
Bachelor Thesis

Combining Recursive Bisection and
k-way Local Search for Hypergraph

Partitioning
Charel Mercatoris

Date: 8. November 2018

Supervisors: Prof. Dr. rer. nat. Peter Sanders
Sebastian Schlag, M.Sc
Dr. rer. nat. Christian Schulz

Institute of Theoretical Informatics, Algorithmics
Department of Informatics

Karlsruhe Institute of Technology

Abstract

We combine a multilevel heuristic recursive bisection algorithm for hypergraph partitio-
ning with k-way local search. In particular we describe several algorithms that refine the
ε-balanced k-way partition after recursive bisection. Furthermore we present some algo-
rithms, which refine the partition during the recursive bisection process. Moreover we en-
gineered an algorithm which improves the partition with active block scheduling and 2-way
local searches. We test the different algorithms for optimising the cut-net and connectivity
metric. Experimental results indicate that partitions, resulting form recursive bisection, can
be improved slightly with little extra running time. By investing more running time, it is
possible to improve the objective significantly.

Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernommenen
Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für Technolo-
gie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet
habe.

Karlsruhe, den 8.11.2018

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 2
1.3 Structure of Thesis . 2

2 Fundamentals 5
2.1 General Definitions . 5

3 Related Work 9
3.1 n-Level Hypergraph Partitioning . 9

3.1.1 Coarsening . 9
3.1.2 Initial Partitioning . 11
3.1.3 Uncoarsening . 12

3.2 Local Search . 13
3.2.1 Local Search of Kerninghan and Lin 13
3.2.2 FM Local Search of Fiduccia and Matheyses 14
3.2.3 Localized adaptive k-way FM Local Search 15

3.3 V-Cycle . 16
3.4 Recursive Bisection . 18

4 Better Recursive Bisection Algorithm 21
4.1 Generals Concepts . 22
4.2 Single Local Search after Recursive Bisection 24
4.3 Local Search at the Nodes of the Recursive Bisection Tree 25

4.3.1 Single Local Search at each Node 26
4.3.2 Repeated Local Search . 27
4.3.3 Preferred Local Search on Small Subpartitions 28

4.4 Local Search on Unfinished Partitions . 30
4.5 2-Way Local Search with Active Block Scheduling 33
4.6 Active Block Scheduling During Uncoarsening 33
4.7 Recursive Bisection with V-Cycle Refinement 35
4.8 Algorithm Overview . 36

vii

5 Experimental Evaluation 37
5.1 Experimental Setup . 37

5.1.1 Environment . 37
5.1.2 Tuning Parameters . 37
5.1.3 Instances . 38

5.2 Statistics . 38
5.3 Experimental Results . 40

5.3.1 Overview of The Different Algorithms 40
5.3.2 Experiments on the Larger Hypergraph Set 44
5.3.3 Comparison to State-Of-The-Art Partitioner 52

6 Discussion 55
6.1 Conclusion . 55
6.2 Future Work . 56

A Hypergraph Sets 57

Bibliography 61

1 Introduction

1.1 Motivation

Hypergraphs are a generalisation of graphs. The difference between graphs and hyper-
graphs is that in a hypergraph an edge or net can link more than two vertices. The basic
problem examined in this thesis is the hypergraph partitioning problem. This problem con-
sists of partitioning the vertex set of a hypergraph in k blocks. Graph and hypergraph
partitioning is NP-Hard for certain metrics and it is even NP-Hard to find a constant factor
approximation [18, 19]. To find a good approximation, multilevel heuristics are used in
practice. A multilevel algorithm consists of tree phases: coarsening, initial partitioning and
uncoarsening. First the size of the graph or hypergraph is decreased by contracting vertices.
After calculating an initial partition, the coarsening is undone and the partition is refined.
If we can find a good heuristic algorithm for hypergraph partitioning, this would mean we
have a good heuristic algorithm for graph partitioning. Graph partitioning is a special case
of hypergraph partitioning where all hyperedges contain two vertices.
Two areas in which graph and hypergraph partitioning are frequently used are scientific
computing and VLSI design. Pothen states that graph partitioning can be used in paral-
lel computing [20]. The concurrency in a program can be detected and represented as a
graph. Partitioning this graph into subgraphs results in a decomposition of the data and the
tasks associated with a computational problem. The subgraphs can be mapped to different
processors of a multiprocessor and processed in parallel. For instance sparse direct and
iterative solvers use graph partitioning to minimize the communication and ensure load
balance [7]. Hypergraph partitioning can be used in the physical design of digital circuits
for very large-scale integration (VLSI) systems [7]. To reduce the VLSI design complexity
the digital circuit is partitioned into smaller components. The typical optimisation objec-
tive is to minimize the weight of connections between the different components. The total
length of wires is kept as short as possible. Partitioning is one of the bottle neck in the
design process. Further application areas for graph and hypergraph partitioning are image
processing, road networks and complex networks [7].
Two major algorithms using the multilevel heuristic are recursive bisection and direct
k-way partitioning. Recursive bisection recursively bisects the hypergraph until we have a
k-way partition. The direct k-way algorithm partitions the hypergraph during initial par-
titioning into k blocks. Both algorithms provided good results for the cut metric [22, 23].
While optimising the cut metric, the algorithm minimizes the number of edges or hyper-
edges between different blocks. The KaHyPar [22, 23] implementation of both algorithms

1

1 Introduction

use the multilevel paradigm. While recursive bisection uses only 2-way local search the di-
rect k-way algorithm uses k-way local search. Local search algorithms successively move
vertices from one block into an other to optimize the metric. In this thesis we combine
recursive bisection with k-way local search by refining the partition and/or subpartitions at
different states of the recursive bisection.

1.2 Contribution

In this thesis we engineer different algorithms which combine recursive bisection and
k-way local search. On the one hand, we propose algorithms that can slightly improve
the partition of the recursive bisection with minimal extra running time. On the other hand,
we engineer some algorithms which can improve the partition by more than 3% by in-
vesting more running time. The algorithms can be divided in two classes: local search
refinement after the recursive bisection, which always find better or equal partitions, and
local search during the recursive bisection, which may result in worse partitions.
The refinement algorithms especially improve the objective of ISPD, Primal and Literal
hypergraphs. The improvements get larger if the number of blocks in a partition increases.
The algorithm RB+LC significantly improves the objective for small partitions, but has a
longer running time. On the other side, RB+LT has a much lower running time and provides
better results for larger partitions. The algorithms RB+L and RB+OL slightly improve the
objective and have an insignificantly larger running time.
We tested a direct k-way partitioning algorithm, where we refined the partitions during
uncoarsening with 2-way local searches instead of k-way local searches. The 2-way lo-
cal searches are scheduled between neighbour blocks. This algorithm has a much higher
running time and provides worse results.

