

Recent Advances in Graph and Hypergraph Partitioning

Annual SPP Meeting · October 18, 2017 Yaroslav Akhremtsev, Peter Sanders, Sebastian Schlag, Christian Schulz

Institute of Theoretical Informatics · Algorithmics Group

Graphs and Hypergraphs

Graph
$$G = (V, E)$$
vertices edges

- models relationships between objects
- \blacksquare dyadic (**2-ary**) relationships

Graphs and Hypergraphs

Graph
$$G = (V, E)$$
vertices edges

- models relationships between objects
- \blacksquare dyadic (**2-ary**) relationships

Hypergraph H = (V, E)

- Generalization of a graph⇒ hyperedges connect ≥ 2 nodes
- arbitrary (d-ary) relationships
- Edge set $E \subseteq \mathcal{P}(V) \setminus \emptyset$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

 $lacks V_i$ are **roughly equal-sized**:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

lacks blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e)$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

lacks blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e)$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

 $lacksim V_i$ are **roughly equal-sized**:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e)$
- Hypergraphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e)$

Partition (hyper)graph $G = (V, E, c : V \to R_{>0}, \omega : E \to R_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

 $lacksim V_i$ are **roughly equal-sized**:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e)$
- Hypergraphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e)$
 - connectivity: $\sum_{e \in \text{cut}} (\lambda 1) \, \omega(e)$

Partition (hyper)graph $G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0})$ into **k** disjoint blocks V_1, \ldots, V_k s.t.

• blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

objective function on edges is minimized

Common Objectives:

- Graphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e)$
- Hypergraphs:
 - cut: $\sum_{e \in \text{cut}} \omega(e)$
 - connectivity: $\sum_{e \in \text{cut}} (\lambda 1) \omega(e)$

blocks connected by e

Applications

VLSI Design

Warehouse Optimization

Complex Networks

Route Planning

Simulation

Scientific Computing

The Multilevel Framework

Recent Advances in Hypergraph Partitioning

Min-Hash Based Sparsification

Akhremtsev et. al (ALENEX'17)

Config C_1 Config C_2 Algorithm $A \leftarrow$ Algorithm Configuration

Öhl, Bachelor's Thesis (upcoming)

Max-Flow Min-Cut Refinement

Heuer, Master's Thesis (upcoming)

Recent Advances in Hypergraph Partitioning

Algorithm $A \leftarrow \begin{cases} \text{Config } \mathcal{C}_1 \\ \text{Config } \mathcal{C}_2 \end{cases}$ Algorithm Configuration

Common Strategy: avoid global decisions \rightsquigarrow **local**, greedy algorithms

Objective: identify highly connected vertices

using...

foreach vertex v do

cluster[v] := argmax rating(v,u)

neighbor u

Common Strategy: avoid global decisions \rightsquigarrow **local**, greedy algorithms

Objective: identify highly connected vertices

Main Design Goals: [Karypis, Kumar 99]

- 1: reduce size of nets → easier local search
- 2: reduce **number** of nets → easier initial partitioning
- 3: maintain structural similarity → good coarse solutions

Common Strategy: avoid global decisions → **local**, greedy algorithms

Objective: identify highly connected vertices

foreach vertex v do

cluster[v] := argmax rating(v,u)

neighbor u

Main Design Goals: [Karypis, Kumar 99]

- 1: reduce **size** of nets → easier local search
- 2: reduce **number** of nets → easier initial partitioning
- 3: maintain structural similarity → good coarse solutions

Common Strategy: avoid global decisions → **local**, greedy algorithms

Objective: identify highly connected vertices

Main Design Goals: [Karypis, Kumar 99]

- 1: reduce size of nets → easier local search
- 2: reduce **number** of nets \rightsquigarrow easier initial partitioning
- hypergraph-tailored rating functions \checkmark
- 3: maintain structural similarity → good coarse solutions
 - prefer clustering over matching
 - \Longrightarrow ensure \sim balanced vertex weights

Common Strategy: avoid global decisions \rightsquigarrow **local**, greedy algorithms

Objective: identify highly connected vertices

using... foreach vertex v do cluster[v] := argmax rating(v, u)neighbor u

Main Design Goals: [Karypis, Kumar 99]

1: reduce **size** of nets → easier local search

2: reduce number of nets \rightsquigarrow easier initial partitioning

3: maintain structural similarity → good coarse solutions

prefer clustering over matching

ensure ~balanced vertex weights

rating functions \checkmark

What could possibly go wrong?

... a lot:

What could possibly go wrong?

... a lot:

What could possibly go wrong?

Problem: relying only on local information!

Framework:

- preprocessing: determine community structure
 - using Louvain algorithm
 - on bipartite graph representation
 - structural properties via edge weights
- only allow intra-community contractions

Framework:

- preprocessing: determine community structure
 - using Louvain algorithm
 - on bipartite graph representation
 - structural properties via edge weights
- only allow intra-community contractions

Experimental Results

- 488 hypergraphs (VLSI, UF Sparse Matrix Collection, SAT Competition)
- $k \in \{2, 4, 8, 16, 32, 64, 128\}$ with imbalance: $\varepsilon = 3\%$

All Instances

Recent Advances in Hypergraph Partitioning

Algorithm $A \leftarrow \begin{cases} \text{Config } \mathcal{C}_1 \\ \text{Config } \mathcal{C}_2 \end{cases}$ Algorithm Configuration

