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Abstract
In this thesis, we introduce a framework based on Max-Flow-Min-Cut computa-

tions for improving balanced k-way partitions of hypergraphs. Currently, variations
of the FM heuristic [17] are used as local search algorithms in all state-of-the-art
multilevel hypergraph partitioners. Such move-based heuristics have the disadvan-
tage that they only incorporate local information about the problem structure and
if many moves of vertices have an equal impact on the solution quality, the outcome
mainly depends on random choices made within the algorithm [15, 31, 36]. Flow-
based approaches are not move-based and they are able to find a global minimum
cut separating two vertices s and t [18].
Our framework is inspired by the work of Sanders and Schulz [44] who successfully
integrate a flow-based refinement algorithm into a multilevel graph partitioner. We
generalize many ideas such that they are applicable in the multilevel hypergraph
partitioning context. We develop several techniques to sparsify the hypergraph
flow network, which reduces the resulting problem size by a factor of 2 on average
compared to the state-of-the-art representation [33]. Additionally, we show how to
configure a flow problem on a subhypergraph such that the quality achievable with
a Max-Flow-Min-Cut computation is significantly better than with the modeling
approach of Sanders and Schulz. Finally, we integrate our work as refinement strat-
egy into the n-level hypergraph partitioner KaHyPar [25].
We tested our framework on a large benchmark set with 3216 instances. In com-
parison to 5 different systems, our new configuration outperforms the tested state-
of-the-art hypergraph partitioners on 73% of the instances. In comparison to the
latest version of KaHyPar, our new approach improves quality by 2.5% while only
incurring a performance slowdown by a factor of 2. However, our algorithm is still
as fast as the direct k-way version of hMetis and outperforms it on 84% of the
benchmarks.



Zusammenfassung
In dieser Arbeit wird ein Framework basierend auf Max-Flow-Min-Cut Berech-

nungen vorgestellt, zur Verbesserung einer balancierten k-teilige Aufteilung eines
Hypergraphen. Aktuell werden Varianten des FM Algorithmus [17] in allen mo-
dernen Multilevel Hypergraph Partitionierer als lokaler Suchalgorithmus verwendet.
Solche bewegungsbasierenden Heuristiken haben den Nachteil, dass sie nur lokale
Informationen über die Problemstruktur in die Berechnungen miteinfließen lassen.
Wenn viele Knotenbewegungen den selben Einfluss auf die Lösungsqualität haben,
dann hängt das Ergebnis oft von zufälligen Entscheidungen ab, welche der Algo-
rithmus selbst trifft [15, 31, 36]. Flussbasierende Ansätze sind nicht bewegungbasiert
und finden einen globalen minimalen Schnitt, welcher zwei Knoten s und t eines
Graphen trennt [18].
Unser Framework ist durch die Arbeit von Sanders und Schulz [44] inspiriert. Die-
se integrierten eine flussbasierende Heuristik erfolgreich in Ihren Multilevel Graph
Partitionierer. Wir generalisieren viele Ihrer Ideen, sodass sie im Multilevel Hyper-
graph Partitionierung-Kontext anwendbar sind. Wir entwickeln mehrere Techniken,
um das aktuelle Hypergraph Flussnetzwerk zu verkleinern, welche die resultierende
Problemgröße im Vergleich zu der aktuellen Representation [33], um den Faktor 2
reduziert. Zusätzlich zeigen wir, wie ein Flussproblem auf einem Subhypergraphen
konfiguriert werden kann, sodass das eine Max-Flow-Min-Cut Berechnung eine bes-
sere Qualität erzielt, als die Modellierung von Sanders und Schulz. Am Ende haben
wir unsere Arbeit als Verbesserungsstrategie in den n-level Hypergraph Partitionie-
rer KaHyPar integriert [25].
Wir haben unser Framework auf 3216 verschiedenen Instanzen getestet. Im Ver-
gleich mit 5 verschiedenen Systemen erzielt unsere neue Konfiguration, auf 73%
der Instanzen, die besten Ergebnisse. Im Vergleich zu der aktuellen Variante von
KaHyPar ist die Qualität der Lösungen um 2.5% gestiegen, während die Laufzeit
lediglich um den Faktor 2 langsamer ist. Jedoch hat unser Algorithmus eine ver-
gleichbare Laufzeit mit hMetis und erzielt auf 84% der Instanzen bessere Ergebnisse.
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1 Introduction

1. Introduction

Hypergraphs are a generalization of graphs where each (hyper)edge can connect more than
two (hyper)nodes. The k-way hypergraph partitioning problem is to partition the vertices of a
hypergraph into k disjoint, non-empty blocks such that the size of each block is smaller than
(1 + ε) times the average block size, while simultaneousely minimizing an objective function on
the hypergraph.
Classical application areas are in VLSI design, parallelization of the sparse matrix-vector mul-
tiplication and simplifying SAT formulas [29, 36, 39]. The goal in VLSI design is to partition
a circuit into smaller units such that the wires between the gates are as short as possible [9]. A
wire can connect more than two gates, therefore a hypergraph models a circuit more accurately
than a graph. In SAT solving, hypergraph partitioning is used to decompose a formula into
smaller subformulas, which can be solved more easily [36].
Hypergraph partitioning is an NP-hard problem [34] and it is even NP-hard to find a good ap-
proximation [8]. The most common heuristic used in state-of-the-art hypergraph partitioners
is the multilevel paradigm [10, 25, 29]. First, a sequence of smaller hypergraphs is generated
by contracting matchings or clusterings in each step (coarsening phase). If the hypergraph is
small enough, we can use expensive heuristics to initially partition it into k blocks. Afterwards,
the sequence of smaller hypergraphs is uncontracted in reverse order and, at each level, a local
search heuristic is used to improve the quality of the partition (refinement phase).
There exist several local search heuristics for improving hypergraph partitions. Currently,
variations of the FM heuristic [17] are used as local search algorithms in all state-of-the-art
multilevel hypergraph partitioners. All such approaches have in common that they greedily
move hypernodes between blocks of a partition according to an associated gain value that de-
pends on the local structure around a vertex. The FM heuristic is generally intuitive, easily
adaptable to different optimization objectives and relatively fast [51].
However, the gain of moving a hypernode to another block only depends on the state of the
incident hyperedges. Therefore, FM has no global view on the structure of the problem. A
move is performed locally and greedily. Consequently, the algorithm tends to find locally opti-
mal solutions, whose quality heavily depends on the initial partition [15]. If we execute FM in
the multilevel context, we partially solve the problem. A move of a vertex in a coarsened hy-
pergraph corresponds to a movement of a subset of the hypernodes on the original hypergraph,
which allows a more effective exploration of the solution space [39]. The quality of the solution
then depends more on the quality of the coarsening rather than on the initial partition.
A move of a node only influences the gain function if the state of an incident hyperedge changes
immediately after a move. If a hyperedge contains vertices from two different blocks, where
only one hypernode is contained in the first and all remaining hypernodes are in the second
block, then a move of that node contributes to the gain if the objective is e.g., cut (sum of
the weights of hyperedges which contain vertices of more than one block). Especially for large
hyperedges, a sequence of nodes have to be moved such that a single move of a node finally
contributes to the gain. Therefore, the gain of most vertices is equal to zero in such cases [36].
Krishnamurthy [31] points out that the quality in such situations highly depends on random
choices made within the algorithm. Therefore, he enhanced the FM algorithm with a look-
ahead scheme such that in case of ties one can incoroperate future gains into the decision [31].
However, this forecast is limited by a predefined parameter.
FM -based local search algorithms have the above-mentioned disadvantages, because they are
move-based and only incoroperate local informations about the structure of the problem. Find-
ing a balanced global minimum cut of a (hyper)graph is NP-hard, but if we ask for a minimum
cut separating two vertices s and t, the problem becomes solvable in polynomial time [16]. The
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1.1 Problem Statement

well-known max-flow min-cut theorem [18] relates the maximum flow from a source s to a sink t
to the minimum cut separating s and t in a graph. Flow-based approaches are not move-based
and incoroperate the global structure of the problem. Therefore, they overcome the drawbacks
of the FM algorithm. However, they were overlooked for a long time because it was perceived
as computationally expensive and impractical for (hyper)graph partitioning [35].
Sanders and Schulz [44] developed a flow-based refinement algorithm to improve a balanced
k-way partition of a graph and integrate it into their multilevel graph partitioner. They com-
bine the strength of flow-based refinement and FM local search by executing both algorithms
alternating throughout the multilevel hierarchy. As a result their multilevel graph partitioner
produces the best partitions for a wide range of graph partitioning benchmarks. Recently,
several algorithms were developed to obtain a balanced bipartition of a hypergraph with Max-
Flow-Min-Cut computations [35, 40, 50]. A balanced k-way hypergraph partition with such
an approach is currently only obtainable by applying the bipartitioning algorithm recursively
[50]. The impact of a flow-based refinement algorithm on the solution quality of a multilevel
hypergraph partitioner has not been studied yet.

1.1. Problem Statement

Motivated by the results of Sanders and Schulz [44], this thesis integrates such an approach
into the n-level hypergraph partitioner KaHyPar [25]. One of the fundamental questions of
this work is how Max-Flow-Min-Cut computations can be used to improve a given bipartition
of hypergraphs. Therefore, the hypergraph must be modeled as a flow network such that each
minimum cut separating two vertices s and t is computable with a maximum (s, t)-flow. The
bipartitioning algorithm is the theorectical foundation for a framework to improve balanced
k-way partitions of hypergraphs. A major goal of this work is to outperform the latest version
of KaHyPar on most of the benchmark instances and simultaneousely ensure that the running
time remaining competitive.

1.2. Contributions

We present several techniques to sparsify the hypergraph flow network representation proposed
by Lawler [33]. Our experiments indicate that maximum flow algorithms are up to a factor of 2
faster on our new networks. Our Max-Flow-Min-Cut refinement framework is inspired by algo-
rithmic ideas of Sanders and Schulz [44]. However, we generalize many results of their work such
that they are applicable to hypergraph partitioning. We show how to configure a flow problem
on a subhypergraph such that a maximum (S, T )-flow improves a given bipartition. Further, we
show theoretically and practically that with our modeling approach better minimum cuts are
achievable compared to the results of Sanders and Schulz. Additionally, we implement several
heuristics to prevent unpromising Max-Flow-Min-Cut computations throughout the multilevel
hierarchy and show that they speed-up the framework by factor of 2 while maintaining the
solution quality. We integrate our flow-based refinement algorithm into the n-level hypergraph
partitioner KaHyPar and show that the combination of flow-based refinement and FM algo-
rithm produces the best partitions on a majority of real world benchmarks in comparison to
other state-of-the-art hypergraph partitioners. Compared to 5 different systems, we achieve
the best partitions on 73% of 3216 benchmark instances. In comparison to the latest version
of KaHyPar, our new approach improves quality by 2.5% on average, while only incurring a
slowdown by a factor of 2. However, our algorithm is still as fast the direct k-way version of
hMetis and outperforms it on 84% of the benchmark instances

9



1 Introduction

1.3. Outline

We first introduce necessary notations and summarize related work in Sections 2 and 3. After-
wards, we describe techniques to sparsify the flow network proposed by Lawler [33] in Section 4.
In Section 5 we present our source and sink set modeling approach and describe the integration
of our flow-based refinement framework into the n-level hypergraph partitioner KaHyPar. The
experimental evaluation of our algorithm is presented in Section 6. Section 7 concludes this
thesis.
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2 Preliminaries

2. Preliminaries

2.1. Graphs

A directed weighted graph G = (V,E, c, ω) is a set of nodes V and a set of edges E with a node
weight function c : V → R and an edge weight function ω : E → R. An edge e = (u, v) is a
relation between two nodes u, v ∈ V . GV ′ = (V ′, EV ′ , c, ω) is a subgraph of a graph G induced
by V ′ ⊆ V with EV ′ = {(u, v) ∈ E | u, v ∈ V ′}. Two vertices u and v are adjacent, if there
exists an edge (u, v) ∈ E. Two edges e1 and e2 are incident to each other if they share a node.
N(v) denotes the set of all adjacent nodes of v. The degree of a node v is d(v) = |N(v)|.

Definition 2.1 (Contraction). Given a directed graph G = (V,E). A contraction of two nodes
u and v results in a new graph G(u,v) = (V \ {v}, E ′), where each edge of the form (v, w) or
(w, v) in E is replaced with an edge (u,w) or (w, u) in E ′.

A path P = (v1, . . . , vk) is a sequence of nodes, where for each i ∈ [1, k − 1] : (vi, vi+1) ∈ E. A
cycle is a path P = (v1, . . . , vk) with v1 = vk. A strongly connected component C ⊆ V is a set of
nodes where for each u, v ∈ C exists a path from u to v. We can enumerate all strongly connected
components (SCCs) in a directed graph G with a linear time algorithm proposed by Tarjan [47].
A directed graph G without any cycles is called directed acyclic graph (DAG). On such graphs
we can define a topological order γ : V → N+ such that for each (u, v) ∈ E : γ(u) < γ(v).
A topological order of a DAG can be found in linear time with Kahn’s algorithm [28]. We
can transform a general directed graph G into a DAG by contracting each strongly connected
component. Strongly connected components and a topological order of a graph are illustrated in
Fig. 1.

Contracting each SCC 1

2

3

4

Topological Order

Figure 1: Example of strongly connected components in a directed graph and a topological order
of a directed acyclic graph. Each SCC is marked with the same color.

2.2. Flows and Applications

Given a graph G = (V,E, u) with capacity function u : E → R+ and a source s ∈ V and a sink
t ∈ V , the maximum flow problem is to find the maximum value of flow from s to t in G. A
flow is a function f : E → R+, which has to satisfy the following constraints:
(i) ∀(u, v) ∈ E : f(u, v) ≤ u(u, v) (capacity constraint)
(ii) ∀v ∈ V \ {s, t} : ∑

(u,v)∈E f(u, v) = ∑
(v,u)∈E f(v, u) (conservation of flow constraint)

The capacity constraint restricts the flow on edge (u, v) by its capacity u(u, v), whereas the
conservation of flow constraint ensures that the amount of flow entering a node v ∈ V \

11
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Figure 2: Illustrates concepts related to the maximum flow problem. A flow function f (red
values) from s to t of a graph G is shown on the left side. The corresponding residual
graph Gf with its residual capacities (black values) is illustrated on the right side.
The red highlighted path is an augmenting path.

{s, t} is the same as the amount leaving a node. The value of the flow is defined as |f | =∑
(s,v)∈E f(s, v) = ∑

(v,t)∈E f(v, t). A flow f is maximal, if there exists no other flow f ′ with
|f ′| > |f |.
The residual capacity rf : V × V → R+ of a flow function f is defined as follows:
(i) ∀(u, v) ∈ E : rf (u, v) = u(u, v)− f(u, v)
(ii) ∀(u, v) ∈ E : If f(u, v) > 0 and u(v, u) = 0, then rf (v, u) = f(u, v)

For an edge e = (u, v) ∈ E the residual capacity rf (u, v) is the remaining amount of flow which
can be send over edge e. For each reverse edge←−e /∈ E the residual capacity rf (←−e ) is the amount
of flow which is send over e. The residual graph Gf = (V,Ef , rf ) is the network containing all
(u, v) ∈ V × V with rf (u, v) > 0. More formally Ef = {(u, v) ∈ V × V | rf (u, v) > 0}. An
augmenting path P = {v1, . . . , vk} is a path in Gf with v1 = s and vk = t [16]. Fig. 2 illustrates
all presented concepts.
The Max-Flow-Min-Cut-Theorem is fundamental for many applications related to the maxi-

mum flow problem [18].