1.3 Structure of Thesis

After stating the hypergraph partitioning problem and giving general definitions in Chap-
ter 2, we give an overview of related work in Chapter 3. This chapter introduces n-level hy-
pergraph partitioning with coarsening, initial partitioning and uncoarsening in Section 3.1.
Furthermore, we will describe the local search algorithm of Kerninghan and Lin, FM local
search and k-way FM local search in Section 3.2, V-cycles in Section 3.3 and the recur-
sive bisection algorithm in Section 3.4. Then we will describe algorithms which combine
recursive bisection and k-way local search in Chapter 4. The algorithms in Section 4.3 per-
form a k-way local search on the nodes of the recursive bisection tree. In Section 4.4 we
propose an alternative recursive bisection and apply the local search on unfinished parti-
tions. Active block scheduling is used to refine the partitioned hypergraph with 2-way local
search in Section 4.5. In Section 4.6 we describe an algorithm that performs 2-way local
search with active block scheduling during uncoarsening instead of k-way local search and

2

1.3 Structure of Thesis

Section 4.7 introduces an algorithm that performs V-cycles after recursive bisection. We
evaluate the different algorithms in Chapter 5. The experimental environment, the tuning
parameters and the test instances are stated in Section 5.1. The results of the experiments
are explained in Section 5.3 and 5.3.2. In Section 5.3.3 we compare our algorithms to
the state-of-the-art hypergraph partitioner. Chapter 6 contains a conclusion and the future
work.

3

1 Introduction

4

2 Fundamentals

2.1 General Definitions

Hypergraphs are a generalisation of graphs. An undirected hypergraph is a quadruple H =
(V,E, c, w), where V is a set of vertices and E a set of hyperedges (or nets) with E ⊆ 2V .
The vertices of a net e ∈ E are also called pins. |e| is the number of pins in a net e, it is
called the size of e. If |e| = 1 a net e is called-single node net. The vertex weight function
c : V → R≥0 assigns each vertex a positive weight. The hyperedge weight function
w : E → R≥0 assigns each edge a positive weight. We define n = |V | and m = |E|
where |·| is the cardinality of a set. The weight functions c and w are extended to sets.
Let Vi be a set of vertices (Vi ⊆ V) and Ei be a set of nets (Ei ⊆ E), then we define
c(Vi) =

∑
v∈Vi

c(v) and w(Ei) =
∑

e∈Ei
w(e).

Let e be a net and v be a pin, then v is incident to e if v ∈ e. The set of all nets incident
to a vertex v ∈ V is I(v) = {e ∈ E | v ∈ e}. The number of incident nets d(v) = |I(v)|
is called the degree of v ∈ V . Two vertices v1, v2 ∈ V are called adjacent if ∃e ∈ E with
{v1, v2} ⊆ e. The set of all neighbours of v ∈ V is Γ(v) = {u | ∃e ∈ E, u ∈ e ∧ v ∈ e}.
A hypergraph H ′ = (V ′, E ′, c′, w′) is called a subhypergraph of H = (V,E, c, w) if the
vertices of H ′ are contained in H and each net of H ′ is in E ′. The weight functions of H ′

are the weight functions restricted on V ′ and E ′. In other words H ′ = (V ′, E ′, c′, w′) is
subhypergraph of H = (V,E, c, w) if:

(i) V ′ ⊆ V

(ii) E ′ ⊆ E ∩ V ′ × V ′

(iii) c′ : V ′ → R≥0, c
′(v) = c(v)

(iv) w′ : E ′ → R≥0, w
′(v) = w(v)

For a hypergraph H = (V,E, c, w) a k-way partition is a partition of the vertex set V in k
blocks Π = {V1, ..., Vk} with:

(i)
k⋃

i=1

Vi = V

(ii) ∀i ∈ {1, ..., k} : Vi 6= ∅
(iii) ∀i, j ∈ {1, ..., k} ∧ i 6= j : Vi ∩ Vj = ∅.

The block id b[v] of a vertex v ∈ V is used to refer the block which contains v. So v is
contained in Vb[v]. Let Lmax = d(1 + ε) c(V)

k
e with ε > 0 be the upper bound for the block

weights c(Vi). Then the k-way partition Π of a hypergraph is called ε-balanced if it satisfies

5

2 Fundamentals

the balance constraint: ∀i ∈ {1, ..., k} : c(Vi) ≤ Lmax. A block Vi is called underloaded if
c(Vi) < Lmax, overloaded if c(Vi) > Lmax and perfectly balanced if dc(Vi) = c(V)

k
e.

Let Π = {V1, ..., Vk} be a k-way partition of a hypergraph H = (V,E, c, w). Φ(e, Vi) =
|{v ∈ Vi | v ∈ e}| is the number of pins of a net e ∈ E which are in block Vi. e is
connected to Vi if Φ(e, Vi) > 0. A block Vi is adjacent to a vertex v /∈ Vi if v is in-
cident to a net e ∈ E which is connected to Vi (∃e ∈ I(v) : Φ(e, Vi) > 0). We use
R(v) = {U ∈ Π | ∃e ∈ I(v) : Φ(e, U) > 0} to denote the set of all blocks adjacent
to v. The connectivity set of a net e ∈ E is the set of blocks to which e is connected:
Λ(e) = {U ∈ Π | Φ(e, U) > 0}. The connectivity of a net e ∈ E is defined as the number
of blocks λ(e) = |Λ(e)| to which e is connected. If a net e ∈ E is only inside one block
(λ(e) = 1) the net is called internal. If e is connected to at least two blocks (λ(e) > 1) the
net is called cut net. We call a vertex v ∈ V border vertex (or border node) if v is incident
to a cut net e ∈ E.
Let H = (V,E, c, w) be a hypergraph with partition Π = {V1, ..., Vk}. Two blocks
Vi, Vj ∈ Π, i 6= j are adjacent if there exits a net e ∈ E where e is connected to Vi and Vj .
The quotient graph of H is a undirected graph Q = (Qv,Qe) with Qv = {V1, ...Vk} = Π
and Qe = {{a, b} ⊆ Qv | ∃e ∈ E : {a, b} ⊆ Λ(e)}. In other words the nodes of the
quotient graph are the blocks of the partition Π. There is an edge between two blocks if
they are adjacent.
The k-way hypergraph partitioning problem is to find an ε-balanced k-way partition Π for
a hypergraph H = (V,E, c, w) which minimizes a certain metric. The k-way partition-
ing problem is NP-Hard for certain metrics, it is even NP-Hard to find good approximate
solutions for graphs [18, 19]. Two of this metrics are the cut net metric (cut) and the con-
nectivity metric. The cut net metric minimizes cut(Π) = w(E ′) where E ′ = {e ∈ E |
λ(e) > 1} is the set of all cut nets. The connectivity metric or λ−1 metric considers the
fact that a net is connected to more than two partitions [22]. The connectivity metric is
λ−1(Π) =

∑
e∈E′(λ(e)− 1).

Let H = (V,E, c, w) be a hypergraph. A recursive bisection tree is a tree T = (N,R)
where N are the nodes and R the edges. The nodes N are the subhypergraphs which occur
during the recursive bisection of H . The root of T is the input hypergraph H of the re-
cursive bisection. The leafs are the subhypergraphs containing only the vertices of a block
of the final partition. The edges R = {(h, s) | h, s ∈ N ∧ s results from the bisection
of h} represent the bisections of the hypergraphs. The depth of a node n ∈ N in a tree
T = (N,R) is the length of the path from the root w of T to n. By convention the depth
of the root is zero. Figure 2.1 illustrates a recursive bisection tree for calculating a 4-way
partition. H is the original hypergraph of which a 4-way partition should be calculated.
The depth of H is zero. H is bisected into H1 and H2, which have depth one. There is an
edge from H to H1 and H2. Finally H1 and H2 are bisected recursively. So T = (N,R)
with V = {H,H1, H2} and R = {(H,H1), (H,H2)} is the recursive bisection tree of H .

