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Graphs and Hypergraphs AT

llllllllllllllllllllllllllllll

Graph G = (V, E)
vertices—/‘ ‘\—edges

® models relationships between objects <
® dyadic (2-ary) relationships \ / \\/ .
~

hyperedge

Hypergraph H = (V, E)
® Generalization of a graph
= hyperedges connect > 2 nodes
® arbitrary (d-ary) relationships
m Edgeset EC P(V)\ 0
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized:
c(V)
c(Vi) < (1+¢) | 5]
® objective function on edges is minimized
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized: '/— imbalance parameter

V
c(V)) < (1+¢) [%]
® objective function on edges is minimized
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized: ﬁ imbalance parameter
V) < (1 elv)
c(Vi) < (1+¢) [ i —‘

® objective function on edges is minimized

Common Objectives:
® Graphs:

®ocut: ) (e
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized: '/— imbalance parameter

c(V) < (1 +¢) [22]

® objective function on edges is minimized

Common Objectives:
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized: '/— imbalance parameter
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into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized: ﬁ imbalance parameter
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Partition (hyper)graph G=(V,E,c:V — Ryg,w : E — Ryy)
into k disjoint blocks V4, ..., Vi s.t.

® blocks V; are roughly equal-sized: '/ imbalance parameter
c(V)
c(Vi) < (1+¢) | %]

® objective function on edges is minimized
Common Objectives:
® Graphs:

B ocut: ) o w(e) =17
® Hypergraphs:

B cut: ) o w(e) =10

® connectivity: » (A — Nw(e) = 12

# blocks connected by e
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Parallel Sparse-Matrix Vector Product (SpMx V) A\‘(IT

y=ADb

b, by
Yi = ajj + Ak

Setting:
B repeated SpMxV on supercomputer
® Ais large = distribute on multiple nodes

® symmetric partitioning = y & b divided conformally with A
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Parallel Sparse-Matrix Vector Product (SpMx V) A\‘(IT

Karlsruhe Institute of Technology

(Task: distribute A to nodes of supercomputer such that
® work is distributed evenly

_ @ communication overhead is minimized
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Naive Approach: Rowwise Decomposition
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Ac R16><16
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X X
P X X X
1 X X
X X
X X X
X X
X X X X
X X X
X X X
X X X X
X X X X
X X X
X X X
P X X X X
4 X X
X X X
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bbbblbbbbbbbbbbbb LoadBalancing?
X X
P X X X
X X
X X X
X X
X X X X = 12
X X X
X X X
X X X X
X X X X = 14
X X X
X X X
’ ) X X X X
4 X X — 12
X X X
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X X
X X X
P 1 . =9
X X
X X X
X X
X X X X = 12
X X X
X X X
X X X X
X X X X = 14
X X X
X X X
X X X X
P 4 X X = 12
X X X
Commuication Volume?
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P X X X
1 X X
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X X X X
X X X X
X X X
xJ X X
P X X X X
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Commuication Volume?
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Naive Approach: Rowwise Decomposition QAT
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bbbblbbbbbbbbbbbb LoadBalancing?
X X
X X X
P L =9
X X
X X X
X X
X X X X = 12
X X X
X X X
X X X X
X X X X = 14
X X X
X X X
X X X X
P 4 X X = 12
X X X
Commuication Volume? = 24 entries!
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Naive Approach: Rowwise Decomposition QAT
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Ac R16><16

Can we do better?
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From SpMxV to Hypergraph Partitioning A\‘(IT
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AcR1%%16 = H = (Vg, Ec)

m One vertex per row: [bbbbbbbbbbbbbbbb
X X
:>VR={V1,V2,...,V16} X X X
X X
® One hyperedge per column: X X
— X X X
iEc—{eheg,...,em} Y x
X X X X
X X X
X X X
X X X X
X X X X
X X X
X X X
X X X X
X X
X X X_
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From SpMxV to Hypergraph Partitioning A\‘(IT

Karlsruhe Institute of Technology

AcR1%%16 = H = (Vg, Ec)

® One vertex per row: [bbbbbbbbbbbbbbbb
X X
= Ve ={vi,v2,..., vi6} x X X
X X
® One hyperedge per column: X X
- X X X
= Ec={e1,60,...,€16} Y x
X X X X
X X X
vi € Vg Vo X X X
_ X X X X
® task to compute inner product of X X X X
row i with b X X X
X X X
® = c¢(v)) = # nonzeros X X . S
i X X X_
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From SpMxV to Hypergraph Partitioning A\‘(IT

Karlsruhe Institute of Technology

AcR1%%16 = H = (Vg, Ec)

® One vertex per row: [bbbbiblbbbbbbbbbbb
X X
:>VR={V1,V2,...,V16} X X X
® One hyperedge per column: X X X X
—_ X X X
iEc—{eheg,...,em} x |x
X X X X
X X X
v, € Vg Vo X X X
_ X X X X
® task to compute inner product of X X X X
row i with b X X X
X X X
m = c(v;) := # nonzeros o
i X X X_
€5

e; € Ecf set of vertices that need b;
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From SpMxV to Hypergraph Partitioning A\‘(IT
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Solution: ¢-balanced partition of H
® balanced partition ~~ computational load balance