Theorem 2.1 (Max-Flow Min-Cut). The value of a maximum (s, t)-flow obtainable in a graph
G is equal to the weight of a minimum-weight cutset in G separating s and t.

Let f be a maximum (s, t)-flow in a graph G = (V,E, ω) with s ∈ V and t ∈ V . Further, let A
be the set containing all v ∈ V , which are reachable from s in Gf . A node v is reachable from
a node u if there exists a path from u to v. Then the set of all edges from nodes in A to nodes
in V \A is a minimum-weight (s, t)-cutset [19]. A can be calculated with a BFS in Gf starting
from s.
Many related problems can be solved with maximum flows. For example, maximum bipartite-
matching, number of edge- or vertex-disjoint paths in a graph or to find a minimum-weight
vertex separator. Solutions to those problems sometimes involve a transformation T of the
graph G into a flow network T (G), such that the Max-Flow-Min-Cut-Theorem is applicable. A
problem essential for this work is to find a minimum-weight (s, t)-vertex separator in a graph
G = (V,E, c) with c : V → R+.

Definition 2.2 (Vertex Separator). Let G = (V,E, c) be a graph with c : V → R+. S ⊆ V
is a vertex separator for non-adjacent vertices s ∈ V and t ∈ V if the removal of S from

12



2.3 Hypergraphs

s t s t

1

1

1

1 1

1

Vertex Seperator

TV (G)

a

b b
0

b
00

a
00

a
0

Figure 3: Illustration of the vertex separator problem and the flow network TV (G) in which we
can find a minimum (s, t)-vertex separator.

graph G separates s and t (s not reachable from t). A vertex separator S is a minimum-weight
(s, t)-vertex separator, if for all (s, t)-vertex separators S ′ ⊆ V it follows that c(S) ≤ c(S ′).

We can calculate a minimum-weight (s, t)-vertex separator with a maximum flow calculation
on the following flow network [49]:

Definition 2.3 (Vertex Separator Transformation). Let TV be a transformation of a graph
G = (V,E, c) into a flow network TV (G) = (VV , EV , uV ) (with uV : EV → R+). TV is defined
as follows:
(i) VV = ⋃

v∈V
{v′, v′′}

(ii) ∀v ∈ V : add a directed edge (v′, v′′) with capacity uV (v′, v′′) = c(v)
(iii) ∀(u, v) ∈ E : add two directed edges (u′′, v′) and (v′′, u′) with capacity uV (u′′, v′) =

uV (v′′, u′) =∞.

The vertex separator problem and transformation TV (G) is illustrated in Fig. 3. Obviously, no
edge between two adjacent nodes in G can be in a minimum-capacity (s, t)-cutset of TV (G),
because for all those edges the capacity is ∞. Therefore, the cutset must consist of edges
of the form (v′, v′′). A minimum-weight (s, t)-vertex separator can be calculated by finding a
maximum (s, t)-flow of TV (G) and the corresponding minimum (s, t)-cutset [37].
Given a set of sources S and sinks T . The multi-source multi-sink maximum flow problem is to
find a maximum flow f from all source nodes s ∈ S to all sink nodes t ∈ T . We can transform
such a problem into a single-source single-sink problem by adding two additional nodes s and
t. We add a directed edge from s to all source nodes s′ ∈ S and for all sink nodes t′ ∈ T a
directed edge to t with capacity u(s, s′) = u(t′, t) =∞.

2.3. Hypergraphs

Definition 2.4 (Hypergraph). An undirected weighted hypergraph H = (V,E, c, ω) consists of
a set of hypernodes V and a set of hyperedges E with a hypernode weight function c : V → R
and a hyperedge weight function ω : E → R. A hyperedge e is a subset of V (formally:
∀e ∈ E : e ⊆ V ).

13
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v4

v3

v1 v2

v5 v6

e1

e2

e3
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v3

v1 v2

v5 v6

v4

v3

v1 v2

v5 v6

e3

e2

e1

Hypergraph H Clique Representation G
x(H) Bipartite Representation G∗(H)

Figure 4: Example of a hypergraph H and its two corresponding graph representations.

A hypergraph generalizes a graph by extending the definition of an edge, which can contain
more than two nodes. Hyperedges are also called nets and hypernodes are also called vertices.
A vertex contained in a net is called pin. For a subset V ′ ⊆ V and E ′ ⊆ E we define

c(V ′) =
∑
v∈V ′

c(v)

ω(E ′) =
∑
e∈E′

ω(e)

A vertex v is incident to a hyperedge e if v ∈ e. Two vertices u and v are adjacent, if there
exists an e ∈ E such that u ∈ e and v ∈ e. I(v) denotes the set of all incident nets of v. The
degree of a hypernode v is d(v) = |I(v)|. The size of a net e is its cardinality |e|.

Definition 2.5 (Subhypergraph). HV ′ = (V ′, EV ′ , c, ω) is a subhypergraph of a hypergraph H
induced by V ′ ⊆ V with EV ′ := {e ∩ V ′ | e ∈ E : e ∩ V ′ 6= ∅}.

Definition 2.6 (Section Hypergraph). Given a subset A ⊆ V of hypergraph H = (V,E, c, ω).
The section hypergraph H×A is the hypergraph induced by subset A and contains all hyperedges
e ∈ E which are fully contained in A. More formally, H ×A := (A, {e | e ∈ E : e ⊆ A}, ω, c).

A hypergraph H = (V,E, c, ω) can be represented as an undirected graph. There are two
standard transformations, called clique and bipartite representation [27]. The clique graph
Gx(H) = (V,Ex) models each net e as a clique between its pins. The bipartite graph G∗(H) =
(V ∪E,E∗) contains all hypernodes and hyperedges as nodes and connects each net e with an
undirected edge {e, v} to all its pins v ∈ e. The two transformations are illustrated in Fig. 4.

2.4. Hypergraph Partitioning

Definition 2.7 (k-way Partition). A k-way partition of a hypergraph H is a partition of its
hypernodes into k disjoint blocks Π = {V1, . . . , Vk} such that ⋃k

i=1 Vi = V and Vi 6= ∅.

For a k-way partition Π = {V1, . . . , Vk}, we define the connectivity set of a hyperedge e with
Λ(e,Π) = {Vi ∈ Π | Vi∩ e 6= ∅}. The connectivity of a net e is λ(e,Π) = |Λ(e,Π)|. A hyperedge
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e is cut, if λ(e,Π) > 1. E(Π) = {e | λ(e,Π) > 1} is the set of all cut nets. We say two blocks
Vi and Vj are adjacent, if there exists a hyperedge e with {Vi, Vj} ⊆ Λ(e,Π). A k-way partition
is ε-balanced if each block Vi ∈ Π satisfies the balance constraint c(Vi) ≤ (1 + ε)d c(V )

k
e.

Definition 2.8 (Hypergraph Partitioning Problem). The k-way hypergraph partitioning prob-
lem is to find an ε-balanced k-way partition Π of a hypergraph H such that a certain objective
function is minimized.

There exists several objective functions in the hypergraph partitioning context. The most
popular objective function is the cut metric (especially for graph partitioning), which is defined
as

ωH(Π) =
∑

e∈E(Π)
ω(e)

The goal is to minimize the weight of all cut hyperedges. Another important metric for this
work is the (λ− 1)-metric or connectivity metric, which is defined as

(λ− 1)H(Π) =
∑
e∈E

(λ(e,Π)− 1)ω(e)

The idea behind this function is to minimize the connectivity of all hyperedges.

Definition 2.9 (Quotient Graph). Q = (Π, E ′) is a graph, which contains an edge between
each pair of adjacent blocks of a k-way partition Π = {V1, . . . , Vk} of a hypergraph H. More
formally, E ′ = {(Vi, Vj) | ∃e ∈ E : Vi, Vj ∈ Λ(e,Π)}.
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3. Related Work

3.1. Maximum Flow Algorithms

In Section 2.2 we introduce the concept of flows in a network. We will now present two
approaches to solve the maximum flow problem.

3.1.1. Augmenting-Path Algorithms

An augmenting path P = {v1, . . . , vk} is a path in the residual graph Gf with v1 = s and
vk = t [16]. Fig. 5 illustrates such a path. For all edges (u, v) ∈ Gf it holds that rf (u, v) > 0.
Therefore we can increase the flow on all edges (vi, vi+1) by ∆f = mini∈[1,...,k−1] rf (vi, vi+1). It
can be shown that f is not a maximum flow if an augmenting path exists in Gf [16].
One way to calculate a maximum flow f is to find augmenting paths in Gf as long as there ex-
ists one. The algorithm was established by Ford and Fulkerson [18] and consists of two phases.
First, we search for an augmenting path P = {v1, . . . , vk} from s to t, e.g., with a simple DFS.
Afterwards, we increase the flow on each edge (vi, vi+1) by ∆f and decrease the flow on each
reverse edge (vi+1, vi) by ∆f . If the capacities are integral, the algorithm always terminates.
Since we can find an augmenting path in Gf with a simple DFS in O(|V | + |E|) time and in-
crease the flow on every path by at least one, the running time of the algorithm can be bounded
by O(|E||fmax|). We can construct instances where the running time is O(|E||fmax|) or even
instances where the maximum flow |fmax| is exponential in the problem size [16].
Edmond and Karp [16] improved Ford & Fulkerson’s algorithm by increasing the flow along an
augmenting path of minimal length. The shortest path from s to t in a graph with unit lengths
can be found with a simple BFS. It can be shown that the total number of augmentations is
in O(|V ||E|). The running time of Edmond & Karp’s maximum flow algorithm is O(|V ||E|2).
An exemplary execution of the algorithm is presented in Fig. 5.
Boykov and Kolmogorov proposed a maximum flow algorithm based on augmenting path es-
pecially designed for applications in computer vision [7]. Their basic idea is to grow two search
trees simultanousely. One is starting from the source and one from the sink. The two search
trees maintain the invariant that all edges in the tree are non-saturated. More formally, for an
edge e the residual capacity rf (e) must be greater than zero. A node is added to one of the
two trees if a non-saturated edge exists that connects the node with one of the nodes in the
search trees. If the two trees touch at a given node, we found an augmenting path from the
source to the sink. After we increase the flow along this path, some of the edges in the two
search trees are saturated. Therefore, the algorithm tries to restore the search tree invariant by
finding a new non-saturated edge for each node which is connected through a saturated edge
to the tree. If this is not possible, then the node is removed from the tree. The algorithm has
no polynomial complexity (worst case O(|E||V |2|f |)), but it outperforms many state-of-the-art
maximum flow algorithms on computer vision benchmarks [7].
An extension of the algorithm of Boykov & Kolmogorov is the incremental breadth-first search
algorithm [21], which guarantes polynomial running time (O(|V |2|E|)). The algorithm main-
tains two distance labels ds and dt for each node. For some values Ds and Dt, the source tree
contains all nodes up to a distance Ds and the sink tree up to distance Dt. Furthermore it
maintains the invariant that L = Ds + Dt + 1 is a lower bound for the shortest augmenting
path. Initially, ds(s) = dt(t) = 0 and Ds = Dt = 0. The algorithm works in passes and in a
pass one of the two trees is chosen to grow. Assume, we have chosen the source tree. Each
node u contained in the source tree with distance label ds(u) = Ds is marked as active. In a
pass all active nodes are processed. If an active node u is adjacent to a node v not contained
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Figure 5: Execution of Edmond & Karps maximum flow algorithm [16]. The network G with
its capacities c (black values) and flow f (red values) is illustrated on the left side.
The residual graph Gf with its residual capacities rf (black values) is presented on
the right side. In each step the current augmenting path in Gf is highlighted by a
red path.
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in any of the two trees, we add v to the source tree and set ds(v) = ds(u) + 1. If v is in the sink
tree, we have found an augmenting path. After augmenting along that path some of the nodes
are not connected to the tree through a non-saturated edge. For such a node v the adjacency
list is scanned and if an adjacent node u exist with ds(u) = ds(v) − 1 and rf (u, v) > 0, the
parent of v is set to u. If such a node is not found, we search for an adjacent node u for which
ds(u) is minimal and rf (u, v) > 0. If such a node is found, we set the parent of v to u and
ds(v) = ds(u) + 1. Otherwise, v is removed from the source tree. If after a pass a node v exists
with ds(v) = Ds + 1, Ds is set to Ds + 1, otherwise the algorithm terminates.

3.1.2. Push-Relabel Algorithm

Goldberg and Tarjan [23] proposed a maximum flow algorithm not based on finding an aug-
menting path in the residual graph. Instead, the idea is to maintain a preflow during the
execution of the algorithm which satisfies the capacity constraints, but only a weakened form
of the conservation of flow constraint:

∀v ∈ V \ {s, t} :
∑
u∈V

f(v, u) ≤
∑
u∈V

f(u, v)

The algorithm maintains a distance labeling d : V → N and an excess function ef : V → N. The
distance labeling satisfies the following conditions: d(s) = |V |, d(t) = 0 and for each (u, v) ∈ Ef ,
d(u) ≤ d(v) + 1. We say an residual edge (u, v) is admissible if d(u) = d(v) + 1. A node v is
active if v /∈ {s, t} and ef (v) > 0.
Initially, all labels and excess values are set to zero except for the source node s will be set to
d(s) = 1 and ef (s) =∞. For each active node u the algorithm performs two update operations,
called push and relabel. The first operation pushes flow over each admissible edge (u, v). After a
push ef (u) = ef (u)−min (ef (u), rf (u, v)) and ef (v) = ef (v)+min (ef (u), rf (u, v)). If there is no
admissible edge, a relabel operation is performed, which replaces d(u) by min(u,v)∈Ef

d(v) + 1.
The algorithm terminates, if none of the nodes is active. The worst case complexity of the
algorithm is O(n3). The running time can be reduced to O(n2 log n) with Dynamic Trees
[23, 46], but this implementation is not practical due to a large hidden constant factor.
The push-relabel algorithm is one of the fastest maximum flow algorithms in practice because
there exist several speed-up techniques. The first one is the global relabeling heuristic which
frequently updates the distance labels by computing the shortest path in the residual graph
from all nodes to the sink [12]. This can be done with a backward BFS in linear time. This
technique is performed periodically, e.g., after n relabel operations.
The second heuristic is the gap heuristic [11, 14]. If at a particular stage of the algorithm there
is no node u with d(u) = g < n, then for each node v with g < d(v) < n the sink is not
reachable anymore. Therefore, we can increase the distance label of all those nodes to n. To
implement this heuristic, the algorithm maintains a linked list of nodes with distance label i.

3.2. Modeling Flows on Hypergraphs

Finding a minimum (s, t)-cutset of a hypergraph H = (V,E, c, ω) is close related to the problem
of finding a minimum (s, t)-vertex separator of the corresponding bipartite graph representation
G∗(H) (see Section 2.3). Hu and Moerder [27] introduce node capacities in G∗(H). Each
hyperedge e has a capacity equal to ω(e) and each hypernode has infinite capacity. Further,
they show that a minimum-weight (s, t)-vertex separator in G∗(H) is equal to a minimum-
weight (s, t)-cutset of a hypergraph H. Finding such a separator is a flow problem and can be
calculated with the flow network TL(H) presented by Lawler [33]:
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Figure 6: Transformation of a hypergraph into the flow network TL(H) [33]. The capacity of
the black edges in the flow network is ∞.