6

2.1 General Definitions

Figure 2.1: Illustration of the recursive bisection tree for a 4-way partitioning. The arrows repre-
sent a bisection. The nodes of the tree are the subhypergraphs resulting from bisection.
The root H is the original hypergraph.

7

2 Fundamentals

8

3 Related Work

3.1 n-Level Hypergraph Partitioning

To find a good ε-balanced k-way partition of a hypergraph, while optimizing a certain
metric, heuristic multilevel algorithms are used. A multilevel algorithm consists of three
phases [11, 22]: coarsening, initial partitioning and uncoarsening with local search refine-
ment. The main idea of multilevel algorithms is to get a smaller hypergraph which has
similar properties as the original hypergraph. This diminution of the hypergraph is called
coarsening. After an initial partition has been calculated on the smallest hypergraph, it is
uncoarsened and refined with a local search algorithm described in Section 3.2.

3.1.1 Coarsening

Coarsening is used to contract highly connected vertices with the objective of decreasing
the number of nets as well as their size [14, 22]. This results in a smaller hypergraph with
similar properties than the original hypergraph. Decreasing the number of nets leads to
simpler instances for the initial partitioning. Let H = (V,E, c, w) be a hypergraph. Con-
tacting (u, v) ∈ V × V with u 6= v means merging v into u, where u is the representative
and v the contraction partner [23]. The weight of u is recalculated: c(u) = c(u)+c(v). For
each net e ∈ I(v) \ I(u), v is replaced by u. For each net e ∈ I(v) ∩ I(u), v is removed.
In other words, in each net e ∈ E which contains v, v is replaced by u if e does not contain
u, otherwise v is removed.
During coarsening a sequence of smaller hypergraphs is created [14]. Three different meth-
ods are [14]:

(i) Edge Coarsening: First a heavy-edge maximal matching of the vertices of the hyper-
graph is calculated, then they are contracted pairwise. This procedure is illustrated
in 3.1a.

(ii) Hyperedge Coarsening: Let H = (V,E, c, w) be a hypergraph. During hyperedge
coarsening an independent set of nets W ⊆ E (∀a, b ∈ W,a 6= b =⇒ a ∩ b = ∅) is
selected. Then for all nets e ∈ W all vertices are contracted into one. Small nets with
a large weight are preferred to be contracted. This procedure is illustrated in 3.1b.

(iii) Modified Hyperedge Coarsening: Modified hyperedge coarsening is illustrated in 3.1c.
First a hyperedge coarsening is performed. Then the vertices in an uncontraced net,
which are not part in a contracted net, are contracted.

9

3 Related Work

(a) edge coarsening

(b) hyperedge coarsening

(c) modified hyperedge coarsening

Figure 3.1: Different methods to match the vertices during coarsening [14]

Algorithm 1: Coarsening of a Hypergraph
Input: H = (V,E, c, w)
Result: H = (V,E, c, w)

1 while H is not small enough do
2 (u, v) := argmaxu∈V score(u)
3 H := CONTRACT(H, u, v)

4 end

The Karlsruhe Hypergraph Partitioner (KaHyPar) [11, 22, 23] is a n-level hypergraph par-
titioner which uses a variation of edge coarsening. Let H = (V,E, c, w) be a hyper-
graph. Between each level of the coarsening hierarchy, only two vertices are contracted.
These vertices are determined by a rating function: r(u, v) =

∑
e∈I(v)∩I(u)

w(e)
|e|−1

with u, v ∈
V, u 6= v. It prefers vertex pairs (u, v) where I(v)∩ I(u) contains a lot of heavy nets with a
small size. This rating function is called the heavy-edge rating function. It is also used by
hMetis [14] and Parkway [24]. To keep the vertex weight reasonably uniform KahyPar [23]
uses a variant of the heavy-edge rating function: r(u, v) = 1

c(v)·c(u)

∑
e∈I(v)∩I(u)

w(e)
|e|−1

. To
find the next contraction partner we calculate for each u ∈ V the rating r(u, v) for each
neighbour v of u (v ∈ Γ(u)). The next contraction partner of u will be the neighbour v
with the highest rating r(u, v).
Algorithm 1 performs a n-level coarsening on a hypergraph H = (V,E, c, w). The coars-
ening steps are repeated until the hypergraph is small enough in Line 1. In Line 2 the next
vertices u, v ∈ V , which shall be contracted, are determined according to the rating func-
tion r. Then (u, v) are contracted. After contraction, single node nets and parallel nets are

10

3.1 n-Level Hypergraph Partitioning

removed. A detailed explanation on the data structures and algorithms used to perform the
n-level coarsening can be found in [11].
KaHyPar implements two different methods to coarsen a hypergraph [22, 23]. Let H =
(V,E, c, w) be a hypergraph which shall be partitioned into k blocks. The heavy lazy coars-
ening algorithm is used in the recursive bisection implementation of KaHyPar [23]. First
all vertices are rated, which means for each vertex u ∈ V the ratings with each neighbour
v ∈ Γ(v) is calculated. The neighbour v of u with the highest rating is chosen as con-
traction partner. To increase diversification ties are broken randomly. Each vertex with
its contraction partner is inserted in an addressable priority queue with their rating as key.
This data structure allows a fast access to the best rated contraction pair. In each iteration
the heavy lazy algorithm removes the vertex pair (u, v) with the highest gain and contracts
them. Since v is no longer contained, it is removed from the priority queue. The contraction
can lead to parallel nets and single node nets. Single node nets are removed and only one
of the parallel nets remains in the hypergraph. The ratings of the neighbours Γ(u) of u are
updated in the priority queue. Another coarsening algorithm is used by KaHyPar during
direct k-way partitioning [22]. The algorithm works in passes. In each pass first a random
permutation of the vertex set V is created. Then for each vertex u ∈ V the contraction
partner v ∈ V is determined according to the heavy-edge rating function. To avoid imbal-
anced inputs for the initial partition phase, ties are broken in favour of unmatched vertices.
A vertex u ∈ V with c(v) > d c(V)

k
e is not contracted. As soon as a contraction pair (u, v)

is found they are contacted and v is removed from then vertex set V . The vertex v is no
longer considered as contraction partner in this or future passes. After removing v the next
contraction pair is searched. A pass ends if each vertex has been considered as contraction
partner or representative. Then a new pass starts. If the hypergraph is small enough, the
coarsening is stopped.