- small (A — 1)-cutsize ~~ minimizing communication volume)
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X X X X
X X X X
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From Hypergraph Partitioning to SpM xV
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P X X X
1 X X X
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X X X X
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X X X X
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Load Balancing*
X X X X
X X X
Py | 21, e
X X
X X
X X X X
X X X X = 12
X X
X X X
X X
X X X X = 12
X X X
X X X
X X X
l 4 X X X — 12
X X X
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From Hypergraph Partitioning to SpM xV

Where are the cut-hyperedges?
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b bbb

< |
X X X||T

P

P

X
X

Commuication Volume?
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From Hypergraph Partitioning to SpM xV

Where are the cut-hyperedges?
€5 €11 e7 €12

' v v v

bblbbbblbbbblBBDLD

b b
X X X X
P X X X
1 X X X
X X
X X
X X X X
X X X X
X X
X X X
X X
X X X X
X X X
X X X
P X X X
4 X X X
X X X

Commuication Volume? = 6 entries!
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Load Balancing?
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How does
(Hyper)Graph Partitioning

work?
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Bad News:
® Hypergraph Partitioning is NP-hard

@ even finding good approximate solutions for graphs is NP-hard )

10 Y. Akhremtsev, P. Sanders, S. Schlag and C. Schulz — High Quality Graph and Hypergraph Partitioning Institute of Theoretical Informatics
Algorithmics Group



Successful Heuristic: Multilevel Paradigm QAT
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iInput hypergraph

Coarsening
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iInput hypergraph

Coarsening

v ] Ll -
O " Itlal .
partitioning
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Successful Heuristic: Multilevel Paradigm
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iInput hypergraph

Coarsening

|n_|t_|al _
partitioning

V' N

y N
local search

} uncontract

5

Uncoarsening
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Multilevel Paradigm - Algorithmic Ingredients A\‘(IT

( . N
Preprocessing:
® community detection
® sparsification
. J
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Multilevel Paradigm - Algorithmic Ingredients A\‘(IT

( . N
Preprocessing:
® community detection
® sparsification
. J

( - )
Coarsening:

® matching

® clustering
a edge ratings )
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Multilevel Paradigm - Algorithmic Ingredients

d .
Preprocessing:

- sparsification

® community detection

~\

( - )
Coarsening:

® matching

® clustering
a edge ratings )

SKIT
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Initial Partitioning:

® portfolio of various algorithms ~~ diversification
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(" . )
Preprocessing:
® community detection
® sparsification
. J
‘Coarsening: 'Local Search: )
® matching ® Kernighan-Lin
® clustering ® Fiduccia-Mattheyses
@ edge ratings | _ @ Max-Flow Min-Cut
Initial Partitioning:
® portfolio of various algorithms ~~ diversification
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Multilevel Paradigm - Algorithmic Ingredients A\‘(IT

\

(Preprocessing: ‘Metaheuristics:
® community detection ® Global Search

- sparsification ® Evolutionary Algorithms)

J \.

(Coarsening: ) "Local Search: )
® matching ® Kernighan-Lin
® clustering ® Fiduccia-Mattheyses
@ edge ratings | _ @ Max-Flow Min-Cut
Initial Partitioning:
[ ® portfolio of various algorithms ~~ diversification]
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Multilevel Paradigm - Algorithmic Ingredients

AT

titute of Technology

d .
Preprocessing:

- sparsification

® community detection

\

J \.

d . .
Metaheuristics:

® Global Search
® Evolutionary Algorithms

\

J

d - -
Parallelization:
® shared memory

( . )
Coarsening:

® matching

® clustering
a edge ratings )

o distributed memory |

"Local Search:
® Kernighan-Lin

® Fiduccia-Mattheyses
. @ Max-Flow Min-Cut

J

Initial Partitioning:

[ ® portfolio of various algorithms ~~ diversification]
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Fiduccia-Mattheyses Algorithm AUT
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Algorithm 1: FM Local Search A

while — done do
find best move
perform best move

cut

I rollback |
' !

|
_
rollback to best solution moves
~~—__ can worsen solution
@ compute gain g(v) = Aext(V) — At (V)
@ alternate between blocks
@ edge-cut: 7
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|
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I rollback |
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>

@ recalculate gain g(v) of neighbors
® move each node at most once

@ edge-cut: 7,6
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KaHIP - Karlsruhe High Quality Partitioning
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Experimental Results — KaHIP (ParHIP) AUT
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KaHyPar - Karlsruhe Hypergraph Partitioning T
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Experimental Results — KaHyPar
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Conclusion A“(IT

(Hyper)Graph Partitioning:

® fundamental graph problem with many application areas
® successful heuristic: multilevel approach + local search

@ Graphs: KaHIP —http://algo2.iti.kit.edu/kahip/

® Hypergraphs: KaHyPar —http://www.kahypar.org
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