Definition 3.1 (Lawler Transformation). Let TL be the transformation of a hypergraph H =
(V,E, c, ω) into a flow network TL(H) = (VL, EL, uL) proposed by Lawler [33]. TL(H) is defined
as follows:
(i) VL = V ∪ ⋃

e∈E
{e′, e′′}

(ii) ∀e ∈ E : we add a directed edge (e′, e′′) with capacity uL(e′, e′′) = ω(e)
(iii) ∀v ∈ V and ∀e ∈ I(v) : we add two directed edges (v, e′) and (e′′, v) with capacity

uL(v, e′) = uL(e′′, v) =∞.

An example of this transformation is shown in Fig. 6. TL(H) is nearly equivalent to the trans-
formation TV (G) described in Defintion 2.3 except that we do not have to split the hypernodes
v ∈ V . For all e ∈ E there exist two corresponding nodes e′, e′′ ∈ VL. e′ is called incoming
hyperedge node and e′′ is called outgoing hyperedge node.
A hypernode cannot be in a minimum-capacity (s, t)-vertex separator because each v ∈ V
has infinity capacity [27]. Therefore, a minimum-capacity (s, t)-cutset of TL(H) is equal to a
minimum (s, t)-vertex separator of G∗(H). The resulting graph TL(H) has |VL| = |V | + 2|E|
nodes and |EL| = (2ē + 1)|E| edges, where ē is the average size of a hyperedge [42]. Using
Edmond-Karps maximum flow algorithm (see Section 3.1.1) on flow network TL(H) takes time
O(|V |2|E|2) [33].
A minimum-weight (s, t)-cutset of H can be found by simply mapping the minimum-capacity
(s, t)-cutset to their corresponding hyperedges in H (see Section 2.2). The minimum-weight
(s, t)-bipartition consists of all vertices v ∈ V reachable from s in the residual graph of TL(H)
and all hypernodes not reachable from s.
In Fig. 7 we illustrate the structure of TL(H) and demonstrate what happens after we augment
along a path in the Lawler-Network. This figure can be used as a reference to illustrate the
proofs of Section 4.
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3.3. Flow-based Refinement for Graph Partitioning

It seems natural to utilize maximum flow computations to improve the cut metric of a given
partition of a graph. Lang and Rao [32] use an approach, called Max-Flow Quotient-cut Im-
provement (MQI) to improve the quality of a graph partition when metrics such as expansion
or conductance are used. For a given bipartition (S, S̄), they find the best improvement among
all bipartitions (S ′, S̄ ′) such that S ′ ⊂ S by solving a flow problem. Andersen and Lang [4]
suggested a flow-based improvement algorithm, called Improve, which works similar as MQI,
but does not restrict the output of the partition to S ′ ⊂ S. However, both techniques can not
guarantee that the resulting bipartition is balanced and are only applicable for k = 2.
Schulz and Sanders [44] integrate a flow-based refinement algorithm in the multilevel graph

20



3.3 Flow-based Refinement for Graph Partitioning

s t

B

δ \ V1 δ \ V2

δB \ V1 δB \ V2

Cut

V1 V2
G

Figure 8: Configuration of a flow problem around the cut of graph G [44].

partitioner KaFFPa. Their basic idea is to extract a region B around the cut of the graph
and connect the border of B with the source resp. sink. B is defined in such a way that the
flow computation yields a feasible cut according to the balance contraint. Many ideas of this
work are used in this thesis and adapted to hypergraphs. Therefore we will give a detailed
description of the concepts and advanced techniques to improve graph partitions.

3.3.1. Balanced Bipartitioning

Let (V1, V2) be a balanced bipartition of a graph G = (V,E, c, ω). Further, let P (v) = 1, if
v ∈ V1 and P (v) = 2 otherwise. We now explain how a given bipartition can be improved with
flow computations. The technique can also be applied on a k-way partition by applying the
approach on two adjacent blocks [44].
Let δ := {u | ∃(u, v) ∈ E : P (u) 6= P (v)} be the set of nodes around the cut of G. For a set
B ⊆ V we define its border δB := {u ∈ B | ∃(u, v) ∈ E : v /∈ B}. The basic idea is to build
a region B around δ and connect all nodes in δB ∩ V1 to the source node s and all nodes in
δB ∩ V2 to the sink node t.
We can construct B := B1 ∪B2 with two Breadth First Searches (BFS). One is initialized with
all nodes in δ∩V1 and stops if c(B1) would exceed (1+ε)d c(V )

2 e−c(V2). The second is initialized
with all nodes in δ ∩ V2 and stops if c(B2) would exceed (1 + ε)d c(V )

2 e − c(V1). The two BFSs
only touch nodes of V1 resp. V2 such that B1 ⊆ V1 and B2 ⊆ V2. The constraints for the
weights of B1 and B2 guarantee that the bipartition is still balanced after a Max-Flow-Min-Cut
computation. Connecting s resp. t to all border nodes δB∩V1 resp. δB∩V2 ensures that a non-
cut edge not contained in GB is not a cut edge after assigning the minimum (s, t)-bipartition
of subgraph GB to G. Consequently, each minimum (s, t)-cutset in GB leads to a cut smaller
or equal to the old cut of G. All concepts are illustrated in Fig. 8.

3.3.2. Adaptive Flow Iterations

Sanders and Schulz [44] introduce several techniques to improve this basic approach. If the
Max-Flow-Min-Cut computation on GB leads to an improved cut, we can apply the method
again. An extension of this approach is to iteratively adapt the size of the flow problem based
on the result of the maximum flow computation. We define ε′ := αε for a α ≥ 1 and let the size
of B depend on ε′ rather than on ε. If we find an improvement, we increase α to min{2α, α′}
where α′ is a predefined upper bound for α. If not, we decrease the size of α to max{α2 , 1}.
The approach is called adaptive flow iterations [44].
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3.3.3. Most Balanced Minimum Cut

Picard and Queyranne [41] show that all minimum (s, t)-cutsets are computable with one
maximum (s, t)-flow computation. An important concept used by them is the definition of a
closed node set C ⊆ V of a graph G.

Definition 3.2 (Closed Node Set). Let G = (V,E) be a graph and C ⊆ V . C is called a closed
node set iff the condition u ∈ C implies that for all edges (u, v) ∈ E also v ∈ C.

A closed node set is illustrated in Fig. 9. A simple observation is that all nodes on a cycle
have to be in the same closed node set per definition. Therefore we can contract all Strongly
Connected Components (SCC) of G with a linear time algorithm proposed by Tarjan [47] and
sweep over the contracted graph in reverse topological order to enumerate all closed node sets.
If we contract all SCCs of G the resulting graph is a directed acyclic graph (DAG). Therefore,
a topological order exists.
With the Theorem of Picard and Queyranne [41] we can enumerate all minimum (s, t)-cuts of
G with one maximum flow computation.

Theorem 3.1. There is a 1-1 correspondence between the minimum (s, t)-cuts of a graph and
the closed node sets containing s in the residual graph of a maximum (s, t)-flow.

All closed node sets in the residual graph of G induce a minimum (s, t)-cutset on G. They can
be calculated with the algorithm described above using the residual graph of G as input. The
running time of the algorithm is O(|V |+ |E|).
A common problem of the adaptive flow iteration approach (see Section 3.3.2) is that using
a large α often leads to cuts in G that violate the balanced constraint. We can enumerate
all minimum (s, t)-cutsets with one maximum flow computation and therefore have a higher
probability to find a feasible partition after a Max-Flow-Min-Cut computation. We refer to
this method as Most Balanced Minimum Cut [44].

3.3.4. Active Block Scheduling

Active Block Scheduling is a quotient graph style refinement technique for k-way partitions
[26, 44]. The algorithm is organized in rounds and executes a two-way local improvement
algorithm on each pair of adjacent blocks in the quotient graph where at least one of both is
active. Initially all blocks are active. A block becomes inactive if none of its nodes move in a
round. The algorithm terminates, if all blocks are inactive.
Fiduccia and Mattheyses [17] introduce a linear time two-way local search heuristic, called FM
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heuristic, which is fundamental for many graph partitioning algorithms. They define the gain
g(v) of a node v ∈ V as the reduction of the cut metric when moving v from its current block to
the other block. By maintaining the gains of the nodes in a special data structure, called bucket
queue, they can find a maximum gain node in constant time. After moving a maximum gain
node, they are also able to update the data structure in time equal to the number of adjacent
nodes.
The local improvement algorithm (for Active Block Scheduling) can either be an FM local
search or a flow-based approach or even a combination of both as proposed by Sanders and
Schulz [44].

3.4. Hypergraph Partitioning

In this section, we review how most hypergraph partitioners solve the hypergraph partitioning
problem. The most successful approach is the multilevel paradigm [3, 5, 39] which we describe
in Section 3.4.1. The algorithms presented in this thesis are integrated into n-level hypergraph
partitioner KaHyPar. Therefore, we give a brief overview of implementation details of this
framework in Section 3.4.2.

3.4.1. Multilevel Paradigm

The multilevel paradigm is a three phase algorithm to solve the hypergraph partitioning problem
(see Fig. 10). In the first stage, called coarsening phase, vertex matchings or clusterings are cal-
culated which are contracted. This process is repeated until a predefined number of hypernodes
remains. The sequence of successively smaller hypergraphs is called levels. If the hypergraph
H is small enough, expensive algorithms can be used to initially partition H into k blocks
(Initial Partitioning). Afterwards, we uncontract each level in reverse order of contraction by
projecting the partition to the next level. After uncontraction a refinement heuristic can be
used to improve the quality of the current partition according to an objective function. The
most commonly used refinement algorithm is the FM algorithm [17].

3.4.2. n-Level Hypergraph Partitioning

KaHyPar is a multilevel hypergraph partitioner in its most extreme version, which removes only
a single vertex in one level of the hierarchy. It seems to be the method of choice for optimizing
cut- and the (λ − 1)-metric unless speed is more important than quality [25]. The framework
provides a direct k-way [1] and a recursive bisection mode, which recursively calculates bipar-
titions (with multilevel paradigm) until the hypergraph is divided into k blocks [45]. KaHyPar
consists of four phases: Preprocessing and the three phases of the multilevel paradigm.
In the preprocessing step community structures of the hypergraph are detected. The hyper-
graph is transformed into a bipartite graph G∗(H) (see Section 2.3) and a community detection
algorithm is executed which optimizes modularity [20, 25]. During the coarsening phase con-
tractions are restricted to vertices within the same community. The contraction partners are
chosen according to the heavy-edge rating function r(u, v) := ∑

e∈I(u)∩I(v)
ω(e)
|e|−1 [29]. The func-

tion prefers vertices which share a large number of heavy nets with small size. The contraction
algorithm works in passes. At the beginning of each pass a random permutation of the vertices
is generated and for each vertex u, the contraction partner v is determined according to the
heavy-edge rating function [45]. A pass ends if each vertex was involved in a contraction. The
passes are repeated until only t = 160k hypernodes remains. The initial partitioning phase uses
the recursive bisection approach to calculate a k-way partition in combination with a portfolio
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Figure 10: Multilevel Hypergraph Partitioning

of initial partitioning techniques [24]. In the refinement phase, a localized FM search is started
[17], initialized with the current uncontracted vertices. The local search maintains k priority
queues (PQ) for each block Vi exactly one [1]. After a move, the gains of all adjacent hyper-
nodes are updated with a delta-gain update strategy [39]. The recalculation of all gain values
at the beginning of a FM pass is one of the main bottlenecks of the algorithm [39]. Therefore,
Schlag et al. [1, 45] introduce a gain cache, which prevents expensive recalculations of the
corresponding gain function. The gain cache is maintained with delta-gain updates in the same
way as the PQs. Further, the local search is stopped as soon as an improvement during an FM
pass becomes unlikely. This model is called adaptive stopping rule [1].
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4. Hypergraph Flow Networks

In Section 3.2 we have shown how a hypergraph H can be transformed into a flow network
TL(H) such that each minimum-capacity (S, T )-cutset of TL(H) is a minimum-weight (S, T )-
cutset of H [33]. However, the resulting flow network has significantly more nodes and edges
than the original hypergraph. The running time of a maximum flow algorithm depends heavily
on the problem size. Therefore, different modeling approaches, which reduce the number of
nodes and edges, can have a crucial impact on the running time of the flow algorithm.
We will present techniques to sparsify the flow network proposed by Lawler. First, we will
show how any subset V ′ ⊆ V of hypernodes can be removed from TL(H) (see Section 4.1).
This approach minimizes the number of nodes, but in some cases the number of edges can
be significantly higher than in TL(H). The basic idea of this technique can still be applied to
remove low degree hypernodes from the Lawler-Network without increasing the number of edges
(see Section 4.2). Additionally, we show how every hyperedge e of size 2 can be removed by
inserting an undirected flow edge between the corresponding nodes (see Section 4.3). Finally, we
combine the two suggested approaches into a Hybrid-Network (see Section 4.4). The presented
transformations are illustrated in Fig. 11.
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Figure 11: Illustration of all presented techniques to sparsify the flow network of a hypergraph.
Transformation from TL(H) to TH(H,V ) follows with Lemma 4.1. Transformation
from TL(H) to TG(H) follows with Lemma 4.4.
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4.1. Removing Hypernodes
In this section we show how all hypernodes of TL(H) can be removed such that a maximum
(S, T )-flow on the new network induces a minimum-weight (S, T )-cutset on H. If a hypernode
v ∈ V occurs in an augmenting path P the previous node in the path must be a hyperedge node,
either e′ or e′′. Further, for all e′ ∈ I(v) the capacity uL(v, e′) is ∞. Therefore, we can push
a positive flow entering node v to any e′ ∈ I(v) during the whole maximum flow computation
because uL(v, e′) =∞. The idea is to remove the hypernode v from the flow network TL(H) and
insert shortcut edges between all incident hyperedge nodes in the flow network. The following
lemma is central to our first sparsifying technique and is illusrated in Fig. 12. Given a graph
G = (V,E) we define the two sets in(u) := {v | (v, u) ∈ E} and out(u) := {v | (u, v) ∈ E} with
u ∈ V .

u

a

b

c

d

e

2=1

2=1

4=1
6=1

2=1

a

b

c

d

e

3=1

1:5=1

1:5=1

0:5=1

0:5=1

1=1

Equation 4.1

Equation 4.2

f(u; v)=c(u; v) f 0(u; v)=c(u; v)

Figure 12: Illustration of Lemma 4.1 and Equation 4.1 and 4.2.

Lemma 4.1 (Shortcut Edges). Let G = (V,E, u) be a flow network and u ∈ V a node where
all incoming and outgoing edges have capacity ∞. Further, let G(u) = (V \ {u}, Eu, uu) be the
flow network obtained by removing u and inserting a shortcut edge between each v ∈ in(u) and
w ∈ out(u) with uu(v, w) = ∞. If f is a maximum (S, T )-flow of G with |f | < ∞, then |f | is
equal to the value of a maximum (S, T )-flow f ′ of G(u) with u /∈ S ∪ T .