3.1.2 Initial Partitioning

Coarsening is done until the number of vertices is small enough. For instance, if the num-
ber of vertices is 160k or no valid contraction can be found, then initial partitioning is
executed. The goal of initial partitioning is to compute an ε-balanced k-way partition of
the coarsened hypergraph. Furthermore, the metric should be optimized. A well balanced
initial partition with a well optimized metric leads to good partition after uncoarsening [16].
This is due to the fact that the weights of the nets and vertices are updated during coars-
ening. KaHyPar [11, 22, 23] computes multiple initial partitions with different algorithms
and random seeds. All of these algorithms use randomization and so different seeds can
lead to different results. The partition with the best metric and least imbalance is chosen
to continue. If there is no balanced partition, the partition with the smallest imbalance is
chosen. Some initial partitioning algorithms are [16, 22, 23]:

(i) Coarsening until k vertices are left: The coarsening algorithm is performed until the
hypergraph consists of only k vertices. Then the k blocks will be the k vertices. The

11

3 Related Work

problem with this approach is that after performing the coarsening the vertices are
likely to have different sizes which leads to highly imbalanced partitions.

(ii) Recursive Bisection: Compute the initial partition with recursive bisection, which is
explained in Section 3.4.

(iii) Random Partitioning: During the random initial partitioning algorithm the vertices
are assigned randomly to the k partitions. The disadvantage of this algorithm is that
it does not optimize the metric. The advantage is that it is fast and runs in O(|V |), so
it can be repeated multiple times.

(iv) Breadth-First-Search: This initial partitioning algorithm uses Breadth-First-Search
(BFS) to get a partition. First, k vertices are needed to initialize the algorithm. This
algorithm chooses pseudo-peripheral vertices. To calculate them first one vertex is
chosen, then a BFS is applied. The last vertex visited by the BFS is added to the
pseudo-peripheral vertices. Then a BFS is applied initialized with the two vertices.
This procedure is repeated until we have k vertices. Each block of the partition is
initialized with one of the last vertices. Then BFS are scheduled in a round-robin
fashion on the blocks and the vertices are added to the blocks in the order in which
they are visited by the BFSs. The algorithm stops if all vertices have been assigned
to a block.

(v) Greedy Hypergraph Growing: The greedy graph growing algorithm calculates a par-
tition in a similar way as the BFS search algorithm in the previous paragraph. First k
pseudo-peripheral vertices are calculated, then the blocks of the partition are initial-
ized with these vertices. Then BFSs are started on the different blocks. The blocks
for the vertices are now chosen by a gain function. Typical gain functions are the
FM, Max-Net and Max-Pin gain functions. The FM-gain function is explained in
Section 3.2. Let H = (V,E, c, w) a hypergraph with partition Π = {V1, ..., Vk} and
v ∈ V . The Max-Pin gain function is g(v, Vi, Vj) = |{u | u ∈ I(v) ∧ u ∈ Vj}| and
prefers moves of vertices based on the number of incident vertices in the growing
block. The Max-Net gain function is g(v, Vi, Vj) = |{e | e ∈ Γ(v)∧Vj ∈ Λ(e)}| and
prefers moves of nets based on the number of incident nets that connects the growing
block with the vertex. The vertex with the greatest gain is added to the block.

Further explanations on initial partitioning can be found in [22].

3.1.3 Uncoarsening

After initially partitioning, the hypergraph is successively uncoarsened. The vertices are
uncontracted in reverse order of coarsening. Then a k-way local search algorithm is used
to refine the hypergraph.
The input parameters of the uncoarsening Algorithm 2 are the coarsened hypergraphH , the
initial partition Π and the imbalance ε. The algorithm returns the final partition Π and the
original hypergraph H . While the hypergraph is not completely uncoarsened the vertices

12

3.2 Local Search

Algorithm 2: Uncoarsening of a Hypergraph
Input: H = (V,E, c, w),Π = {V1, ..., Vk}, ε
Result: H = (V,E, c, w),Π = {V1, ..., Vk}

1 while H is not completely uncoarsened do
2 (H,Π, u, v) := UNCONTRACT(H,Π)
3 (H,Π) := LOCALSEARCH(H,Π, {u, v}, ε)
4 end

are uncontracted in reverse order of contraction in Line 2. Then local search is performed.
The uncontracted vertices {u, v} are used as input parameters in Line 3. The local search
algorithm is explained in Section 3.2.

3.2 Local Search

The goal of a local search algorithm is to optimize the metric of an ε-balanced k-way par-
tition partition Π = {V1, ..., Vk} of a hypergraph H = (V,E, c, w). The basic idea is to
move nodes from one block Vi to another block Vj in order to improve the partition.

3.2.1 Local Search of Kerninghan and Lin

One of the first local search algorithms was proposed in 1970 by Kerninghan and Lin [17].
They engineered a 2-way local search algorithm. LetG = (V,E,w) be a graph, where V is
the vertex set, E ⊆ {{a, b} | a, b ∈ V ∧a 6= b} is the edge set and w : E → R+ \{0} is the
edge weight function. The algorithm works with unit vertex weights. Let Π = {V1, V2} be
a perfectly balanced 2-way partition of V . A perfectly balanced partition is an ε-balanced
partition where ε = 0. Let E ′ = {(x, y) | x ∈ V1 ∧ y ∈ V2} be the set of cut edges. The
partition is now refined by successively exchanging pairs of vertices (v1, v2) with v1 ∈ V1

and v2 ∈ V2 to optimize the cut cut(Π) =
∑

e∈E∩E′ w(e). The gain of exchanging two
vertices (v1, v2) ∈ V1 × V2 is:

g(v1, v2) =

{
D(a) +D(b)− 2w({v1, v2}), {v1, v2} ∈ E
D(a) +D(b), {v1, v2} /∈ E

For v ∈ Vi and i 6= j E(v) =
∑

e={v,y}∈E∩E′ w(e) is the external cost of x. So the external
cost of a vertex v ∈ Vi is the sum of edge weights of all edges which contain v and go from
V1 to V2. For v ∈ Vi and i 6= j I(v) =

∑
e={v,y}∈E∩{{x,y}|x,y∈Vi}w(e) is the internet cost

of v. The internal cost of a vertex v ∈ Vi is the sum of all edge weights of all edges which
contain v and are inside Vi. D(v) = E(v) − I(v) is the gain of moving the vertex v ∈ V

13

3 Related Work

Algorithm 3: Kerninghan and Lin Local Search
Input: G = (V,E,w),Π = {V1, V2}
Result: Π′ = {V1, V2}

1 ∀v ∈ V : D(v) := E(v)− I(v)
2 ∀v ∈ V : active(v) := true
3 W := {Π}
4 while ∃v1 ∈ V1 : active(v1) ∧ ∃v2 ∈ V2 : active(v2) do
5 choose (v1, v2) ∈ V1 × V2 where g(v1, v2) is maximal
6 V1 := (V1 \ {v1}) ∪ {v2}
7 V2 := (V2 \ {v2}) ∪ {v1}
8 active(v1) := false
9 active(v2) := false

10 ∀x ∈ Vi \ {vi} : D(x) := D(x) + 2w({x, vi})− 2w({x, vj}), j 6= i, w(e) = 0 if e /∈ E
11 W := W ∪ {{V1, V2}}
12 end
13 Π′ := {V1, V2} ∈ W where cut({V1, V2}) is minimal

from block Vi to Vj , with i 6= j.
Algorithm 3 of Kerninghan and Lin calculates D for each vertex v ∈ V . All vertices are
set active. Then select (v1, v2) ∈ V1×V2 where g(v1, v2) is maximal. v1 and v2 correspond
to the largest possible gain from a single exchange. g(v1, v2) can be negative. Exchange
them and update D in Line 10. The swapped nodes are set inactive or locked and cannot
be swapped again. Continue until no swap operation is left. In W , we keep track of the
different partitions which are calculated by the algorithm. Finally, choose the partition
where the cut is minimal. If no improvement can be found, the algorithm has found a local
optimum. Note that after each vertex has been swapped V1 and V2 have exchanged all their
vertices. The running time of this refinement algorithm is O(|V | · |E|log(|E|)). Further
explications and proofs can be found in [17].

