

High Quality Graph and Hypergraph Partitioning

2nd BMBF Big Data All Hands Meeting · October 11, 2017 Yaroslav Akhremtsev, Peter Sanders, Sebastian Schlag, Christian Schulz

Institute of Theoretical Informatics · Algorithmics Group

Graphs and Hypergraphs

Graph
$$G = (V, E)$$
vertices edges

- models relationships between objects
- \blacksquare dyadic (**2-ary**) relationships

Graphs and Hypergraphs

Graph
$$G = (V, E)$$
vertices edges

- models relationships between objects
- \blacksquare dyadic (**2-ary**) relationships

Hypergraph H = (V, E)

- Generalization of a graph⇒ hyperedges connect ≥ 2 nodes
- arbitrary (d-ary) relationships
- Edge set $E \subseteq \mathcal{P}(V) \setminus \emptyset$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

 $lacks V_i$ are **roughly equal-sized**:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

lacks blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e)$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$
- Hypergraphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e)$

Partition (hyper)graph $G = (V, E, c : V \to R_{>0}, \omega : E \to R_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$
- Hypergraphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 10$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$
- Hypergraphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 10$
 - connectivity: $\sum_{e \in \text{cut}} (\lambda 1) \omega(e)$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$
- Hypergraphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 10$
 - connectivity: $\sum_{e \in \text{cut}} (\lambda 1) \omega(e)$

blocks connected by e

Partition (hyper)graph $G = (V, E, c : V \to R_{>0}, \omega : E \to R_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 17$
- Hypergraphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e) = 10$
 - connectivity: $\sum_{e \in \text{cut}} (\lambda 1) \omega(e) = 12$

blocks connected by e

Applications

VLSI Design

Warehouse Optimization

Complex Networks

Route Planning

Simulation

 $\mathbf{R}^{n \times n} \ni Ax = b \in \mathbf{R}^n$ Scientific Computing

Applications

VLSI Design

Warehouse Optimization

Complex Networks

Route Planning

Simulation

Parallel Sparse-Matrix Vector Product (SpM×V)

$$y = Ab$$

$$\begin{vmatrix} b_j & b & b_k \\ \hline \cdot & & \cdot \\ = & a_{ij} & + & a_{ik} \\ = & A \end{vmatrix}$$

Setting:

- repeated SpM×V on supercomputer
- lacktriangle A is large \Rightarrow distribute on multiple nodes
- lacktriangle symmetric partitioning $\Rightarrow y \& b$ divided conformally with A

Parallel Sparse-Matrix Vector Product (SpM×V)

$$y = Ab$$

 b_j b_k

Task: distribute A to nodes of supercomputer such that

- work is distributed evenly
- communication overhead is minimized

Setting:

- repeated SpM×V on supercomputer
- lacksquare A is large \Rightarrow distribute on multiple nodes
- \blacksquare symmetric partitioning $\Rightarrow y \& b$ divided conformally with A

$$A \in \mathbf{R}^{16 \times 16}$$

$$A \in \mathbf{R}^{16 \times 16}$$

$$A \in \mathbf{R}^{16 \times 16}$$

Load Balancing?

$$\Rightarrow$$
 9

$$\Rightarrow$$
 12

$$\Rightarrow$$
 14

$$\Rightarrow$$
 12

$$A \in \mathbf{R}^{16 \times 16}$$

Load Balancing?

$$\Rightarrow 9$$

$$\Rightarrow$$
 12

$$\Rightarrow$$
 14

$$\Rightarrow$$
 12

Commuication Volume?

$$A \in \mathbf{R}^{16 \times 16}$$

Load Balancing?

$$\Rightarrow 9$$

$$\Rightarrow$$
 12

$$\Rightarrow$$
 14

$$\Rightarrow$$
 12

Commuication Volume?

$$A \in \mathbf{R}^{16 \times 16}$$

Load Balancing?

$$\Rightarrow$$
 9

$$\Rightarrow$$
 12

$$\Rightarrow$$
 14

$$\Rightarrow$$
 12

Commulcation Volume? ⇒ 24 entries!

Commulcation Volume? ⇒ 24 entries!

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

One vertex per row:

$$\Rightarrow V_R = \{v_1, v_2, \dots, v_{16}\}$$

One hyperedge per column:

$$\Rightarrow E_C = \{e_1, e_2, \ldots, e_{16}\}$$

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

One vertex per row:

$$\Rightarrow V_R = \{v_1, v_2, \dots, v_{16}\}$$

One hyperedge per column:

$$\Rightarrow E_C = \{e_1, e_2, \ldots, e_{16}\}$$

$v_i \in V_R$:

- task to compute inner product of row i with b
- $ightharpoonup \Rightarrow c(v_i) := \# \text{ nonzeros}$

	1	2	3	4	5	6	7	8	9	10	<u></u>	7	$\frac{1}{2}$	7	12	9
	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b	b
1	Γx									X						٦
2		X			X							X				ļ
1 2 3 4 5 6 7 8			X			X										
4				X							X					
5	X				X								X			
6						X										
7		X			X		X		X							
				X				X			X					
V 9 9									X			X			X	
10	X						X			X			X			
OT 11			X								X	X		X		
12											X	X				X
13					X		X						X			
14					X	X						X		X		
15									X						X	
16				X				X								X