Proof. Let f be a maximum (S, T )-flow of G. We define a maximum (S, T )-flow f ′ of G(u) as
follows:

f ′(v, w) =


f(v,u)f(u,w)∑
w∈out(u) f(u,w) , if v ∈ in(u), w ∈ out(u)

f(v, w), otherwise
(4.1)

f ′ is chosen in such a way that for all v ∈ in(u) : ∑
w∈out(u) f

′(v, w) = f(v, u) and for all
w ∈ out(u) : ∑

v∈in(u) f
′(v, w) = f(u,w). Therefore, f ′ satisfies the flow conservation constraint

and since all capacities are equal to ∞, f ′ also satisfies the capacity constraint. Consequently,
f ′ is a valid flow function. Further u is not contained in S ∪ T which implies that |f | = |f ′|.
Let f ′ be a maximum (S, T )-flow of G(u). We define a maximum (S, T )-flow f of G as follows:

f(u,w) =
∑

x∈in(u)
f ′(x,w)

f(v, u) =
∑

x∈out(u)
f ′(v, x) (4.2)

f(x, y) = f ′(x, y) if x 6= u 6= y

The amount of flow from each v ∈ in(u) to each w ∈ out(u) of flow function f ′ is redirected over
u in f . Therefore, f is an valid flow function. Since u /∈ S ∪ T , it follows that |f | = |f ′|.
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Figure 13: Transformation of a hypergraph H into the flow network TH(H,V ) by removing all
hypernodes of TL(H). Note, capacity of the black edges in the flow network is ∞.

In TL(H) all incoming and outgoing edges of a hypernode v have capacities equal to∞. For all
e ∈ I(v) there is an edge from v to e′ and from e′′ to v. Consequently, in(v) = ⋃

e∈I(v) e
′′ and

out(v) = ⋃
e∈I(v) e

′. Therefore, we can remove v and add a shortcut edge (u,w) between each
u ∈ in(v) and w ∈ out(v). The removal of a hypernode induces d(v)2 edges in the new network
where d(v) is the degree of hypernode v. However, we can proof that d(v)(d(v)− 1) edges are
sufficient to model the problem with the same min-cut properties, which means that the value
of a maximum (S, T )-flow in both networks are equal. In Appendix B we proof that we can
remove a node v with infinite weight of a graph by adding a clique between all adjacent nodes
of v, if we want to find a minimum-weight (s, t)-vertex separator. Using the vertex separator
transformation (see Definition 2.3) results in a flow network where the removal of a hypernode
induces d(v)(d(v) − 1) instead of d(v)2 edges. The technique is illustrated in Fig. 22. The
removed edges are exactly the edges between the outgoing and incoming hyperedge node of a
hyperedge. More formally, ∀e ∈ I(v) we can remove edge (e′′, e′) of Lemma 4.1. Therefore, we
can construct the following network with Lemma 4.1:

Definition 4.1. Let TH be a transformation that converts a hypergraph H = (V,E, c, ω) into
a flow network TH(H, V ′) = (VH , EH , uH) with V ′ ⊆ V . TH(H,V ′) is defined as follows:
(i) VH = V \ V ′ ⋃

e∈E
{e′, e′′}

(ii) ∀v ∈ V ′ and ∀e1, e2 ∈ I(v) with e1 6= e2 we add a directed edge (e′′1, e′2) with capacity
uH(e′′1, e′2) =∞ (Lemma 4.1).

(iii) Let HV \V ′ be the subhypergraph without the hypernodes v ∈ V ′, then we add all edges of
TL(HV \V ′) to EH with their corresponding capacities.

An example of the transformation is shown in Fig. 13. We have to proof that a minimum-
capacity (S, T )-cutset of TH(H,V ′) is equal to a minimum-weight (S, T )-cutset of H. We will
use the following lemma in the correctness proof.
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4 Hypergraph Flow Networks

Lemma 4.2 (Source/Sink Node Removal). Let G = (V,E, u) be a flow network and f a
maximum (S, T )-flow of G with |f | < ∞. If s ∈ S is a source node where all outgoing edges
have infinte capacity and t ∈ T is a sink node where all incoming edges have infinte capacity,
then |f | is equal to the value of a maximum (S ′, T )-flow fs of G(s) and a maximum (S, T ′)-flow
ft of G(t), where S ′ = (S \ {s}) ∪ out(s) and T ′ = (T \ {t}) ∪ in(t).

Proof. First we note that the flow over an incoming edge of a source node s ∈ S is zero. More
formally, ∀v ∈ in(s) : f(v, s) = 0. Edmond and Karp [16] show that we can find a maximum
(s, t)-flow if we augment in each step along a shortest path. Assume we find an augmenting
path P which contains an edge (v, s). We can obtain a shorter path if we split P after edge
(v, s) and use the second part as augmenting path. Therefore, f(v, s) = 0. The same holds for
all outgoing edges of a sink node. Consequently, we can remove all incoming resp. outgoing
edges of a source resp. sink node.
In Section 2.2 we described how to solve a multi-source multi sink flow problem by adding a
super source node a and super sink node b to the network. a is connected to all nodes s′ ∈ S
and all nodes t′ ∈ T to b where all edges have capacity ∞. With Lemma 4.1 follows, that we
can remove s from G and insert a directed edge from a to each v ∈ out(s) (equal to G(s)) and
|f | = |fs|. The new flow problem corresponds to the multi-source multi-sink problem with S ′
and T as source and sink set. The proof for G(t) is equivalent.

As a consequence of this lemma, we can remove a source hypernode v ∈ S of TL(H) and instead
add all incoming hyperedge nodes e′ ∈ I(v) as sources to the flow problem. Because for all
incoming resp. outgoing edges of vertices v of TL(H) the capacity is ∞.

Theorem 4.1. A minimum-weight (S, T )-cutset of a hypergraph H = (V,E, c, ω) (with S, T ⊆
V, S∩T = ∅) is equivalent to a minimum-capacity (S ′, T ′)-cutset of the flow network TH(H, V ′)
(V ′ ⊆ V ) with S ′ = S \ V ′ ∪ ⋃

e∈I(V ′∩S)
{e′} and T ′ = T \ V ′ ∪ ⋃

e∈I(V ′∩T )
{e′′}.

Proof. Applying Lemma 4.1 and 4.2 on all nodes v ∈ V ′ of flow network TL(H) yields network
TH(H,V ′) with S ′ and T ′ as source and sink sets. A maximum (S, T )-flow fL of TL(H) is
then equal to a maximum (S ′, T ′)-flow fH of TH(H,V ′). Since |fL| < ∞, only edges between
hyperedge nodes are contained in a minimum-capacity (S, T )-cutset of TL(H). Since |fL| =
|fH |, the same holds for a minimum-capacity (S ′, T ′)-cutset of TH(H,V ′), which is equal to a
minimum-weight (S, T )-cutset of H.

Consequently, we can find a minimum-weight (S, T )-cutset of H by calculating a minimum-
capacity (S ′, T ′)-cutset of TH(H,V ′). Finally, we have to find the corresponding minimum-
weight (S, T )-bipartition. In TL(H) all hypernodes reachable from source nodes in the residual
graph are part of the first and all hypernodes not reachable are part of the second block of the
bipartition. Since we removed all hypernodes v ∈ V ′ in our new network, we have to reconstruct
the bipartition using the following lemma.

Lemma 4.3 (Reachability of Hypernodes). Let f be a maximum (S, T )-flow of TL(H). If a
hypernode v /∈ S is reachable from a node s ∈ S in the residual graph of TL(H), then there must
exist at least one net e ∈ I(v) where e′′ is reachable from s in the residual graph of TL(H).

Proof. Let A be the set of all nodes reachable from the source nodes S in the residual graph
of TL(H). We will proof the lemma by contradiction. If v ∈ A and ∀e ∈ I(v) the outgoing
hyperedge node e′′ is not contained in A, then all edges (v, e′′) are not contained in the residual
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4.2 Low-Degree Hypernodes

graph of TL(H). More formally, ∀e ∈ I(v) : rf (v, e′′) = 0. Otherwise, e′′ would be in A
because v ∈ A. Since rf (v, e′′) = f(e′′, v) = 0, there is no flow entering node v and due to the
conservation of flow constraint there cannot be any flow leaving node v. Therefore, there is no
path from any s ∈ S to v over a node e′, because ∀e ∈ I(v) : rf (e′, v) = f(v, e′) = 0 and no
path over e′′ because ∀e ∈ I(v) : e′′ /∈ A Therefore, v is not reachable from any s ∈ S, which is
a contradiction to the assumption that v ∈ A.

Lemma 4.3 gives us an alternative construction for the minimum-weight (S, T )-bipartition of
H for both networks TL(H) and TH(H,V ′). Let E ′′ be the set of all outgoing hyperedge nodes
e′′ reachable from a source node s ∈ S. Then, (A := ⋃

e∈E′′ e, V \ A) is a minimum-weight
(S, T )-bipartition of H.

4.2. Low-Degree Hypernodes

The resulting flow network TH(H,V ) proposed in Section 4.1 has significantly fewer nodes than
the network TL(H) proposed by Lawler. On the other hand, the number of edges can be much
larger.
Consider a hypernode v ∈ V . We replace v in TL(H) with shortcut edges between all e′′ and
e′ which are incident to v. The number of edges added to TH(H, V ) depends on the degree
of v. Each vertex v ∈ V induces d(v)(d(v) − 1) edges in TH(H,V ). In TL(H), a hypernode
adds 2d(v) edges and one additional node to the network. A simple observation is that for all
hypernodes with d(v) ≤ 3 the inequality d(v)(d(v) − 1) ≤ 2d(v) holds. Removing such low
degree hypernodes not only reduces the number of nodes, but also the number of edges.
Let Vd(n) = {v ∈ V | d(v) ≤ n} be the set of all hypernodes with degree smaller or equal n.
Then our suggested flow network is TH(H, Vd(3)).

4.3. Modeling Small Hyperedges

If we want to find a minimum-weight (S, T )-cutset of a graph G = (V,E, ω), we do not have
to transform G into an equivalent flow network. We can directly operate on the graph with
capacities u(e) = ω(e) for all e ∈ E [18]. Hypergraphs are a generalization of graphs, where
an edge can consist of more than two nodes. However, a hyperedge e of size 2 is equivalent to
a graph edge connecting two nodes. Instead of modeling those edges as described by Lawler
[33] (see hyperedge e2 in Fig. 6), we can add an undirected flow edge between v1, v2 ∈ e (with
v1 6= v2) with capacity u({v1, v2}) = ω(e). In the following, we will proof the opposite. We will
show that each undirected graph can be modeled as a directed graph with the same min-cut
properties. The transformation used in the proof of an undirected to an directed edge will be
equal to the modeling of a hyperedge of size two in the Lawler-Network. As a consequence,
if we define the network where each hyperedge of size two is modeled with an undirected flow
edge, we can use the following lemma to show that both networks have the same value of a
maximum (S, T )-flow.

Lemma 4.4 (Transformation of Undirected to Directed Networks). Let G = (V,E, u) be an
undirected flow network with capacity function u : E → N+. G can be transformed into a
directed graph G′ such that the value of a maximum (s, t)-flow f of G is equal to the value of a
maximum (s, t)-flow f ′ of G′. More formally, |f | = |f ′|.

Proof. Assume ∀e ∈ E : u(e) = 1. According to Menger’s Theorem [37], a maximum (s, t)-flow
is then equal to the maximum number of edge-disjoint paths between s and t in a directed
graph. This theorem can also be proven for undirected graphs if we replace each undirected
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4 Hypergraph Flow Networks

edge e = {u, v} by five directed edges (v, x′), (w, x′), (x′, x′′), (x′′, v), (x′′, w) (see Fig. 14) [37].
Obviously, we can map each set of edge-disjoint paths from s to t from G′ to G and vice versa.
Therefore, the maximum number of edge-disjoint paths from s to t in G′ is then the same as
in G and therefore, |f | = |f ′|.
Consider the general case where ∀e ∈ E : u(e) ∈ N+. We can transform the weighted undirected
graph G into an unweighted directed multigraph by replacing each undirected edge e = {u, v}
with u(e) undirected edges of weight 1 (see Fig. 14). Afterwards, we can use the transformation
to an unweighted directed multigraph the same way as before. Again, we can apply Menger’s
Theorem to show that |f | = |f ′|. Newman [38] showed that there is an one-to-one corre-
spondence between a maximum (s, t)-flow of an unweighted multigraph and its corresponding
weighted graph where the weight of each edge (u, v) is the number of parallel edges between u
and v of the multigraph.

u v u v

x0

x00

u v u v

x0

x00

u(fu; vg) = 1

u v u v

x0

x00

3

3

3

3

3

3

3

jf j = jf 0j

jf j = jf 0j

jf j = jf 0j

u(fu; vg) = 3

Figure 14: Illustration of the transformation of an unweighted or weighted undirected graph
into an unweighted or weighted directed graph. The equivalence of a maximum
(s, t)-flow of a unweighted multigraph and the correspondnig weighted graph is a
result of a work by Newman [38].
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Figure 15: Transformation of a hypergraph into the flow network TG(H) by inserting an undi-
rected edge with capacity ω(e) for each hyperedge of size 2. Note, capacity of the
black edges in the flow network is ∞.

As a consequence of the construction of the proof of Lemma 4.4 the weighted directed graph
illustrated on the right side of Fig. 14 can be transformed into a single undirected edge with
weight u({u, v}) = u(x′, x′′). Each hyperedge e with |e| = 2 has exactly this structure in TL(H).
Therefore, we can construct the following network:

Definition 4.2. Let TG be a transformation that converts a hypergraph H = (V,E, c, ω) into a
flow network TG(H) = (VG, EG, uG). TG(H) is defined as follows:
(i) VG = V ∪ ⋃

e∈E:|e|6=2
{e′, e′′}

(ii) ∀e ∈ E with |e| = 2 and e = {v1, v2} we add two directed edges (v1, v2) and (v2, v1) to EG
with capacity uG(v1, v2) = ω(e) and uG(v2, v1) = ω(e)

(iii) Let H ′ = (V,E ′, c, ω) be the hypergraph with E ′ = {e | e ∈ E ∧ |e| 6= 2}, then we add all
edges of TL(H ′) to EG with their corresponding capacities.

An example of transformation TG(H) is shown in Fig. 15. A hyperedge e of size 2 consists
exactly of 4 nodes and 5 edges in TL(H) (see Fig. 6). The same hyperedge induces 2 nodes and
2 edges in TG(H) (see Fig. 11).

Theorem 4.2. A minimum-weight (S, T )-cutset of a hypergraph H = (V,E, c, ω) (with S, T ⊆
V, S ∩ T = ∅) is equal to a minimum-capacity (S, T )-cutset of the flow network TG(H) =
(VG, EG, uG).

Proof. Consider a hyperedge e = {u, v}. The capacity of (u, e′), (v, e′), (e′′, u) and (e′′, v) is
∞ in flow network TL(H). Before we can apply Lemma 4.4 on all hyperedges e with |e| = 2,
we have to show how to handle the infinite capacity edges. The flow leaving e′ is restricted by
u(e′, e′′) = ω(e). Therefore, the flow entering e′ is restricted by f(u, e′) + f(v, e′) ≤ u(e′, e′′) =
ω(e). Consequently, f(u, e′) ≤ ω(e) and f(v, e′) ≤ ω(e). The same holds for f(e′′, u) and
f(e′′, v). Therefore, we can replace each infinite capacity of an edge entering e′ or leaving e′′
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4 Hypergraph Flow Networks

with ω(e) without changing the value of a maximum (S, T )-flow. We call the capacity adapted
network TL′(H).
Applying the transformation of Lemma 4.4 on each undirected edge of TG(H) results in flow
network TL′(H). It follows that a maximum (S, T )-flow of TG(H) is equal to a maximum (S, T )-
flow of TL′(H) and TL(H). Consequently, a minimum-capacity (S, T )-cutset of TG(H) is equal
to a minimum-weight (S, T )-cutset of H.

A minimum-weight (S, T )-cutset of H can also be calculated with TG(H). Each edge (v1, v2)
with v1, v2 ∈ V of the minimum-capacity (S, T )-cutset of TG(H) can be mapped to the corre-
sponding hyperedge. Since there exists a one-one correspondence between the hypernodes of
TL(H) and TG(H) the corresponding bipartition consists of all hypernodes reachable from all
nodes in S and all nodes not reachable from S in the residual graph of TG(H).