3.2.2 FM Local Search of Fiduccia and Matheyses

Fiduccia and Matheyses [10] base their refinement algorithm on Kerninghan and Lin’s
local search algorithm. Let H = (V,E, c, w) be a hypergraph and Π = {V1, V2} be an ε-
balanced 2-way partition. The basic idea of the FM local search is to move vertices v ∈ V
one by one from one block to the other in order to minimize the cut cut(Π). The next
vertex which should be moved is chosen by the gain g : V → Z. The gain g indicates
how much the cut is improved when moving the vertex. Note that g(v) can be negative.
The next vertex to be moved is chosen randomly if there are more vertices with maximum
gain. Furthermore, a vertex can only be moved if the balance constraint is not violated.

14

3.2 Local Search

Algorithm 4: FM Local Search
Input: H = (V,E, c, w),Π = {V1, V2}, ε
Result: Π′ = {V1, V2}

1 ∀v ∈ V : active(v) := true
2 W := {Π}
3 while moves can be done do

4 choose v ∈ Vi where g(v) is maximal,c(v) + c(Vi) ≤ d(1 + ε)
(̧V)

k
e and active(v)

5 Vi := Vi \ {v}
6 Vj := Vj ∪ {v} where j 6= i
7 active(v) := false
8 W := W ∪ {{V1, V2}}
9 end

10 Π′ := {V1, V2} ∈ W where cut({V1, V2}) is minimal

Moves are even done if the cut gets worse. At the end the partition with the best cut is
chosen like in the algorithm of Kerninghan and Lin. Each vertex can be moved only once.
Algorithm 4 contains the basic idea of the FM local search. The input parameters are a
hypergraph H = (V,E, c, w), an ε-balanced 2-way partition and the imbalance ε. The
algorithm returns a partition with the same or smaller cut. First all vertices are set active.
Then they are moved like described above. The algorithm terminates if no moves can be
done in Line 3. That means no vertices are active or no move can be done which does not
violate the balance constraint. In W , we keep track of the different partitions which are
calculated by the algorithm. Finally, the partition with the best cut is returned. Fiduccia
and Matheyses use bucket arrays to efficiently handle the calculation of g(v) [10].

3.2.3 Localized adaptive k-way FM Local Search

KaHyPar [22] implements a version of FM local search which can be used to refine a k-way
partition efficiently. The local search algorithm moves the vertices with the best improve-
ment in the objective even if they are negative to another block. Let H = (V,E, c, w) be
a hypergraph and Π = {V1, ..., Vk} be an ε-balanced k-way partition. The algorithm keeps
track of the best solution and returns it. KaHyPar uses k priority queues to get the blocks
with the best gain fast. Moreover, the algorithm moves a vertex v ∈ V only to adjacent
blocks R(v) \ {b[v]}. So the gain has to be calculated only for adjacent blocks and not for
all k blocks. The local search algorithm is highly localized and is initialized with a subset
of the border vertices. First only these vertices can be moved, after moving a vertex v ∈ V
it is set inactive and cannot be moved furthermore. The neighbours N(v) are activated and
can be moved too. The gain gi : V → Z defines the improvement of the objective by
moving vertex v ∈ V to block Vi.

15

3 Related Work

gi(v) =
∑

e∈I(v)∩{e∈R|Φ(e,b[v])=1}w(e)−
∑

e∈I(v)∩{e∈R|Φ(e,Vi)=0}w(e)

Algorithm 5 performs a k-way local search on a hypergraph H = (V,E, c, w) and an ε-
balanced k-way partition Π = {V1, ..., Vk}. It returns a refined partition Π′. The algorithm
maintains k priority queues Pi which contain tuples (v, gi(v)) where v is a vertex and gi(v)
is the gain of moving v to block Vi. The key of the priority queues is the gain gi. First all
vertices are labelled inactive and unmarked, the priority queues are enabled. The local
search is initialized with a subset B of the border vertices. Each vertex v ∈ B is activated
and added to the priority queues in Line 4 to 11. The non-empty priority queues which
correspond to underloaded blocks are enabled. Moves are performed while there are non-
empty enabled priority queues or a stop condition is triggered. To find out more about
these stop conditions we refer to [22]. Choose a feasible move with the biggest gain gi and
move the vertex to block Vi. A move is feasible if it does not violate the balance constraint.
The moved vertex is labelled inactive and marked. It cannot be moved again. The priority
queues are updated. The moved vertex v is deleted from the queues in Line 23 and the gain
values of the active vertices are updated in Line 35. The gain update procedure is explained
in [22]. The unmarked and disabled neighbours Γ(v) of v are activated and added to the
priority queues. Neighbour vertices which become internal are removed from the queues in
Line 32. Since it is possible that gain gi is negative we keep track of the best objective. After
the algorithm has finished, the partition with the best metric is returned. Then all vertices
become unmarked and inactive and Algorithm 5 is repeated until no further improvement
can be found. For further information on the data structures and algorithms used to update
the gains we refer to [22].

3.3 V-Cycle

The idea of V-cycles or iterated multilevel partitioning is explained by Walshaw [25]. The
basic idea is to refine an ε-balanced k-way partition Π = {V1, ..., Vk} of a hypergraph
H = (V,E, c, w) by performing a partition-sensitive coarsening and apply local search
during uncoarsening.
Algorithm 6 performs a V-cycle. The input parameters are a hypergraph H = (V,E, c, w),
an ε-balanced k-way partition Π = {V1, ..., Vk}, the objective to optimize objective and
an imbalance ε. The algorithm returns a refined partition Π. The hypergraph is coarsened
from Line 1 to Line 4. Contractions are performed until the hypergraph is small enough
or no valid contraction can be found. The only difference to the coarsening described
in Section 3.1.1 is that only vertices which are in the same block are contracted. After
coarsening the hypergraph is uncoarsened and refined with a local search algorithm. The
refinement algorithm is initialized with the uncontracted vertices. V-cycles can be repeated
to find better solutions.