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

One vertex per row:

$$\Rightarrow V_R = \{v_1, v_2, \dots, v_{16}\}$$

One hyperedge per column:

$$\Rightarrow E_C = \{e_1, e_2, \ldots, e_{16}\}$$

$v_i \in V_R$:

- task to compute inner product of row i with b
- $ightharpoonup \Rightarrow c(v_i) := \# \text{ nonzeros}$

 $e_j \in E_C$: set of vertices that need b_j

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

One vertex per row:

$$\Rightarrow V_R = \{V_1, V_2, \dots, V_{16}\}$$

One hyperedge per column:

$$\Rightarrow E_C = \{e_1, e_2, \dots, e_{16}\}$$

Solution: ε -balanced partition of H

- balanced partition \(\simeq \) computational load balance
- lacktriangle small $(\lambda 1)$ -cutsize \rightsquigarrow minimizing communication volume

From Hypergraph Partitioning to SpM×V

From Hypergraph Partitioning to SpM×V

Load Balancing?

From Hypergraph Partitioning to SpM×V

Load Balancing?

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

From Hypergraph Partitioning to SpM×V

Where are the cut-hyperedges?

Commuication Volume?

From Hypergraph Partitioning to SpM×V

Where are the cut-hyperedges?

Load Balancing?

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

Commulcation Volume? ⇒ 6 entries!

How does (Hyper)Graph Partitioning work?

How does

Bad News:

- Hypergraph Partitioning is NP-hard
- even finding good approximate solutions for graphs is NP-hard

Successful Heuristic: Multilevel Paradigm

Successful Heuristic: Multilevel Paradigm

Successful Heuristic: Multilevel Paradigm

Preprocessing:

- community detection
- sparsification

Coarsening

Preprocessing:

- community detection
- sparsification

Coarsening: match Coarsening: cluster cluster edge ratings

Preprocessing:

- community detection
- sparsification

Coarsening:

- matching
- clustering
- edge ratings

Initial Partitioning:

■ portfolio of various algorithms

→ diversification

Preprocessing:

- community detection
- sparsification

Coarsening:

- matching
- clustering
- edge ratings

Initial Partitioning:

Preprocessing:

- community detection
- sparsification

Metaheuristics:

- Global Search
- **Evolutionary Algorithms**

Coarsening:

- matching
- clustering
- edge ratings

local search

Local Search:

- Kernighan-Lin
- Fiduccia-Mattheyses
- Max-Flow Min-Cut

Initial Partitioning:

portfolio of various algorithms \rightsquigarrow diversification

Preprocessing:

- community detection
- sparsification

Metaheuristics:

- Global Search
- Evolutionary Algorithms

Coarsening:

- matching
- clustering
- edge ratings

Parallelization:

- shared memory
- distributed memory

Local Search:

local search

- Kernighan-Lin
- Fiduccia-Mattheyses
- Max-Flow Min-Cut

Initial Partitioning:

Algorithm 1: FM Local Search

while ¬ done do

find best move perform best move

rollback to best solution

- compute gain $g(v) = d_{ext}(v) d_{int}(v)$
- alternate between blocks
- edge-cut: 7

Algorithm 1: FM Local Search

while ¬ done do

find best move perform best move

rollback to best solution

- compute gain $g(v) = d_{ext}(v) d_{int}(v)$
- alternate between blocks
- edge-cut: **7**

Algorithm 1: FM Local Search

while ¬ done do

find best move perform best move

rollback to best solution

- compute gain $g(v) = d_{ext}(v) d_{int}(v)$
- alternate between blocks
- edge-cut: 7

while ¬ done do

find best move perform best move

rollback to best solution

- ightharpoonup recalculate gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6

while ¬ done do

find best move perform best move

rollback to best solution

- \blacksquare recalculate gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6

Algorithm 1: FM Local Search

while ¬ done do

find best move perform best move

rollback to best solution

- \blacksquare recalculate gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6,5

Algorithm 1: FM Local Search

while ¬ done do

find best move perform best move

rollback to best solution

- \blacksquare recalculate gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6,5,5

Algorithm 1: FM Local Search

while ¬ done do

find best move perform best move

rollback to best solution

- \blacksquare recalculate gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6,5,5

Algorithm 1: FM Local Search

while ¬ done do

find best move perform best move

rollback to best solution

- \blacksquare recalculate gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6,5,5,6

Algorithm 1: FM Local Search

while ¬ done do

find best move perform best move

rollback to best solution

- ightharpoonup recalculate gain g(v) of neighbors
- move each node at most once
- edge-cut: 7, 6,5,5,6

KaHIP - Karlsruhe High Quality Partitioning

http://algo2.iti.kit.edu/kahip/

Experimental Results – KaHIP (ParHIP)

KaHyPar - Karlsruhe Hypergraph Partitioning

- n-Level Partitioning Framework
- Objectives:
 - hyperedge cut
 - connectivity $(\lambda 1)$
- Partitioning Modes:
 - recursive bisection
 - direct k-way
- Upcoming Features:
 - evolutionary algorithm
 - flow-based refinement
 - advanced local search algorithms
- http://www.kahypar.org

Experimental Results – KaHyPar

Conclusion

(Hyper)Graph Partitioning:

- fundamental graph problem with many application areas
- successful heuristic: multilevel approach + local search
- Graphs: KaHIP http://algo2.iti.kit.edu/kahip/
- Hypergraphs: KaHyPar http://www.kahypar.org