4.4. Combining Techniques

The density of a hypergraph H = (V,E) is defined as follows:

d := d(v)
|e|

= |P |/|V |
|P |/|E|

= |E|
|V |

where d(v) is the average hypernode degree, |e| is the average hyperedge size and |P | is the
number of pins. Many real world benchmark instances have either a low or high density. For an
example, consider the summary of our benchmark set in Table 8. Hypergraphs with high den-
sity have usually an average hypernode degree significantly greater than the average hyperedge
size, whereas the opposite behavior can be observed on instances with low density. High density
hypergraphs often have many graph edges and low density hypergraphs often have many low
degree hypernodes.
Currently, we have two different modeling approaches which either perform better on hyper-
graphs with many low degree hypernodes or small hyperedges. Taking our observation from
real-world instances into account means that TG(H) is significantly smaller on high density
hypergraphs and TH(H,Vd(3)) on low density hypergraphs. It would be preferable to combine
the two approaches into one network.

Definition 4.3. Let THybrid be a transformation that converts a hypergraph H = (V,E, c, ω) into
a flow network THybrid(H, V ′) = (VHybrid, EHybrid, uHybrid), where V ′ = {v ∈ Vd(3) | ∀e ∈ I(v) :
|e| 6= 2}. THybrid(H,V ′) is defined as follows:
(i) VHybrid = V \ V ′ ⋃

e∈E
|e|6=2

{e′, e′′}

(ii) ∀v ∈ V ′ we add a directed edge (e′′1, e′2), ∀e1, e2 ∈ I(v) (e1 6= e2) with capacity uHybrid(e′′1, e′2) =
∞ (Lemma 4.1).

(iii) ∀e ∈ E with |e| = 2 and e = {v1, v2} we add two directed edges (v1, v2) and (v2, v1) with
capacity uHybrid(v1, v2) = ω(e) and uHybrid(v2, v1) = ω(e) (Lemma 4.4)

(iv) ∀e ∈ E with |e| 6= 2 we add a directed edge (e′, e′′) with capacity uHybrid(e′, e′′) = ω(e)
(same as in TL(H)).

(v) ∀v ∈ V \ V ′ we add for each incident hyperedge e ∈ I(v) with |e| 6= 2 two directed edges
(v, e′) and (e′′, v) with capacity uHybrid(v, e′) = uHybrid(e′′, v) :=∞ (same as in TL(H)).
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Fig. 11 summarizes all explained transformations of this section. We can prove the correct-
ness of THybrid(H, V ′) with Lemmas 4.1, 4.2 and 4.4 as used in the proof of Theorem 4.1 and
4.2. A minimum-weight (S, T )-cutset of H is equal to a minimum-capacity (S ′, T ′)-cutset of
THybrid(H,V ′).
Per definition of THybrid(H,V ′) we prefer hyperedge removal over hypernode removal. If a hy-
pernode has a degree smaller than or equal to 3, we only remove it, if there is no hyperedge
e ∈ I(v) with |e| = 2. The reason for this is that hyperedge removal always removes more
nodes and edges than hypernode removal.
The minimum-weight (S, T )-cutset of H can be calculated using the technique described in
Section 4.3. Let (A, V \ A) be the corresponding bipartition. A is the union of all reachable
hypernodes from S ′ and the union of all reachable outgoing hyperedge nodes e′′ from S ′ (see
Section 4.1 and Lemma 4.3).
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5. Max-Flow-Min-Cut Refinement Framework

We now present our direct k-way flow-based refinement framework. We use similiar techniques
as proposed by Sanders and Schulz [44]. The basic concepts of the framework are illustrated in
Fig. 16. The algorithm can be integrated into a multilevel hypergraph partitioner by executing
the following algorithm in a level of the multilevel hierarchy.
We perform a flow-based refinement on two adjacent blocks of a k-way partition Π = {V1, . . . , Vk}.
The pairwise refinements are embedded into the active block scheduling strategy (see Section
3.3.4). The algorithm starts by constructing the quotient graph Q of Π. Afterwards, we iterate
over all edges of Q in random order. For each edge (Vi, Vj) of Q, we build a flow problem around
the cut of the bipartition induced by Vi and Vj. To construct the flow problem, we use two
BFSs. The first only touch hypernodes of Vi and the second only touch hypernodes of Vj. The
BFS is initialized with all hypernodes contained in cut hyperedges of the bipartition (Vi, Vj).
We will denote all hypernodes touched by the two BFSs with V ′ ⊆ Vi ∪ Vj. We embed the
pairwise flow-based refinement into an adaptive flow iteration strategy (as described in Section
3.3.2), which also determines the number of hypernodes touched by the two BFSs.
We will use the subhypergraph HV ′ to construct one of the flow networks proposed in Section
4. We define the corresponding sources S and sinks T of the flow network of HV ′ in such
way that a Max-Flow-Min-Cut computation yields an improved k-way partition according to
our objective function. After we determine a maximum (S, T )-flow on the flow network, we
iterate over the minimum (S, T )-bipartitions of HV ′ and choose the Most Balanced Minimum
Cut according to our balance constraint (as described in Section 3.3.3).
If a Max-Flow-Min-Cut computation yields an improved partition of H, we apply the new
partition and execute the algorithm on the same blocks again, but double the flow problem
size according to the adaptive flow iteration strategy. If we cannot improve the partition, we
decrease the flow problem size by a factor of 2 and execute the algorithm on the same blocks
again. The pairwise flow-based refinements stop if the adaptive flow iteration scaling parameter
α is smaller than 1 (see Section 3.3.2).

5.1. Flow Algorithms

We implement two maximum flow algorithms. One is the augmenting path algorithm of Edmond
& Karp (EdmondKarp) [16] and the second is the Push-Relabel algorithm of Goldberg &
Tarjan (GoldbergTarjan) [12, 23]. The EdmondKarp algorithm finds one augmenting path
with one BFS computation in each step. Since we have a Multi-Source-Multi-Sink problem,
we can find several augmenting paths with one BFS. After we execute a BFS on the residual
graph, we search as many edge-disjoint paths as possible in the resulting BFS -tree connecting
a source s with a sink t. Our Goldberg & Tarjan implementation uses a FIFO queue and the
global relabeling and gap heuristic [12].
Further, we integrate two third-party maximum flow algorithms. The first algorithm is due
to Boykov & Kolmogorov [7] (BoykovKolmogorov1) and the second is the incremental
breadth-first search (Ibfs2) algorithm of Goldberg et. al [22]. Before we call the algorithms,
we map our internal flow network representation to the one of the third-party implementation.
Afterwards, we map the flow of each edge back to our flow network.

1Available at https://github.com/gerddie/maxflow (Accessed at 14.12.2017)
2Available at http://www.cs.tau.ac.il/~sagihed/ibfs/code.html (Accessed at 16.12.2017)
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5.1 Flow Algorithms
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Figure 16: Illustration of our flow-based refinement framework for direct k-way hypergraph
partitioning.
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0
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Figure 17: Illustration of the section hypergraph SV ′ . Each hyperedge of the the hypergraph H
which is fully or partially contained in HV ′ is fully contained in SV ′ . The nodes not
contained in the rectangle of the right figure are part of V ′′.

5.2. Source and Sink Configuration

Let Π1 be the bipartition of a hypergraph H = (V,E, c, ω). In the following, we show how
to configure the source set S and sink set T of the flow network TL(HV ′) of a subhypergraph
HV ′ induced by V ′ ⊆ V . The goal is to improve Π1 with a maximum (S, T )-flow calculation
on TL(HV ′) such that after applying the minimum (S, T )-bipartition of HV ′ to H the resulting
bipartition Π2 has a cut less than or equal to the cut of Π1. An important concept of this
section will be the definition of the following section hypergraph.

Definition 5.1 (Extension of a Subhypergraph). Given a subset V ′ ⊆ V of a hypergraph
H = (V,E). The section hypergraph SV ′ := H × (V ′ ∪ V ′′) is a hypergraph where V ′′ contains
all pins u /∈ V ′ of hyperedges incident to a vertex v ∈ V ′. More formally,

V ′′ :=
⋃

e∈I(V ′)
e \ V ′

SV ′ can be seen as an extension of subhypergraph HV ′ . Each hyperedge, which is partially
or fully contained in HV ′ is fully contained in SV ′ (see Fig. 17). The source and sink set of
TL(HV ′) should be chosen in such a way that the two conditions of following problem statement
are satisfied:

Problem 5.1. Given a subhypergraph HV ′ (V ′ ⊆ V ) and bipartition Π1 of hypergraph H. How
should S and T be defined such that after a maximum (S, T )-flow calculation on TL(HV ′) (with
f as maximum flow) the resulting minimum (S, T )-bipartition Π2 of H satisfies the following
conditions:
(i) ωH(Π2) ≤ ωH(Π1)
(ii) ∆H := ωH(Π1)− ωH(Π2) = ωSV ′ (Π1)− |f | =: ∆HV ′

The first condition ensures that a Max-Flow-Min-Cut computation on TL(HV ′) never increases
the cut of H, while the second condition allows us to update the cut metric in constant time
via ωH(Π2) = wH(Π1) − ∆HV ′ , instead of having to sum up the weight of all cut hyperedges.
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5.2 Source and Sink Configuration

Since we have to build the subhypergraph HV ′ before each maximum flow computation, we can
implicitly calculate ωSV ′ (Π1).
Note that we define ∆HV ′ over the cut of the section hypergraph SV ′ . If only hypernodes
contained in V ′ can change their block after aMax-Flow-Min-Cut computation then the equality

∆H := ωH(Π1)− ωH(Π2) = ωSV ′ (Π1)− ωSV ′ (Π2) =: ∆HV ′

holds, because all hyperedges, which can change their state from non-cut to cut or vice versa,
are fully contained in SV ′ . For example, if a Max-Flow-Min-Cut computation on HV ′ removes
hyperedge e from the cut in HV ′ , but e is still cut in H, then the equality would not hold if we
would have defined ∆HV ′ over the cut of HV ′ , because ∆HV ′ would be equal to 1 and ∆H equal
to 0. Further, if we can show that |f | = ωSV ′ (Π2), we simultaneously show that our source and
sink set modeling approach satisfies condition (ii) ∆H = ∆HV ′ .
We will now define our source and sink set for the flow network TL(HV ′) such that we satisfy
the two conditions of Problem 5.1.

Theorem 5.1. Let Π1 = (V1, V2) be the bipartition of H. The resulting bipartition Π2 of H of
a maximum (S, T )-flow computation on TL(HV ′) with

S = {e′ | e ∈ I(V ′′ ∩ V1)}
T = {e′′ | e ∈ I(V ′′ ∩ V2)}

satisfies the following two conditions:
(i) ωH(Π2) ≤ ωH(Π1)
(ii) ∆H = ∆HV ′

Proof. We first define S and T for flow network TL(SV ′), because for each maximum (S, T )-flow
f of TL(SV ′) and its corresponding minimum (S, T )-bipartition Π2 the equality |f | = ωSV ′ (Π2)
holds due to the max-flow-min-cut theorem [18]. Defining a hypernode v ∈ V1 resp. v ∈ V2 as
source resp. sink means that it cannot change its block after aMax-Flow-Min-Cut computation.
However, we do not want that a hypernode v /∈ V ′ can change its block after a Max-Flow-Min-
Cut computation on TL(SV ′), because such hypernodes cannot move if we solve a flow problem
on subhypergraph HV ′ . Therefore, we define all hypernodes of V ′′ contained in block V1 as
sources and all hypernodes of V ′′ contained in block V2 as sinks. More formally:

S ′ = V ′′ ∩ V1

T ′ = V ′′ ∩ V2

With S ′ and T ′ we ensure that only hyperedges fully contained in SV ′ can change their state
from cut to non-cut or vice versa. Therefore, it follows with the max-flow-min-cut theorem [18]
that |f | = ωSV ′ (Π2) ≤ ωSV ′ (Π1) and

∆H = ωH(Π1)− ωH(Π2) = ωSV ′ (Π1)− |f | = ∆HV ′ ≥ 0,

because only hypernodes contained in V ′ can change their block. Since ∆H ≥ 0, it holds that
ωH(Π2) ≤ ωH(Π1).
The value of a maximum (S ′, T ′)-flow of TL(SV ′) is equal to the value of a maximum (S, T )-flow
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Figure 18: Illustration of modeling hyperedges of size one of the flow network if the incoming
or outgoing hyperedge node is a source or a sink node of the flow problem.

of TH(SV ′ , V ′′) according to Theorem 4.1 with

S =
=∅︷ ︸︸ ︷

S ′ \ V ′′ ∪
⋃

e∈I( V ′′∩S′︸ ︷︷ ︸
=V ′′∩V1

)
{e′} = {e′ | e ∈ I(V ′′ ∩ V1)}

T =
=∅︷ ︸︸ ︷

T ′ \ V ′′ ∪
⋃

e∈I( V ′′∩T ′︸ ︷︷ ︸
=V ′′∩V2

)
{e′′} = {e′′ | e ∈ I(V ′′ ∩ V2)}

Since each v ∈ V ′′ is either a source or sink node of TL(SV ′), the removal of v does not induce
any additional edges in TH(SV ′ , V ′′) (see Lemma 4.2). Therefore, TH(SV ′ , V ′′) = TL(HV ′).

The value of a maximum (S ′, T ′)-flow of TL(SV ′) and a maximum (S, T )-flow of TL(HV ′) are
equal. Since S ′ and T ′ satisfy conditions (i) and (ii) of our problem statement, also S and
T satisfy the two conditions. In general, each hyperedge partially contained in HV ′ , which
contains at least one pin v /∈ V ′ of block V1 resp. V2 is a source resp. sink node. Furthermore,
no hypernode of TL(HV ′) is either a source or sink node. Consequently, all hypernodes of V ′ can
change their block after a Max-Flow-Min-Cut computation. According to the max-flow-min-
cut theorem, the value of the cut of bipartition Π2 is the minimum weight cut of all possible
bipartitions with the restriction that only hypernodes of V ′ can move.
Additionally, we can model hyperedges of size one more efficiently (see Fig. 18). If the incoming
hyperedge node e′ is a source node, we can replace the hyperedge of size one with a directed
edge (e′, v) with v ∈ e∩ V ′ and capacity ω(e). If the outgoing hyperege node e′′ is a sink node,
we add a directed edge (v, e′′) with capacity ω(e). If e′ and e′′ is neither a source nor sink node,
we can remove the hyperedge from the flow problem.
With the given approach we can optimize the cut metric of a given bipartition of a hypergraph
H. We can transfer those results to improve the connectivity metric of a k-way partition
Π = (V1, . . . , Vk). Let V ′ ⊆ Vi ∪Vj be a subset of the hypernodes of two adjacent blocks Vi and
Vj. If we optimize the cut of subhypergraph HV ′ we simultaneously optimize the connectivity
metric of H. The reduction of the cut of HV ′ is then equal with the decrease in the connectivity
metric of H.
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5.3 Most Balanced Minimum Cuts on Hypergraphs

Implications for Graph Partitioning. If we compare our source and sink set modeling
approach with the one of Sanders and Schulz [44] (see Section 3.3.1), we can show that with
our technique better minimum (S, T )-bipartitions are achievable. They define each node of the
graph as source resp. sink, which is adjacent to a node not contained in the flow problem of
block V1 resp. V2. Consequently, a non-cut edge of the graph partially contained in the flow
problem cannot become a cut edge. Therefore, their modeling approach satisfies condition (i)
of our problem statement. However, a movement of a node adjacent to a non-cut edge can
still improve the cut, if the number of adjacent non-cut edges is smaller than the number of
adjacent cut edges. If we interprete a graph as hypergraph, we can use our modeling approach
on network TL(HV ′) or TG(HV ′) with S and T as source and sink set. All nodes incident to a
non-cut edge which is partially contained in the flow problem are now able to change their block
and the corresponding minimum (S, T )-bipartition is minimum among all possible bipartitions
where only nodes of V ′ can move.