16

3.3 V-Cycle

Algorithm 5: k-way FM Local Search
Input: H = (V,E, c, w),Π = {V1, ..., Vk}, B, ε
Result: Π′ = {V1, V2}

1 ∀i ∈ {1, ..., k} : Pi ← priority queue of (v, g(v)) where v ∈ V with key g(v)
2 ∀i ∈ {1, ..., k} : enabled(Pi) := false
3 ∀v ∈ V : active(v) := false,marked(v) := false
4 for v ∈ B do
5 if λ(v) > 1 then
6 active(v) := true
7 for Vi ∈ R(v) \ {b[v]} do
8 Pi.add(v, gi(v))
9 end

10 end
11 end
12 for i ∈ {1, ..., k} do
13 if Vi ≤ Lmax ∧ ¬Pi.empty then
14 enabled(Pi) := true
15 end
16 end
17 while ∃i ∈ {1, ..., k} : enabled(Pi) := true ∧ ¬Pi.empty do
18 choose biggest g(v) with

(v, g(v)) ∈ Pi,∀i ∈ {1, ..., k} ∧ enabled(Pi) = true ∧ c(v) + c(Vi) ≤ Lmax

19 active(v) := false
20 marked(v) := true
21 Vb[v] := Vb[v] \ {v}
22 Vi := Vi ∪ {v}
23 ∀i ∈ {1, ..., k} : Pi.remove(v,−)
24 for n ∈ Γ(v) do
25 if ¬marked(v) ∧ ¬enabled(v) then
26 active(n) := true
27 for Vi ∈ R(n) \ {b[n]} do
28 Pi.add(n, gi(n))
29 end
30 end
31 if λ(n) = 1 then
32 ∀i ∈ {1, ..., k} : Pi.remove(n,−)
33 end
34 end
35 update the gain of all active neighbours n ∈ Γ(v)

36 end

17

3 Related Work

Algorithm 6: Perform a V-Cycle
Input: H = (V,E, c, w),Π = {V1, ..., Vk}, objective ∈ {λ−1, cut}, ε
Result: Π = {V1, ..., Vk}

1 while H is not small enough ∧ contraction can be performed do
2 (u, v) := argmaxu∈V score(u) ∧ u, v ∈ Vi
3 H := CONTRACT(H, u, v)

4 end
5 while H is not completely uncoarsened do
6 (H,Π, u, v) := UNCONTRACT(H,Π)
7 (H,Π) := LOCALSEARCH(H,Π, {u, v}, ε)
8 end

3.4 Recursive Bisection

A method to get an ε-balanced k-way partition of a hypergraph is to use recursive bisec-
tion [23]. Instead of performing coarsening, k-way initial partitioning and k-way local
search during uncoarsening as described in Section 3.1, the hypergraph is partitioned in
two blocks recursively. If a hypergraph should be divided in k = 2x, x ∈ N blocks, a
2-way partition is calculated. Each block is bisected recursively until we have a k-way
partition. This is only possible if k is a power of 2. If k is not a power of 2 the hypergraph
is bisected into two blocks, where one block has a maximum weight of (1 + ε′)dbk

2
cc(V)e

and the other a maximum weight of (1 + ε′)ddk
2
ec(V)e. ε′ is an adaptive imbalance, which

ensures that the final partition is ε-balanced. ε′ = (1 + ε)
1

dlog2(k)e − 1 is derived in [23].
Figure 3.2 illustrates the calculation of an ε-balanced 5-way partition of a hypergraph. H
is the original hypergraph. H ′1, H ′2, H ′3, H ′′1 and H ′′2 are the subhypergraphs of H , which
correspond to the final block. In Step 1 H is bisected into H1 and H2. Note that H1 is
divided into two subhypergraphs and block H2 is divided into tree subhypergraphs. In Step
2 the H1 is extracted and bisected. In Step 3 and Step 4 the final blocks H ′1 and H ′2 are
extracted. Then H2 is extracted and bisected. In Step 6 the final blocks H ′3 is extracted.
Finally, H ′4 is bisected like in Step 2.
Algorithm 7 is the pseudo-code of the recursive bisection algorithm. The input parame-
ters are a hypergraph H = (V,E, c, w), an imbalance ε ,kl the low index and kh the high
index of the blocks in which H should be partitioned. The hypergraph is partitioned in
k = kh − kl + 1 blocks. The algorithm is initialized with the original hypergraph H ,
kl = 1, kh = k and imbalance ε. RECURSIVEBISECTION(H = (V,E, c, w), 1, k, ε)
returns an ε-balanced k-way partition Π = {V1, ..., Vk}. If kl = kr, H the recursion is
stopped and V is a block of the final partition. In Line 6 the adaptive imbalance ε′ is cal-
culated according to [23]. To bisect the hypergraph the multilevel paradigm is applied.
Furthermore, the subhypergraphs containing the block V1 and V2 are extracted with algo-
rithm 8 described in Section 4.1. Note that the extraction of the subhypergraphs differs

18

3.4 Recursive Bisection

Figure 3.2: Example of calculating a k-way partition with recursive bisection

Algorithm 7: Recursive Bisection
Input: H = (V,E, c, w), kl, kh, ε
Result: Π = {Vkl , ..., Vkh}

1 k := kh − kl + 1
2 if k = 1 then
3 return {V }
4 end
5 Πk := {}
6 ε′ := (1 + ε)

1
dlog2(k)e − 1

7 while H is not small enough do
8 (u, v) := argmaxu∈V score(u)
9 H := CONTRACT(H, u, v)

10 end
11 Π2 = {V1, V2} := RECURSIVEBISECTION(H, ε′)
12 while H is not completely uncoarsened do
13 (H,Π2, u, v) := UNCONTRACT(H,Π2)
14 (H,Π2) := LOCALSEARCH(H,Π2, {u, v}, ε′)
15 end
16 m := dk

2
e

17 Πk := Πk∪RECURSIVEBISECTION(EXTRACT(H,Π2, {1}, objective), kl, kl+m−1, ε)
18 Πk := Πk ∪ RECURSIVEBISECTION(EXTRACT(H,Π2, {2}, objective), kl +m, kr, ε)
19 return Π2

19

3 Related Work

with the current objective (see Section 4.1). Finally, these subhypergraphs are partitioned
recursively.

20

4 Better Recursive Bisection
Algorithm

In the next sections, we present several recursive bisection algorithms with k-way local
search refinements. The idea of the following algorithms is to combine the advantages of
k-way local search algorithms and recursive bisection presented in Section 3.2 and 3.4. For
this purpose local search is applied to subhypergraphs during and/or after recursive bisec-
tions. Section 4.1 contains general corollaries and algorithms used to engineer the different
refinement algorithms. We study six different approaches to refine the partitions with local
search. The first approach is to apply a single local search on the partition after bisecting
the hypergraph in k blocks. This algorithm is discussed in Section 4.2.
The second approach is to apply local search refinements on the nodes of the recursive
bisection tree. We call this approach the bottom-up approach. First the hypergraph is parti-
tioned with recursive bisection. Then local search is applied on the subhypergraphs created
during the partitioning. The local search is first applied on the small subhypergraphs and
finally on the original hypergraph. Figure 4.1 shows a recursive bisection tree and illus-
trates this approach. The blue arrows represent the bisection of the hypergraphs contained
in the green boxes. The different colours of a hypergraph represent the different blocks of
the partition. The local search can be applied to the hypergraphs and partitions contained in
the green boxes. The refinement is done from the bottom up. This means hypergraph 3 is
refined after the two subhypergraphs 1 and 2 have been refined. The algorithms following
this scheme are explained in Section 4.3.
The third approach is to apply local search refinements directly after the bisection to un-

finished partitions. The recursive bisection algorithm bisects the hypergraphs of the same
depth in the recursive bisection tree before proceeding to the next depth. This means each
hypergraph in the recursive bisection tree with depth n ∈ N is bisected before those of
depth n+1. The bisections are calculated breadth first in the recursive bisection tree. After
each bisection a k-way local search can be applied on the unfinished partition. The blocks
of the unfinished partition are the hypergraphs in the recursive bisection tree with depth n
or n+1, which still have to be partitioned or are leaves. This method is called the top-down
approach.
Figure 4.2 represents a recursive bisection tree and illustrates the top-down approach. The
nodes of the recursive bisection tree are hypergraphs and the blue arrows represent a bisec-
tion. The green and orange areas contain the blocks of a partition to which a local search
can be applied. These partitions are numbered from 1 to 7 which represent the order of the