- Hypernodes
- Hyperedges

Remove all $v \in V : d(v) \leq 3$

- Hypernodes
- Hyperedges

Remove all $v \in V : d(v) \leq 3$

From Hypergraphs to Flow-Networks

Remove all $v \in V : d(v) \leq 3$ $\omega(e_2)$ Hypergraph [Lawler, 73] Hybrid $\omega(e_2)$ Remove all $e \in E$: $|e| \le 2$ $\omega(e_3)$ Hypernodes $\checkmark \omega(e_3)$ Hyperedges

Flow Refinement - Modeling Details

Implementation Details

- *n*-level flow refinement **expensive** \rightsquigarrow emulate multilevel-approach \Rightarrow employ every $\frac{n}{\log n}$ uncontractions
- \blacksquare direct k-way optimization via **pairwise** flow refinement
- active block scheduling
- most-balanced minimum cuts
- combined with direct k-way localized FM local search (every level)

Flow Refinement - Preliminary Results

Recent Advances in Graph Partitioning

Applications:

Indepentent Sets
Lamm, Sanders, Schulz (SEA'15)

Lamm, Sanders, Schulz (SEA'1: Lamm et. al (ALENEX'16)

Territory Design
Ahuja et. al (GIS'15)

Node Separators

Sanders, Schulz (SEA'16) Schulz et. al (GECCO'17)

Process Mapping

Schulz, Träff (SEA'17)

Algorithms:

Strasser (PACE'16, PACE'17)

Shared Memory Parallel

Akhremtsev, Sanders, Schulz

Recent Advances in Graph Partitioning

Applications:

Lamm, Sanders, Schulz (SEA'15)

Territory Design
Ahuja et. al (GIS'15)

Sanders, Schulz (SEA'16) Schulz et. al (GECCO'17)

Schulz, Träff (SEA'17)

Algorithms:

Shared Memory
Parallel

Akhremtsev, Sanders, Schulz

Parallelizing KaHIP

Goal: High-quality Shared-Memory Graph Partitioner

- parallel coarsening, initial partitioning and refinement phases
- constructs balanced solutions of high quality
- good speed-ups, especially for local search algorithms

Implementation Details:

- cache-aligned arrays
- TBB scalable allocator
- thread-pinning
- cache-aware hash tables

Each thread chooses a random boundary vertex to start

And starts to perform moves around it

Y. Akhremtsev, P. Sanders, S. Schlag and C. Schulz - High Quality Graph and Hypergraph Partitioning

And starts to perform moves around it

And starts to perform moves around it

Institute of Theoretical Informatics

Algorithmics Group

Tabular Hashing

Tabular Hashing

Tabular Hashing

If
$$|x - y| \le 2^5$$
 then $|h(x) - h(y)| \le 2^5$

Parallelizing KaHIP - Preliminary Results

Quality

Parallelizing KaHIP - Preliminary Results

Scalability (Full Algorithm)

Speed-up for p = 16

Slides by Y. Akhremtsev

Parallelizing KaHIP - Preliminary Results

Scalability (Local Search)

Speed-up for p = 16

Slides by Y. Akhremtsev

Conclusion

(Hyper)Graph Partitioning Algorithms:

- Graphs: KaHIP http://algo2.iti.kit.edu/kahip/
- Hypergraphs: KaHyPar http://www.kahypar.org

References

Akhremtsev et. al (ALENEX'17): Y. Akhremtsev, T. Heuer, P. Sanders, and S. Schlag. Engineering a direct k-way hypergraph partitioning algorithm. In 19th Workshop on Algorithm Engineering and Experiments, (ALENEX), pages 28–42, 2017.

Heuer, Schlag (SEA'17): T. Heuer and S. Schlag. Improving Coarsening Schemes for Hypergraph Partitioning by Exploiting Community Structure. In 16th International Symposium on Experimental Algorithms, (SEA), page 21:121:19, 2017.

Andre, Schlag, Schulz (arXiv): A., Robin, S. Schlag, and C. Schulz. Memetic Multilevel Hypergraph Partitioning. arXiv preprint arXiv:1710.01968 (2017).

Lamm, Sanders, Schulz (SEA'15): S. Lamm., P. Sanders, C. Schulz. Graph partitioning for independent sets. In 16th International Symposium on Experimental Algorithms, (SEA), page 68-81, 2015.

Lamm et. al (ALENEX'16): Lamm, S., Sanders, P., Schulz, C., Strash, D., Werneck, R. F. (2017). Finding near-optimal independent sets at scale. Journal of Heuristics, 23(4), 207-229.

Ahuja et. al (GIS'15): Ahuja, N., Bender, M., Sanders, P., Schulz, C., Wagner, A. (2015, November). Incorporating road networks into territory design. In Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems (p. 4). ACM.

Sanders, Schulz (SEA'16): Sanders, P., Schulz, C. Advanced Multilevel Node Separator Algorithms. In 16th International Symposium on Experimental Algorithms, (SEA), pages 294-309, 2016.

Schulz et. al (GECCO'17): P. Sanders, C. Schulz, D. Strash, R. Williger. 2017. Distributed evolutionary k-way node separators. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '17).

Schulz, Träff (SEA'17): C. Schulz and J. Larsson Träff. Better Process Mapping and Sparse Quadratic Assignment. In 16th International Symposium on Experimental Algorithms, (SEA), page 4:1–4:15 2017.

Hamann, Strasser (ALENEX'16): Hamann, M., Strasser, B. (2016). Graph bisection with pareto-optimization. I. In 19th Workshop on Algorithm Engineering and Experiments, (ALENEX), pages 90–102, 2017.

Moreia, Popp, Schulz (SEA'17): O. Moreira, M. Popp, C. Schulz. Graph Partitioning with Acyclicity Constraints. In 16th International Symposium on Experimental Algorithms, (SEA), pages 30:1–30:15, 2017.