5.3. Most Balanced Minimum Cuts on Hypergraphs
Picard and Queyranne [41] show that all minimum (s, t)-cuts of a graph G are computable with
one maximum (s, t)-flow computation by iterating through all closed node sets of the residual
graph of G.
We can apply the same algorithm on hypergraphs. A minimum-capacity (s, t)-cutset of TL(H) is
equal with a minimum-weight (s, t)-cutset of H. With the algorithm of Section 3.3.3 we can find
all minimum-capacity (s, t)-cutsets of TL(H), which are also minimum-weight (s, t)-cutsets of
H. The corresponding minimum-weight (s, t)-bipartitions are all closed node sets of the residual
graph of TL(H). However, when we use e.g., TH(H, V ′) (see Section 4.1) or THybrid(H,V ′) (see
Section 4.4) as underlying flow network, some hypernodes are removed from the flow problem.
If an outgoing hyperedge node e′′ is part of a closed node set, than all hypernodes v ∈ e must
be part of it too, which is a consequence of Lemma 4.3. The Most Balanced Minimum Cut
heuristic consists of many stages, which we then have to adapt if we enumerate the minimum-
weight (S, T )-bipartitions. Since the algorithm has a linear running time, we simply reinsert
all removed hypernodes with the corresponding edges of the Lawler-Network before computing
the Most Balanced Minimum Cut.
Lemma 5.1. Let TL(H) = (V,EL, uL) be the Lawler-Network and TH(H,V ′) = (V \V ′, EH , uH)
be the flow network proposed in Section 4.1 of hypergraph H = (V,E, c, ω) with V ′ ⊆ V . If f is
a maximum (S, T )-flow of TH(H,V ′), then f is also a maximum (S, T )-flow of the flow network
T = (V,EL ∪EH , u) with u(v, w) = uL(v, w), if (v, w) ∈ EL and u(v, w) = uH(v, w), otherwise.

Proof. The main statement of the lemma is that we can calculate a maximum (S, T )-flow f
of TH(H,V ′) and then reinsert all removed hypernodes with their corresponding edges of the
Lawler-Network. The flow f is also a maximum (S, T )-flow on the resulting flow network T .
Assume, that there still exists an augmenting path in the residual graph of T . If we remove
a hypernode v from the flow network TL(H), we insert shortcut edges between all incident
hyperedges e ∈ I(v). However, if the augmenting path P = (s, . . . , e′′1, v, e′2, . . . , t) contains
a reinserted hypernode v ∈ V ′, we can simply remove it from the path. After removing all
v ∈ V ′ from P , we obtain a valid path in TH(H,V ′). The resulting path then contains the
shortcut edges (e′′1, e′2) instead of the two inserted edges (e′′1, v) and (v, e′2). All involved edges
have capacity equal to ∞. Therefore, it must be an augmenting path in TH(H,V ′), which is a
contradiction that f is a maximum (S, T )-flow.

Consequently, if we remove a hypernode from the flow network, we can reinsert it with the
corresponding incident edges of the Lawler-Network after a maximum (S, T )-flow computation.
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5 Max-Flow-Min-Cut Refinement Framework

All minimum (S, T )-cutsets of the resulting flow network T have the same value as all minimum
(S, T )-cutsets of TH(H,V ′), because the value of a maximum (S, T )-flow is the same in both
networks.

5.4. Integration into KaHyPar

Flow Execution Policies. Since KaHyPar is an n-level hypergraph partitioner, local searches
are executed after each uncontraction of a single vertex (see Section 3.4.2). Using our flow-
based refinement algorithm in each level would be too expensive. Therefore, we introduce Flow
Execution Policies, which control the total number of flow-based refinements throughout the
multilevel hierarchy. The first policy is to execute our flow-based refinement on each level i
where i = β · j with j ∈ N+ and β as a predefined tuning parameter. Another approach is
to simulate a multilevel partitioner with log(n) hierarchies. A flow-based refinement is then
executed on each level i where i = 2j with j ∈ N+. Each policy also performs the active block
scheduling refinement strategy on the last level of the hierarchy. In all remaining levels where
no flow is executed, we can use the FM algorithm [1, 17, 43] (see Section 3.3.4).

Combining Flow-Based Refinements with the FM algorithm. The FM algorithms
integrated into KaHyPar use a gain cache to maintain the gain values of moves througout
the multilevel hierarchy. The concept prevents expensive recalculations of gain values if a FM
local search is instantiated. However, if we use flow-based refinement in combination with
the FM algorithm, we have to ensure that the gain cache contains valid entries at each time.
Therefore, we undo all changes after a flow-based refinement and simulate the moves with the
FM algorithm to ensure that all entries in the gain cache are valid.

Speedup Heuristics. An observation during early experiments was that only a minority
of the pairwise refinements based on flows leads to an improvement on hypergraph H. Thus,
we introduce several rules which help to prevent unpromising flow executions to speed-up the
running time.
(R1) The acitve block scheduling refinement strategy is executed in rounds. In each round we

use flows to improve the bipartition of two adjacent blocks, where one of the two is active.
Initially, all blocks are active. A block becomes inactive, if its border does not change in
a round. However, we introduce a second criterion when to use flow-based refinement on
two adjacent blocks. For each pair of adjacent blocks, we count how many times we found
an improvement on these blocks throughout the multilevel hierarchy. The first round of
active block scheduling is executed as before. In all remaining rounds, we only execute a
pairwise flow-based refinement, if one of the two blocks is active and if we found at least
one improvement before on the corresponding blocks.

(R2) If the cut between two adjacent blocks is small (e.g. ≤ 10) we skip the flow-based
refinement on the blocks except on the last level of the hierarchy.

(R3) If the value of the cut of a minimum (S, T )-bipartition of HV ′ is the same as the cut
before, we stop the adaptive flow iteration strategy.
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6 Experimental Results

6. Experimental Results
In this Section, we evaluate the performance of our flow-based refinement framework. First,
we show the effects of our sparsification techniques of the Lawler-Network [33] on the running
time of maximum flow algorithms. Afterwards, we analyze how the maximum flow problem
size influences the solution quality of different configurations of our framework. Finally, we
compare the new version of KaHyPar with Max-Flow-Min-Cut computations with state-of-the-
art hypergraph partitioners.

6.1. Instances
Our full benchmark set consists of 488 hypergraphs from three different application areas. For
VLSI design, we use instances from the ISPD98 VLSI Circuit Benchmark Suite (Ispd98) [2]
and add more recent instances of the DAC 2012 Routability-Driven Placement Contest (Dac)
[48]. We interpret the Sparse Matrix instances of the Florida Sparse Matrix Collection (Spm)
[13] as hypergraphs using the row-net model [10]. The rows of each matrix are treated as
hyperedges and the columns are the vertices of the hypergraph. Our last benchmark type
are SAT formulas of the International SAT Competition 2014 [6]. A common representation
of a SAT formula as hypergraph is to define the literals as vertices and each clause as a net
(Literal) [39]. Mann and Papp [36] suggested two other hypergraph representations, called
Primal and Dual. The Primal representation treats each variable as vertex and each clause
as hyperedge. The Dual representation treats each clause as vertex and the variables induce
nets containing all clauses where the corresponding variable occurs. A summary of the different
instance types is presented in Table 8.
We divide our full benchmark set into two smaller subsets. Our parameter tuning benchmark set
consists of 25 hypergraphs (see Table 6), 5 of each instance type (except Dac). Additionally,
we choose a benchmark subset of 165 instances (see Table 7). If we test the quality of our
partitioner, we partition each hypergraph into k ∈ {2, 4, 8, 16, 32, 64, 128} blocks and use 10
different seeds for each k and an imbalance of ε = 3%.

6.2. System and Methodology
Our experiments run on a single core of a machine consisting of two Intel Xeon E5- 2670
Octa-Core processors clocked at 2.6 GHz. The machine has 64 GB main memory, 20 MB L3-
and 8 × 256 KB L2-Cache. The code is written in C++ and compiled using g++−5.2 with
flags −O3 −mtune=nactive −march=native. We refer to our new implementation of KaHyPar
with (M)ax-(F)low-Min-Cut computations as KaHyPar-MF and the latest configuration with
(C)ommunity-(A)ware coarsening as KaHyPar-CA.
We compare KaHyPar-MF with the state-of-the-art hypergraph partitioners hMetis [29, 30] and
PaToH [10]. hMetis provides a direct k-way (hMetis-K) and recursive bisection (hMetis-R) im-
plementation. Further, we use the default configuration (PaToH-D) and quality preset (PaToH-
Q) of PaToH. We configure hMetis to optimize the sum-of-external-degrees-metric (SOED) and
calculate (λ−1)(Π) = SOED(Π)−cut(Π). This is also suggested by the authors of hMetis [30].
Additionally, we have to adapt the imbalance definition of hMetis-R. An imbalance value of 5
means that the weight of each bisected block is allowed to be between 0.45 ·c(V ) and 0.55 ·c(V ).
To ensure that hMetis-R produces a valid ε-balanced partition after log2(k) bisections we have
to adapt ε to

ε′ = 100 ·
 (1 + ε)

d c(V )
k
e

c(V )

 1
log2(k)

− 0.5
.
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If we evaluate the performance of a hypergraph partitioner, we first summarize the results by
calculating the arithmetic mean (or minimum) of a specific metric for the diffrent seeds of a hy-
pergraph partitioned into k blocks. Afterwards, we calculate the geometric mean of all instances
to give each instance comparable influence on the final result. To compare the performance of
different hypergraph partitioners in more detail we use performance plots introduced in [45].
In the following, we call a k-way partition of a hypergraph an instance. For each algorithm we
determine the instance with the best quality (of the 10 different seeds). Each color in the plot
corresponds to one algorithm. The x-axis represents the number of instances and the y-axis
represents the quality ratio produced by an algorithm for an instance relative to the partition
of the best algorithm. For example, partitioner P1 produces a partition for an instance X
with quality 100 and partitioner P2 produces a partition for the same instance of quality 105.
Then, the y-value for instance X of partitioner P2 is 1 − 100

105 ≈ 0.048 and for partitioner P1 is
1 − 100

100 = 0, which means that the partition of partitioner P2 for instance X is ≈ 4.8% worse
than the best partition produced for instance X. A value of zero indicates that the algorithm
produced the best partition. A point close to one indicates that the partition produced by
the corresponding partitioner was considerably worse than the partition produced by the best
algorithm. Before we add the points to the grid, we sort them in decreasing order according to
the y-values. An algorithm is considered to outperform another algorithm if its corresponding
ratio values are below those of the other algorithm. A point with an y-value greater than one
corresponds to an infeasible solution that violated the balanced constraint.

6.3. Flow Algorithms and Networks

In the first experiment, we evaluate the effect of our sparsification techniques on the perfor-
mance of the maximum flow algorithms EdmondKarp, GoldbergTarjan, BoykovKol-
mogorov and Ibfs. We refer to the Lawler-Network as TL, which is our baseline flow network.
In Section 4 we present several techniques to reduce the number of nodes and edges of TL. TH
represents our flow network in which we remove all hypernodes with a degree smaller or equal
to 3. The network TG models each hyperedge of size 2 as undirected graph edge between the
corresponding pins. Finally, THybrid combines both networks.
We evaluate the performance of our maximum flow algorithms on flow problems with |V ′| ∈
{500, 1000, 5000, 10000, 25000} hypernodes. The instances are generated by executing KaHy-
Par on our benchmark subset (see Table 7) for k = 2 and five different seeds. After an instance
is bipartitioned, we generate flow problems with the above-mentioned sizes and execute each
possible combination of flow algorithm and flow network on it.
Fig. 19 shows the average number of nodes and edges of the resulting flow networks for flow
problems with 25000 hypernodes. As expected, TH reduces the number of nodes more sig-
nificantly on instances with low degree hypernodes (Dual) and TG on instances with small
hyperedges (Primal and Literal). Further, THybrid combines the advantages of both net-
works and reduces the number of nodes and edges of nearly each benchmark type by at least a
factor of 2, except on Spm instances. If we compare the sizes of the resulting flow problems, we
can observe that instances with a high density (d = |E|

|V |), like Primal or Literal, yields large
flow problem and instances with a low density yield small flow problems (see Dual instances).
In Fig. 20 we compare the performance of our maximum flow algorithms on different flow

networks. A bar in the plot indicates the speed-up of the corresponding algorithm executed on
TH , TG or THybrid relative to the execution on TL. The main observation is that the speed-ups
are nearly proportional to the reduction of the number of nodes and edges of the correspond-
ing flow network. For example, THybrid reduces the size of the flow problems of nearly each
benchmark type by at least factor of 2 compared to TL. Consequently, the speed-ups of our
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Figure 19: Comparison of the number of nodes and edges induced by flow problems of size
|V ′| = 25000 on our flow networks for different benchmark types. The red dashed
lines indicates 25000 nodes.

maximum flow algorithms on THybrid are nearly up to a factor of 2 on each benchmark type.
Our GoldbergTarjan implementation benefits most from our sparsification techniques. The
algorithm is around 3 to 4 times faster on THybrid than on TL. All algorithms perform best on
THybrid. In conclusion, our sparsification techniques not only reduce the size of the flow prob-
lems, they also improve the running time of several maximum flow algorithms significantly.
In Table 1, we compare the absolute running times of the algorithms on our fastest flow

network THybrid. The Ibfs algorithm works best on large instances (|V ′| > 1000). For smaller
benchmarks (|V ′| ≤ 1000) BoykovKolmogorov and EdmondKarp are faster than the
Ibfs algorithm. However, we are currently not able to use the Ibfs algorithm in our flow-
based local search algorithm. The data structure of the algorithm is not optimized for multiple
executions on different flow networks, because the allocated memory of the old flow network is
not deleted if we build a new flow network. However, we currently work on a reimplementation
of the algorithm such that it can be used. Therefore, we use the BoykovKolmogorov maxi-
mum flow algorithm in combination with our flow network THybrid in the following experiments.

6.4. Configuring direct k-way Flow-based Refinement
In this section, we analyze the quality of our k-way flow-based refinement algorithm with differ-
ent configurations on our parameter tuning benchmark subset. There are several configurations
and tuning parameters that we have to evaluate:

• Max-(F)low-Min-Cut computations as refinement algorithm
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Ibfs BoykovKolmogorov GoldbergTarjan EdmondKarp
|V ′| t[ms] t[%] t[%] t[%]

500 0.81 1.79 24.56 -7.36
1000 1.91 12.92 26.88 13.90
5000 13.52 38.11 63.68 108.43

10000 28.40 53.52 92.56 182.79
25000 64.18 50.19 95.25 157.03

Table 1: Average running times of our maximum flow algorithms on flow network THybrid. Note,
all values in the table are in percentage relative to the running time of the Ibfs algo-
rithm. In each line the fastest variant is marked bold.