21

4 Better Recursive Bisection Algorithm

Figure 4.1: Illustration of the bottom-up approach for local search refinement.

local searches. Note that the blocks of a partition consist of hypergraphs same depth or a
depth which differs by one. The refinements are done from the top down. The algorithms
using the top-down approach are explained in Section 4.4.
The forth approach presented in Section 4.5 is to refine the k-way partition with 2-way local
search. The partitions which should be refined are chosen by active block scheduling [21].
The fifth approach is to use 2-way local search with active block scheduling during un-
coarsening instead of k-way local search to refine the partition after uncontraction. This
algorithm is explained in Section 4.6. The final idea is to refine the partition with V-Cycles
after the recursive bisection in Section 4.7.

4.1 Generals Concepts

To refine a subhypergraph with local search, it is extracted from the original hypergraph.
Then the local search algorithm is applied and finally the original hypergraph is updated.
The imbalance differs in the subhypergraph from the original hypergraph so ε has to be
recalculated.

Corollary 4.1.0.1. Let H = (V,E, c, w) be a hypergraph with an ε-balanced partition
Π = {V1, ..., Vk} and H ′ = (V ′, E ′, c′, w′) be a subhypergraph of H with a partition
Π′ = {V ′1 , ..., V ′k′}, k′ ≤ k. Then Π′ has to be an ε′-balanced partition so that Π is an

ε-balanced partition, with ε′ = (1 + ε)
d c(V)

k
e

d c(V
′)

k′ e
− 1.

22

4.1 Generals Concepts

Figure 4.2: Illustration of the top-down approach for local search refinement.

Proof. We have to prove that Π is an ε-balanced partition if Π′ is an ε′-balanced partition.
Π = {V1, ..., Vk} with ∀i ∈ {1, ..., k} : c(Vi) ≤ (1 + ε)d c(V)

k
e. Π′ = {V ′1 , ..., V ′k′} is a

subpartition of Π, so ∀i ∈ {1, ...k′} : ∃j ∈ {1, ..., k} with V ′i = Vj .

∀i ∈ 1, ..., k′ : c(Vj) = c(V ′i) ≤ (1 + ε′)d c(V
′)

k′
e

= (1 + (1 + ε)
d c(V)

k
e

d c(V
′)

k′ e
− 1)d c(V

′)
k′
e

= (1 + ε)
d c(V)

k
e

d c(V
′)

k′ e
d c(V

′)
k′
e

= (1 + ε)d c(V)
k
e

After extracting a subhypergraph local search is applied with ε′. Note that ε′ can be larger
than ε, but the overall balance remains.
Extracting a subhypergraph while optimizing the cut-metric differs from optimizing the
λ−1-metric. Let H = (V,E, c, w) be a hypergraph and H ′ = (V ′, E ′, c′, w′) be a subhy-
bergraph, then the set of hyperedges E ′ depends on the metric. To optimize the cut-metric
only hyperedges are taken into where all pins are completely inside V ′, E ′ = {e ∈ E |
∀v ∈ e : v ∈ V ′}. To optimize the λ−1-metric, cut-net splitting is used. A hyperedge e is
contained in E ′ if all pins are completely inside V ′. If not, e is split and a hyperedge e′ is
inserted in E ′ which contains all pins in e which are inside V ′. Single pin hyperedges are
deleted, so E ′ = {e′ | ∃e ∈ E : e′ = e ∩ V ′ ∧ |e′| > 1}.
The following help function is used in different refinement algorithms.
Algorithm 8 is used to extract a subhypergraph H ′ = (V ′, E ′, c′, w′) from a hypergraph

23

4 Better Recursive Bisection Algorithm

Algorithm 8: Extract a Subhypergraph
Input: H = (V,E, c, w),Π = {V1, ..., Vk}, p ⊆ {1, ..., k}, objective ∈ {λ−1, cut}
Result: H ′ = (V ′, E ′, c′, w′),Π′ = {V ′1 , ..., V ′k′}

1 V ′ := {v ∈ V | v ∈ Vi, i ∈ p}
2 if objective = λ−1 then
3 E ′ := {e′ | ∃e ∈ E : e′ = e ∩ V ′ ∧ |e′| > 1}
4 else
5 E ′ := {e ∈ E | ∀v ∈ e : v ∈ V ′}
6 end
7 c′ := c|V ′

8 w′ := w|E′

9 for i := 1, i <= k, i := i+ 1 do
10 Vi := Vp[i]

11 end

Algorithm 9: Recursive Bisection with one k-way Local Search Refinement after Parti-
tioning
Input: H = (V,E, c, w), k ∈ N, ε, objective ∈ {λ−1, cut}
Result: Π = {V1, ..., Vk}

1 Π′ = {V ′1 , ..., V ′k} := RECURSIVEBISECTION(H, 1, k, ε, objective)
2 B := {e ∈ E | λ(e) > 1}
3 Π := LOCALSEARCH(H,Π′, B, ε, objective)

H = (V,E, c, w). Π = {V1, ..., Vk} is the current partition. p ⊆ {1, ..., k} is a set of
block identifiers which shall be extracted as subhypergraph. The metric which should be
optimized is objective. The subhypergraph is computed by the rules described in 4.1.
Π′ = {V ′1 , ..., V ′k′} are the partitions of the extracted hypergraph with k′ = |p|.

4.2 Single Local Search after Recursive Bisection

A simple approach to combine k-way local search and recursive bisection is to apply a
k-way local search after the partitioning. First the hypergraph is partitioned with the recur-
sive bisection algorithm explained in Section 3.4. Then a k-way local search is applied to
refine the partition. Algorithm 9 is the pseudo-code of this algorithm. First the partition
is calculated. Then it is refined with a k-way local search. The local search algorithm is
initialized with the border nodes B.

24

4.3 Local Search at the Nodes of the Recursive Bisection Tree

Figure 4.3: Example of local search at the nodes of recursive bisection tree. The arrows represent
bisections. V ′1 , V ′2 , V ′3 and V ′4 are the blocks of a 4-way partition. The blocks in Box
1,2,3 can be refined with k-way local search.

