45.70 60242 66638.4 6.01 57238 59887.40 20.40
32 104305 113071.0 35.26 93112 99893.5 72.18 96923 104737.5 10.70 93040 96507.10 36.45
64 163317 170931.0 53.21 149574 153735.7 105.49 157286 163453.7 15.88 142552 147647.20 66.10
128 233381 241166.4 79.58 217425 222496.3 146.91 225001 230578.0 25.60 206270 211111.10 105.19

ld
oo

r

2 3164 3364.2 0.01 3164 3217.9 0.09 3108 3201.1 0.06 3136 3220.70 0.08
4 6482 7337.4 0.02 6279 6384.7 0.27 6251 6508.6 0.09 6328 6439.30 0.20
8 11305 13602.4 0.05 11452 11872.7 0.63 11830 12059.6 0.20 11389 11865.70 0.51
16 22323 23832.2 0.13 19873 20284.6 1.37 20041 20633.9 0.35 20097 20553.40 1.50
32 37373 38491.2 0.31 34454 34983.2 2.92 33635 34601.7 0.72 34195 34890.10 3.70
64 57533 59372.6 0.83 53046 53897.2 6.23 52843 53482.1 1.42 52591 53498.90 9.52
128 87514 88840.8 2.16 80717 81623.5 13.27 81046 81755.1 3.21 79877 81332.30 21.85

m
em

pl
us

2 2917 2966.0 0.00 2908 2925.4 0.13 2907 2921.1 0.03 2906 2916.60 0.11
4 4834 4934.2 0.04 4477 4514.7 0.23 4215 4445.6 0.04 4200 4901.90 0.27
8 5453 5599.4 0.18 5180 5273.9 0.53 5065 5157.4 0.07 5536 5850.80 0.52
16 5910 6129.4 0.54 5807 5831.8 1.12 5648 5773.4 0.28 6375 6540.90 1.07
32 6642 6797.4 1.78 6499 6539.2 5.80 6271 6356.2 0.27 6528 6570.80 2.00
64 7118 7179.4 3.19 6915 6979.8 5.26 6946 6978.7 0.60 6960 7009.60 3.95
128 7409 7486.5 4.48 7196 7241.1 8.60 7288 7288.0 0.66 7298 7346.40 8.90

nl
pk

kt
12
0

2 58560 59814.1 0.04 58810 60278.1 0.51 58800 59629.9 0.31 58560 60223.30 0.37
4 119200 123423.0 0.16 118370 121379.0 1.57 119156 121638.3 0.60 120070 122772.10 1.17
8 181994 198829.1 0.62 179820 183881.7 3.87 180587 182220.6 1.62 180462 182893.50 3.72
16 292773 303178.1 1.98 289862 294259.7 9.84 290233 294332.0 4.07 288628 293564.70 11.53
32 413436 419753.2 6.40 409959 412907.9 23.89 411192 413526.5 9.73 408704 413523.90 37.45
64 538054 546594.6 19.66 524848 532066.3 59.03 528560 536923.7 26.18 530373 535203.70 113.58
128 733731 742871.1 57.94 726004 731651.7 144.44 727704 731869.3 60.91 725136 731231.80 297.85

nl
pk

kt
16
0

2 104532 107071.0 0.08 103880 105871.1 0.51 104112 106388.8 0.42 104112 105955.60 0.47
4 216792 221293.4 0.19 216118 221155.8 1.48 215170 221128.9 0.84 214174 220290.40 1.15
8 320640 334096.0 0.54 326658 328697.5 3.55 324522 330068.9 1.97 324129 329013.00 3.38
16 525727 545376.8 1.70 514111 526928.9 8.57 521218 530292.2 4.75 520877 528143.60 10.60
32 748372 760636.4 5.15 738114 745897.7 20.44 736915 748235.3 10.36 734200 744422.90 32.07
64 968937 991546.9 15.39 955482 962698.6 49.52 954638 970354.4 23.57 958454 965764.11 90.54
128 1338487 1345748.6 45.80 1320797 1326574.4 123.87 1321435 1329646.3 59.27 1320443 1328933.20 250.45

th
er
m
al
2

2 930 1499.8 0.01 929 936.7 0.13 930 936.8 0.05 930 936.80 0.07
4 2801 3796.2 0.02 2793 2806.7 0.32 2795 2807.1 0.07 2794 2809.90 0.14
8 6641 7160.7 0.03 6536 6568.8 0.64 6557 6575.2 0.12 6541 6569.10 0.32
16 11368 11938.9 0.07 10794 10932.5 1.17 10863 10934.4 0.25 10880 10935.80 0.92
32 18197 18955.7 0.22 17893 18147.8 2.56 18019 18189.2 0.53 18067 18202.40 2.99
64 28380 28817.7 0.63 27030 27226.1 5.78 26957 27146.0 1.22 26980 27113.20 8.08
128 42605 43015.0 1.64 40817 40991.4 11.85 40676 40830.8 2.55 40783 40974.90 18.50

vi
br
ob

ox

2 2491 2497.7 0.02 2491 2497.5 0.59 2489 2493.5 0.15 2489 2498.20 0.55
4 3858 4306.2 0.21 4030 4176.8 1.27 4123 4343.4 0.27 4061 4202.90 1.39
8 5108 5468.3 0.64 4699 4849.4 2.37 4968 5155.4 0.39 4746 4853.30 2.88
16 5757 6270.8 1.62 5667 5936.4 4.09 5780 5979.4 0.65 5188 5412.80 5.56
32 7041 7283.4 2.76 6849 6927.8 6.86 6862 7013.4 0.95 6818 6907.90 10.62
64 8071 8201.0 5.27 7658 7745.4 11.17 7818 7916.4 1.39 7756 7820.40 19.84
128 9433 9522.9 7.27 8633 8728.4 15.69 9011 9011.0 1.75 8751 8811.50 27.30
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