• Adaptive Flow Iteration parameter α′ (see Section 3.3.2)
• (M)ost Balanced Minimum Cut heuristic (see Section 5.3)
• Combining Max-(F)low-Min-Cut computations with (FM) refinement

In the following, we denote a configuration for example with (+F,-M,-FM) that indicates which
heuristic resp. technique is enabled (+) or disabled (−). The meaning of the abbreviations is
explained in the enumeration above (see letters inside parentheses). We evaluate each configura-
tion for k ∈ {2, 4, 8, 16, 32, 64, 128}, α′ ∈ {1, 2, 4, 8, 16} and 10 different seeds and an imbalance
of ε = 3%. We execute a flow-based refinement on each level i with i = 2j (j ∈ N+). Addition-
ally, we add configuration (+F,+M,+FM) with flow execution policy i = 128j (j ∈ N+). This
configuration has a prohibitively large running time, but it is used as an upper bound for the
quality achievable with Max-Flow-Min-Cut computations in combination with FM refinement.
We refer to this variant as Constant1283. We use KaHyPar-CA as reference [25] and refer
to it as (-F,-M,+FM).

Config. (+F,-M,-FM) (+F,+M,-FM) (+F,+M,+FM) Constant128

α′ Avg[%] t[s] Avg[%] t[s] Avg[%] t[s] Avg[%] t[s]

1 −6.10 13.51 −5.62 14.22 0.23 15.19 0.53 55.75
2 −3.20 16.89 −2.08 18.23 0.74 17.97 1.09 87.93
4 −1.82 22.23 −0.20 24.29 1.21 22.50 1.61 144.42
8 −0.85 31.49 0.98 34.43 1.71 30.58 2.16 257.41

16 −0.20 48.66 1.75 53.23 2.21 45.04 2.69 498.29

Ref. (-F,-M,+FM) 6373.88 13.73

Table 2: Table contains results for different configurations of our flow-based refinement frame-
work for increasing α′. The quality in column Avg. is relative to our baseline configu-
ration (-F,-M,+FM).

The results are summarized in Table 2. The values in column Avg are improvements relative
to our baseline configuration (-F,-M,+FM). The running time are absolute values in seconds.
The first observation is that flows only are not strong enough to outperform the FM heuristic.
Our strongest configuration with α′ = 16 is 0.2% worse than the FM baseline. Enabling

3Due to the large running time this configuration uses all three speed-up heuristics
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6 Experimental Results

Config. (+F,-M,-FM) (+F,+M,-FM) (+F,+M,+FM)

α′ M1 - Avg [%] M2 - Avg [%] M1 - Avg [%] M2 - Avg [%] M1 - Avg [%] M2 - Avg [%]

1 −15.48 −6.10 −15.26 −5.62 0.14 0.23
2 −10.50 −3.20 −10.12 −2.08 0.36 0.74
4 −5.98 −1.82 −5.08 −0.20 0.67 1.21
8 −3.22 −0.85 −1.64 0.98 1.25 1.71

16 −1.52 −0.20 0.51 1.75 1.87 2.21

Ref. (-F,-M,+FM) 6373.88

Table 3: Comparison on quality of our framework with different source and sink set modeling
approaches. M1 represents the approach of Sanders and Schulz [44] and M2 is our
new variant proposed in Section 5.2.

the Most Balanced Minimum Cut heuristic significantly improves the quality compared to the
configuration (+F,-M,-FM). The quality improvements are more significant for large α′. The
larger the flow problem size, the larger is the number of different minimum (S, T )-cutsets and
this increases the possibility to find a feasible solution that respects the balance constraint.
Also it outperforms our baseline FM configuration for α′ = 16 by 1.75%. If we enable FM
refinement, we improve the solution quality by 2.21% (for α′ = 16). Also, the running time
of this variant is faster than all previous flow configurations because we transfer more work
to the FM refinement. Consequently, a block becomes inactive faster during the active block
scheduling algorithm and this decreases the number of rounds of complete pairwise flow-based
refinements. Finally, Constant128 gives us an upper bound of the quality achievable with a
combination of flow-based and FM refinement. Flows are executed in each 128th level of the
multilevel hierarchy. The quality is 2.69% better than our baseline configuration, but roughly
50 times slower. Compared to (+F,+M,+FM) for α = 16, Constant128 is only 0.48% better
and around roughly 10 times slower.
Our best configuration is (+F,+M,+FM) with α′ = 16. It is also the most effective one
(see Effectiveness Test in Appendix D). For further experiments, we refer to this variant as
KaHyPar-MF.
At the end of Section 5.2, we compare our source and sink set modeling approach (M2) with the
one of Sanders and Schulz [44] (M1). The main result is that our approach should theoretically
yield to better minimum cuts, because we do not restrict all hypernodes contained in a non-cut
hyperedge, which is partially contained in the flow problem, to stay in the same block after
a Max-Flow-Min-Cut computation. In Table 3 we compare the two modeling approaches in
practice. The quality of our flow-based configurations without the FM algorithm are up to
5% to 10% better for α′ ≤ 4. For α′ > 4 the improvement is around 1.5% to 2.5%. For small
α′ most of the hypernodes of the flow problem are incident to a non-cut hyperedge partially
contained in the flow problem. Therefore, M1 restricts them to stay in the same block after
a Max-Flow-Min-Cut computation. M2 allows them to change its block, if it yields a smaller
minimum cut.

6.5. Speed-Up Heuristics

At the end of Section 5.4, we presented several heuristics which help to prevent unpromising
flow executions during active block scheduling ((R1)-(R3)). The main assumption is that
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6.6 Comparison with other Hypergraph Partitioners

only a minority of Max-Flow-Min-Cut computations lead to an improvement. To verify this
assumption, we execute KaHyPar-MF in combination with different speed-up heuristics on our
benchmark subset (see Table 7).
Table 4 summarizes the results of the experiment. The indices of the different variants of
KaHyPar-MF describe which speed-up heuristic is enabled. On average, enabling all speed-up
heuristics worsen the quality of KaHyPar-MF only by 0.07%. On the other hand, the framework
is significantly faster by a factor of 2. In its final configuration, KaHyPar-MF(R1,R2,R3) computes
partitions with 2.41% better quality than KaHyPar-CA, while only incurring a slowdown of
a factor of 2. In the following, we denote our final configuration KaHyPar-MF(R1,R2,R3) as
KaHyPar-MF.

Variant Avg [%] Min [%] tflow[s] t[s]

KaHyPar-CA 7077.20 6820.17 - 29.26
KaHyPar-MF −2.48 −2.13 51.76 81.02
KaHyPar-MF(R1) −2.41 −2.05 41.21 70.47
KaHyPar-MF(R1,R2) −2.40 −2.04 35.56 64.82
KaHyPar-MF(R1,R2,R3) −2.41 −2.05 26.64 55.90

Table 4: Results of our flow-based refinement framework with different speedup heuristics.

6.6. Comparison with other Hypergraph Partitioners

Finally, we compare our new approach KaHyPar-MF with different state-of-the-art hypergraph
partitioners on the full benchmark set. We excluded 200 instances of 3416 either because
PaToH-Q could not allocate enough memory or other partitioners did not finish in time. The
excluded instances are shown in Table 10.
Fig. 21 summarizes the results of the experiment. KaHyPar-MF produces the best partitions
on 72.9% of all benchmark instances. It is followed by hMetis-R (12.3%), hMetis-K (10.3%),
KaHyPar-CA (1.3%), PaToH-Q (1.8%) and PaToH-D (1.4%). KaHyPar-MF improves the qual-
ity of KaHyPar-CA by 2.49% (see Table 14). Comparing KaHyPar-MF with each partitioner
individually, KaHyPar-MF produces better partitions than KaHyPar-CA, hMetis-R, hMetis-K,
PaToH-Q, PaToH-Q on 97%, 82%, 84%, 95%, 95% of the benchmark instances. Especially on
VLSI instances, KaHyPar-MF calculates significantly better partitions than all other hyper-
graph partitioners (see Dac and Ispd98 in Fig. 21).
Table 13 shows the running time of all partitioners for different benchmark types. The running
time of KaHyPar-MF is within a factor of 2 slower than KaHyPar-CA and is comparable to
the running time of hMetis-K and hMetis-R.
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Figure 21: Min-Cut performance plots comparing KaHyPar-MF with KaHyPar-CA and other
partitioners. Plots are explained in Section 6.2.
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7 Conclusion

Partitioner Running Time t[s]

All Dac Ispd98 Primal Literal Dual Spm

KaHyPar-MF 63.33 505.75 21.10 71.81 140.53 98.06 32.64
KaHyPar-CA 30.85 368.97 12.35 32.91 64.65 68.27 13.63
hMetis-R 78.47 446.36 29.03 66.25 142.12 200.36 40.64
hMetis-K 57.36 240.92 23.18 44.23 94.89 125.55 35.08
PaToH-Q 5.84 28.34 1.89 6.90 9.24 10.57 3.35
PaToH-D 1.21 6.45 0.35 1.12 1.58 2.87 0.75

Table 5: Comparing the average running time of KaHyPar-MF with KaHyPar-CA and other
hypergraph partitioners.

7. Conclusion

In this thesis, we present a novel refinement algorithm based on Max-Flow-Min-Cut compu-
tations for multilevel hypergraph partitioning. We integrate our framework into the n-level
hypergraph partitioner KaHyPar and show that in combination with the FM algorithm our
new approach produces the best partitions for a wide range of applications.
We introduce several techniques to sparsify the standard hypergraph flow network [33], which
consists of many edges with infinite capacity. We present several theoretical results, which
allow us to remove such edges or even to remove nodes. The results are of independent interest,
because they are also applicable for min-cuts on hypergraphs and general flow networks with
infinite capacity edges. The main practical implications are that we can remove any hypernode
from the hypergraph flow network and model hyperedges of size 2 more efficiently. Our final
flow network combines the two techniques, which reduces the problem size of the resulting flow
networks on various benchmark types by up to a factor of 2 compared to the state-of-the-art
representation and simultanousely speeds-up the running time of different maximum flow algo-
rithms by the same amount.
Our flow-based refinement framework is based on ideas of Sanders and Schulz [44] (developed
for multilevel graph partitioning). However, we generalize many results such that they are ap-
plicable to hypergraph partitioning. We configure a flow problem on a subhypergraph in such
a way that a Max-Flow-Min-Cut computation improves a given bipartition of a hypergraph.
Further, we show theoretically and practically that with our modeling approach better mini-
mum cuts are achievable compared to the results of Sanders and Schulz. The bipartitioning
algorithm is transferred to the direct k-way partitioning case by executing pairwise flow-based
refinements on two adjacent blocks according to the active block scheduling strategy [26]. The
total number of flow-based refinements throughout the multilevel hierarchy is controlled by a
flow execution policy. Additionally, we combine our framework with the FM algorithm, which
is executed in each level. Furthermore, we develop several heuristics to prevent unpromising
Max-Flow-Min-Cut computations on two adjacent blocks, which speed-up our framework by a
factor of 2.
The new configuration KaHyPar-MF produces better partitions than our old configuration
KaHyPar-CA on 97% of the benchmark instances. On average the solution quality is 2.5%
better, while only incurring a slowdown by a factor of 2. In comparison with 5 different state-
of-the-art hypergraph partitioners, KaHyPar-MF produces the best partitions on 73% of 3216
benchmark instances. However, our algorithm is still as fast as the direct k-way version of
hMetis and outperforms it on 84% of the benchmark instances.
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7 Conclusion

7.1. Future Work

The quality of our framework mainly depends on the number of flow executions throughout the
multilevel hierarchy. The number of flow executions is a trade-off between time and quality,
which depends on the running time of the maximum flow algorithm. Optimizing those two basic
building blocks of the framework will allow us to achieve better quality in the same amount of
time.
The hypergraph flow network proposed by Lawler [33] has a bipartite structure. Because of this
structural regularity, there might be other more specialized flow algorithms which run faster on
these types of networks. Further, one could investigate if it is possible to maintain the whole
flow network over the multilevel hierarchy instead of explicitly creating the flow network before
each flow execution. Also, it would be interesting if information from previous flow calculations
can be used to speed-up the current flow calculation. The Ibfs maximum flow algorithm [22]
supports the functionality to add edges and nodes to the flow network and speed-up the flow
computation by using informations of previous runs. This would be an useful extension of the
adaptive flow iteration strategy, where we solve a sequence of similar flow problems around the
cut of two blocks of a partition.
Pistorius [42] describes an algorithm which implicitly executes EdmondKarp on hypergraphs
using labels on the hypernodes. In our first version of the framework, we used a similar technique
and implicitly execute a flow algorithm on an implicit representation of the underlying network.
During initial experiments, it turned out that the explicit representation was up to a factor of
2-3 faster than the implicit version. This is due to the fact that our flow network represents
a subhypergraph of the original hypergraph. Iterating over the edges of a node means to also
iterate over hypernodes which are not part of the flow problem and thus have to be ignored.
Further, many labels have to be introduced which lead to a large number of main memory
accesses. Furthermore, the implicit flow network is not flexible enough. Developing a new
technique to sparsify the flow network would require a new implementation of the implicit flow
network.
Our current framework optimizes the connectivity metric of a k-way partition. It turned out
that it is relatively simple to adapt the algorithm to different objective functions. If we want
to improve the cut metric of a k-way partition with a Max-Flow-Min-Cut computation on two
adjacent blocks Vi and Vj, we only have to extend the source and sink set of the resulting
flow problem with additional nodes. More precisely, if a hyperedge contains a block Vk with
Vk /∈ {Vi, Vj}, we add the incoming and outgoing hyperedge node to the source and sink set.
If we want to optimize sum of external degree metric, we can use the same source and sink set
as for the connectivity metric and double the capacity of each hyperedge e with λ(e,Π) ≤ 2.
In future versions of the framework, we want to generalize our observations such that it can
optimize any objective function, which value depends on the connectivity of a hyperedge.
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A Benchmark Instances

A. Benchmark Instances

A.1. Parameter Tunning Benchmark Set

Type Num min |V | Avg. |V | max |V | min |E| Avg. |E|

Ispd98 5 32498 49049 69429 34826 52202
Primal 5 53919 90467 163622 245440 414577
Literal 5 96430 141622 283720 140968 323388
Dual 5 100384 297768 1070757 34317 85669
Spm 5 12328 34129 74104 12328 34129

Type max |E| Avg. |e| Median |e| Avg. d(v) Median d(v) Avg. |E||V |
Ispd98 75196 3.79 2.00 4.04 3.57 1.06
Primal 629461 2.56 2.30 11.74 6.54 4.58
Literal 629461 2.56 2.30 5.85 3.25 2.28
Dual 229544 8.05 6.03 2.32 2.00 0.29
Spm 74104 20.91 19.92 20.91 17.87 1.00

Table 6: Summary of the parameter tunning instances.

A.2. Benchmark Subset

Type Num min |V | Avg.|V | max |V | min |E| Avg.|E|

Dac 5 522482 708389 917944 511685 697951
Ispd98 10 53395 110344 210613 60902 119535
Primal 30 7729 141143 1613160 29194 632173
Literal 30 15458 281238 3226318 29194 632173
Dual 30 29194 632173 6429816 7729 141143
Spm 60 11028 64765 1000005 4371 59589

Type max |E| Avg.|e| Median |e| Avg.d(v) Median d(v) Avg. |E||V |
Dac 898001 3.37 2.00 3.32 3.18 0.99
Ispd98 201920 3.87 2.08 4.20 3.67 1.08
Primal 6429816 2.58 2.20 11.54 7.39 4.48
Literal 6429816 2.58 2.20 5.79 3.78 2.25
Dual 1613160 11.54 7.39 2.58 2.20 0.22
Spm 1000005 16.25 12.95 14.95 12.58 0.92

Table 7: Summary of the benchmark subset instances.
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A.3 Full Benchmark Set

A.3. Full Benchmark Set

Type Num min |V | Avg.|V | max |V | min |E| Avg.|E|

Dac 10 522482 888090 1360217 511685 876629
Ispd98 18 12752 59801 210613 14111 64240
Primal 92 7502 111371 1621762 28770 649991
Literal 92 15004 221981 3226318 28770 649991
Dual 92 28770 649991 13378617 7502 111371
Spm 184 10000 56930 9845725 163 52709

Type max |E| Avg.|e| Median |e| Avg.d(v) Median d(v) Avg. |E||V |
Dac 1340418 3.41 2.00 3.37 3.27 0.99
Ispd98 201920 3.83 2.05 4.11 3.52 1.07
Primal 13378617 2.74 2.31 16.01 8.12 5.84
Literal 13378617 2.74 2.31 8.03 3.65 2.93
Dual 1621762 16.01 8.12 2.74 2.31 0.17
Spm 6920306 15.72 12.15 14.56 10.99 0.93

Table 8: Summary of the full benchmark set instances.

A.4. Excluded Test Instances

Hypergraph 2 4 8 16 32 64 128
10pipe-q0-k.dual 4 4 4 m4
10pipe-q0-k.primal � � � � � � �
11pipe-k.dual 4 m4 m4 m4 m4 m4 m4
11pipe-k m m m m
11pipe-k.primal � � � � � � m�
11pipe-q0-k.dual 4 m4 m4
11pipe-q0-k.primal � � � � � � �
9dlx-vliw-at-b-iq3.dual 4
9dlx-vliw-at-b-iq3.primal � � � � � � �
9vliw-m-9stages-iq3-C1-bug7.dual 4 lm4 lm4 lm4 lm4 lm4 lm4
9vliw-m-9stages-iq3-C1-bug7 4 4 lm4 lm4 lm4 lm�4 lm�4
9vliw-m-9stages-iq3-C1-bug7.primal 4 4 4 m4 m4 m4
9vliw-m-9stages-iq3-C1-bug8.dual 4 lm4 lm4 lm4 lm4 lm4 lm4
9vliw-m-9stages-iq3-C1-bug8 4 4 lm4 lm4 lm4 lm�4 lm�4
9vliw-m-9stages-iq3-C1-bug8.primal 4 4 4 m4 m4 m4
blocks-blocks-37-1.130-NOTKNOWN.dual m lm lm lm lm lm4
blocks-blocks-37-1.130-NOTKNOWN � � � � � �
blocks-blocks-37-1.130-NOTKNOWN.primal � � � � � � �
E02F20.dual m
E02F22.dual m m
openstacks-p30-3.085-SAT.primal � � � � � � �
openstacks-sequencedstrips-nonadl-
nonnegated-os-sequencedstrips-p30-3.025-
NOTKNOWN.primal

� � � � � � �

openstacks-sequencedstrips-nonadl-
nonnegated-os-sequencedstrips-p30-3.085-
SAT.primal

� � � � � � �
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A Benchmark Instances

q-query-3-L100-coli.sat.dual 4
q-query-3-L150-coli.sat.dual 4 4
q-query-3-L200-coli.sat.dual 4 4 4
q-query-3-L80-coli.sat.dual 4
transport-transport-city-sequential-25nodes-
1000size-3degree-100mindistance-3trucks-
10packages-2008seed.030-NOTKNOWN.dual

4

transport-transport-city-sequential-
25nodes-1000size-3degree-100mindistance-
3trucks-10packages-2008seed.050-
NOTKNOWN.primal

� � �

velev-vliw-uns-2.0-uq5.dual 4 4 4 4 4
velev-vliw-uns-2.0-uq5.primal � � � � � � �
velev-vliw-uns-4.0-9.dual 4 4 4
velev-vliw-uns-4.0-9.primal � � � � � � �
192bit � �
appu m m
ESOC � � � m� �
human-gene2 m4 m4 m4
IMDB 4 4 4 4
kron-g500-logn16 4 4 4 4 m4 m4
nlpkkt120 4 4 4 4 4 m4
Rucci1 �
sls � � � m� m� m� m�
Trec14 m

4 : KaHyPar-CA/KaHyPar-MF exceeded time limit
l : hMetis-R exceeded time limit
m : hMetis-K exceeded time limit
� : PaToH-Q memory allocation error

Table 10: Instances excluded from the full benchmark set evaluation.
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B Removing Infinite Weight Nodes of the Vertex Separator Problem

B. Removing Infinite Weight Nodes of the Vertex Separator
Problem

Finding a minimum-weight (s, t)-cutset of a hypergraph can be reduced to the problem of find-
ing a minimum-weight (s, t)-vertex separator of the bipartite graph representation G∗(H) of the
hypergraph [27, 33]. The weight of the hyperedge nodes is the weight of the corresponding hy-
peredge and the weight of all hypernodes is infinity. We can calculate a minimum-weight (s, t)-
vertex separator of G∗(H) with a maximum (s, t)-flow calculation on the Lawler-Transformation
TL(H). In Section 4.1 we have shown how to remove a hypernode v from TL(H) by adding
shortcut edges between all outgoing hyperedges e′′ and all incoming hyperedges e′ with e ∈ I(v).
The correctness of the transformation follows with Lemma 4.1. The total number of inserted
edges is d(v)2 where d(v) is the degree of hypernode v. Since the underlying problem is to find
a minimum-weight (s, t)-vertex separator, we can prove that d(v)(d(v)− 1) edges are sufficient
to model the problem equivalently. The problem is illustrated in Fig. 22. In the following, we
show that we can remove the red edges, which are exactly the edges between two equivalent
hyperedge nodes.

Lemma B.1. Let G = (V,E, c) be an undirected graph and v ∈ V with c(v) =∞. We can find
a minimum-weight (s, t)-vertex separator of G with graph G′ which is the graph without node v
and having a clique between all adjacent nodes of v.

Proof. We will show that each (s, t)-vertex separator of G is also a (s, t)-vertex separator of G′
and vice versa. Since the weight of each node in both network is the same, a minimum-weight
(s, t)-vertex separator of G is also a minimum-weight (s, t)-vertex separator of G′ and vice versa.
We call an edge of G′, which is part of the inserted clique, a shortcut edge.
Let V ′ ⊆ V be a (s, t)-vertex separator of G with c(V ′) <∞. Assume after removing all u ∈ V ′
from G′ there still exists a path from s to t. If the path does not contain any shortcut edge,
the same path must connect s and t in G because we have removed all u ∈ V ′ from G′. This is
a contradiction that V ′ is a vertex separator of G. Assume the path contains a shortcut edge
(u,w) of G′. Because c(V ′) < ∞ and c(v) = ∞, it follows that v /∈ V ′. We can replace (u,w)
with two edges (u, v) and (v, w) and obtain a path connecting s and t in G. This is also a
contradiction that V ′ is a vertex separator of G.
The same argumentation holds, if we want to show that each (s, t)-vertex separator of G′ is a
(s, t)-vertex separator of G. If the path P connecting s and t in G contains the removed node
v with edges (u, v) ∈ P and (v, w) ∈ P we can replace the two edges with the shortcut edge
(u,w) of G′. The resulting path connects s and t in G′. This is a contradiction due to the fact
that V ′ is a vertex separator of G′.

Lemma B.1 can be used to remove the infinity capacity edges between the same hyperedge
nodes (see red edges in Fig. 22). Instead of removing a hypernode v of TL(H) with Lemma
4.1, we can apply Lemma B.1 on a hypernode v of the bipartite graph representation of the
hypergraph. Afterwards, we can use the vertex separator transformation (see Defintion 2.3)
to obtain a flow network in which the value of a maximum (s, t)-flow is equal to the weight
of a minimum-weight (s, t)-vertex separator. Both networks on the right side of Fig. 22 are
equivalent, but the removal of a hypernode now induces d(v)(d(v) − 1) edges instead of d(v)2

edges in the new network.
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Figure 22: Illustration of the technique to remove a hypernode such that the removal induce
d(v)(d(v)− 1) edges instead of d(v)2 edges in the corresponding flow network. The
edges without an explicit capacity are infinite capacity edges. The transformation
on the top of the figure illustrates the technique presented in Section 4.1. Using
Lemma B.1 and the vertex separator transformation (see Defintion 2.3) results in a
equivalent flow network without the red highlighted edges.
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C Detailed Flow Network and Algorithm Evaluation

C. Detailed Flow Network and Algorithm Evaluation
In

st
an

ce Ibfs BoykovKolmogorov GoldbergTarjan EdmondKarp
|V ′| t[ms] t[%] t[%] t[%]

A
ll

500 0.81 1.79 24.56 -7.36
1000 1.91 12.92 26.88 13.90
5000 13.52 38.11 63.68 108.43

10000 28.40 53.52 92.56 182.79
25000 64.18 50.19 95.25 157.03

D
ac

500 0.29 −10.46 11.79 -34.02
1000 0.71 −9.51 18.18 -35.86
5000 5.16 −5.94 12.21 -17.03

10000 10.23 -1.30 33.46 32.26
25000 26.05 2.14 112.29 67.77

Is
pd

98

500 0.42 −11.77 23.10 -13.55
1000 0.98 −11.76 14.61 -12.01
5000 7.33 -1.06 65.21 41.04

10000 15.19 5.27 209.29 164.02
25000 41.50 15.04 782.45 525.31

D
ua

l

500 0.24 −12.17 1.24 -42.11
1000 0.51 −11.40 3.32 -43.34
5000 3.41 −7.46 7.30 -43.50

10000 6.65 −2.56 21.99 -37.53
25000 15.63 3.86 65.81 -17.12

P
ri

m
al

500 1.45 24.48 58.97 143.23
1000 3.51 22.79 66.63 200.62
5000 26.34 23.07 122.09 589.46

10000 48.87 14.37 110.18 484.42
25000 102.32 17.38 237.90 852.30

Li
te

ra
l

500 0.66 0.55 61.36 38.80
1000 1.63 8.06 51.86 84.71
5000 11.55 13.41 94.09 227.94

10000 25.28 14.81 130.87 375.89
25000 55.67 7.27 125.34 367.70

Sp
m

500 1.60 3.50 8.07 -39.46
1000 3.79 34.29 14.28 -14.95
5000 26.30 121.86 65.34 105.19

10000 60.57 196.95 103.28 256.18
25000 140.35 169.78 14.70 62.44

Table 11: Average running times of our maximum flow algorithms on flow network THybrid.
Note, all values in the table are in percentage relative to the running time of the
Ibfs algorithm. In each line the fastest variant is marked bold.

59



D Effectiveness Tests for Flow Configurations

D. Effectiveness Tests for Flow Configurations
To evaluate the effectiveness of our configurations presented in Section 6.4 we give each con-
figuration the same amount of time to produce as many as possible partitions of a hypergraph
H for a given k. We define tH,k which is the maximum partition time of a configuration to
partition H in k blocks. If we execute a configuration on a hypergraph H for a given k and
α′ the time to produce as many as possible partitions is restricted by 3tH,k. We sum up the
partition times during execution and if that sum plus the current average partition time would
exceed 3tH,k we perform the next run with a certain probability such that the expected running
time is 3tH,k. The effectiveness tests were proposed by Sanders and Schulz [44]. The results of
the tests mirrors our results of Section 6.4.

Config. (+F,-M,-FM) (+F,+M,-FM) (+F,+M,+FM)

α′ Avg[%] Avg[%] Avg[%]

1 −6.08 −5.57 0.23
2 −3.22 −2.10 0.72
4 −1.90 −0.26 1.18
8 −0.91 0.92 1.67

16 −0.29 1.65 2.15

Ref. (-F,-M,+FM) 6376.03

Table 12: Table contains results of the effectiveness test for different configurations of our flow-
based refinement framework for increasing α′. The quality in column Avg. is relative
to our baseline configuration (-F,-M,+FM).
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E. Detailed Speed-Up Heuristic Evaluation
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Figure 23: Min-Cut performance plots comparing KaHyPar-MF with KaHyPar-CA. The plots
are explained in Section 6.2.
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F Detailed Comparison with other Hypergraph Partitioners

Partitioner Running Time t[s]

All Dac Ispd98 Primal Literal Dual Spm

KaHyPar-CA 29.26 343.40 21.57 36.44 56.49 58.75 11.31
KaHyPar-MF 81.02 610.48 69.84 107.72 164.68 127.09 33.81
KaHyPar-MF(R1) 70.47 526.26 55.56 91.10 136.17 113.87 30.62
KaHyPar-MF(R1,R2) 64.82 503.04 47.31 84.65 123.63 101.41 28.95
KaHyPar-MF(R1,R2,R3) 55.90 452.27 39.03 71.64 105.20 89.07 25.24

Table 13: Comparing the average running time of KaHyPar-MF with KaHyPar-CA.

F. Detailed Comparison with other Hypergraph Partitioners

Partitioner Average λ− 1

All Dac Ispd98 Primal Literal Dual Spm

KaHyPar-MF 7727.97 17 480.70 5644.61 15 863.61 15 769.49 3038.31 6027.03
KaHyPar-CA 2.49 3.11 2.20 2.08 2.74 3.51 2.08
hMetis-R 15.79 3.64 1.62 2.07 2.80 43.44 19.77
hMetis-K 15.25 8.46 1.38 4.05 9.29 28.65 19.54
PaToH-Q 9.51 13.57 7.92 12.14 13.35 8.80 6.79
PaToH-D 16.77 23.75 15.08 18.27 21.54 18.31 12.92

Table 14: Comparison of average (λ− 1) metric of KaHyPar-MF with KaHyPar-CA and other
partitioners on different benchmark types. The results are in percentage relative to
KaHyPar-MF.

Partitioner Average λ− 1

k = 2 k = 4 k = 8 k = 16 k = 32 k = 64 k = 128

KaHyPar-MF 1057.94 3105.80 5988.27 9292.89 14 582.34 21 735.78 31 477.02
KaHyPar-CA 2.32 2.62 2.86 2.73 2.55 2.28 2.08
hMetis-R 27.19 18.98 16.97 15.81 12.86 10.70 8.49
hMetis-K 27.59 17.84 15.75 15.58 11.78 10.25 8.48
PaToH-Q 11.74 9.14 9.14 10.01 9.38 9.05 8.10
PaToH-D 15.29 16.60 19.17 19.91 16.15 15.78 14.52

Table 15: Comparison of average (λ− 1) metric of KaHyPar-MF with KaHyPar-CA and other
partitioners for different values of k. The results are in percentage relative to
KaHyPar-MF.
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Figure 24: Min-Cut performance plots comparing KaHyPar-MF with KaHyPar-CA and other
partitioners for different values of k.
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Partitioner Running Time t[s]

k = 2 k = 4 k = 8 k = 16 k = 32 k = 64 k = 128

KaHyPar-MF 23.56 39.84 56.44 68.69 86.73 108.35 125.74
KaHyPar-CA 12.68 17.02 23.70 30.78 41.38 56.95 76.05
hMetis-R 27.87 51.03 73.94 90.09 107.94 127.26 147.72
hMetis-K 25.47 31.92 42.06 52.87 73.30 108.15 151.63
PaToH-Q 1.93 3.58 5.39 6.95 8.32 9.97 11.34
PaToH-D 0.43 0.76 1.11 1.40 1.69 2.00 2.27

Table 16: Comparing the average running time of KaHyPar-MF with KaHyPar-CA and other
partitioners for different values of k.
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