4.3 Local Search at the Nodes of the Recursive
Bisection Tree

The following algorithms use the bottom-up approach. First the partition is calculated with
the recursive bisection algorithm. The k-way local search refinement is applied at the nodes
of the recursive bisection tree from the bottom up (see Figure 4.1). The following algorithm
applies a k-way local search after the hypergraph has been partitioned recursively by the
recursive bisection. After each recursive call of the recursive bisection function, the parti-
tion is refined. This can lead to the exchange of vertices between blocks, which have not
been considered during partitioning.
Algorithm 10 is a modification of the recursive bisection algorithm. The instructions in
Line 1 can be found in Section 3.4. After the recursive call RECURSIVEBISECTION in
Line 3 and 4 a k-way local search is applied to the hypergraph H with partition Πk. Note
that Πk contains blocks which are not bisected further. An example for calculating a 4-way
partition of a hypergraph with local search refinement at the nodes of the recursive bisec-
tion tree can be seen in Figure 4.3. First the hypergraph is divided into two blocks V1 and
V2. Secondly, V2 is recursively partitioned into V ′3 and V ′4 . Then a local search is applied
on the partition containing V ′3 and V ′4 (Box 1 in Figure 4.3). Then the same procedure is
repeated with V2. Finally, after the 2-way local search in Box 1 and Box 2 a 4-way local
search is applied at the partition containing V ′1 , V ′1 ,V ′3 and V ′4 .
The general idea of the next algorithms is to apply the k-way local search at the same
subpartitions as Algorithm 10. Since the local search refinements are only performed par-

25

4 Better Recursive Bisection Algorithm

Algorithm 10: Local Search Refinement during Recursive Bisection
Input: H = (V,E, c, w), kl, kh, ε
Result: Π = {Vkl , ..., Vkh}

1 ...
2 m := dk

2
e

3 Πk := Πk∪RECURSIVEBISECTION(EXTRACT(H,Π2, {1}, objective), kl, kl+m−1, ε)
4 Πk := Πk ∪ RECURSIVEBISECTION(EXTRACT(H,Π2, {2}, objective), kl +m, kr, ε)
5 (H ′ := (V ′, E ′, c′, w′),Π′ = {Vkl , ..., Vkh}) = EXTRACT(H,Π, {kl, ..., kh}, objective)
6 B := {e ∈ E ′ | λ(e) > 1}

7 ε′ := (1 + ε)
d c(V)

k
e

d c(V
′)

k′ e
− 1

8 Πk := LOCALSEARCH(H ′,Πk, B, ε
′, objective)

9 return Πk

titions containing blocks which are not bisected further, we can refine the partition after
the recursive bisection. By applying the k-way local search after the partitioning, we can
change the order of the refinements. Furthermore, the refinement of subpartitions can be
repeated. In Section 4.3.1 we introduce an algorithm which performs the same refinements
as Algorithm 10 after the recursive bisection. The algorithms described in Section 4.3.2
and Section 4.3.3 repeat the local search at the nodes of the recursive bisection tree. The
basic idea is to exploit the fact that a k-way local search refinement at subpartitions can
lead to further improvements at larger partitions.

4.3.1 Single Local Search at each Node

The following algorithm applies k-way local search refinements at the nodes of the recur-
sive bisection tree. The refinements are performed from the bottom up and in the same
order as described in the previous section. For this reason Algorithm 11 descends in the
recursive bisection tree and applies the k-way local search refinement while climbing up.
In other words, the algorithm starts with an ε-balanced k-way partition Π computed by a
recursive bisection algorithm. This partition divided into two partitions Π′1 and Π′2. These
subpartitions correspond to the subhypergraphs computed by the first bisection of the re-
cursive bisection algorithm. This procedure is repeated until the subpartitions contain only
one block. During the recursive rise, the subpartitions are refined with k-way local search
until Π′1 and Π′2 are refined. Finally, Π is refined and the algorithm ends.
Algorithm 11 is the pseudo-code of this algorithm. The recursive descend ends if the
partition contains only one block because no local search can be applied. The partition
Π = {Vkl , ..., Vkr} is divided into two subpartitions Π′1 = {Vkl+m, ..., Vkr} and Π′2 =
{Vkl , ..., Vkl+m−1} where m = dk

2
e. Then Π′1 and Π′2 are refined recursively in Line 4

and 5. After the recursive refinement Π is refined in Line 9. Algorithm 12 combines the

26

4.3 Local Search at the Nodes of the Recursive Bisection Tree

Algorithm 11: Refinement at Nodes of the Recursive Bisection Tree
Input: H = (V,E, c, w),Π = {V1, ..., Vk}, ε, kl ∈ N, kr ∈ N, objective ∈ {λ−1, cut}
Result: Π = {V1, ..., Vk}

RECURSIVEREFINEMENT(H,Π, ε, kl, kr, objective)
1 k := kr − kl + 1
2 if k >= 2 then
3 m := dk

2
e

4 RECURSIVEREFINEMENT(H,Π, ε, kl +m, kr, objective)
5 RECURSIVEREFINEMENT(H,Π, ε, kl, kl +m− 1, objective)
6 (H ′ = (V ′, E ′, c′, w′),Π′ = {Vkl , ..., Vkr}) :=

EXTRACT(H,Π, {kl, ..., kr}, objective)
7 B := {e ∈ E ′ | λ(e) > 1}

8 ε′ := (1 + ε)
d c(V)

k
e

d c(V
′)

k′ e
− 1

9 Π′ := LOCALSEARCH(H ′,Π′, B, ε′, objective)
10 Π := (Π \ {Vkl , ..., Vkr}) ∪ Π′

11 end

Algorithm 12: Recursive Bisection with Refinement at the Nodes of the Recursive Bisec-
tion Tree
Input: H = (V,E, c, w), k ∈ N, ε, objective ∈ {λ−1, cut}
Result: Π = {V1, ..., Vk}

1 Π′ = {V ′1 , ..., V ′k} := RECURSIVEBISECTION(H, 1, k, ε, objective)
2 Π = {V1, ..., Vk} := RECURSIVEREFINEMENT(H,Π′, ε, 1, k, objective)

recursive bisection and recursive refinement. First the recursive bisection algorithm cal-
culates an ε-balanced k-way partition Π′ in Line 1. Then the partition is refined with the
recursive refinement algorithm 11 in Line 2. The algorithm returns an ε-balanced k-way
partition Π.
Note that Algorithm 12 calculates the same ε-balanced k-way partition and applies the
k-way local search at the same subpartitions as the modified recursive bisection algorithm
presented in the previous section. Since we separated the partitioning and the refinement,
we can now execute the Algorithm 11 multiple times (see Section 4.3.2).

4.3.2 Repeated Local Search

The basic idea of the following algorithm is to apply k-way local search at the same subpar-
titions multiple times. First the ε-balanced k-way partition is calculated by the recursive
bisection algorithm. Then this partition is refined at the nodes of the recursive bisection
tree. For this purpose we use the recursive refinement algorithm of Section 4.3.1. We re-

27

4 Better Recursive Bisection Algorithm

Algorithm 13: Recursive Bisection with Repeated Refinement at the Nodes of the Recur-
sive Bisection Tree
Input: H = (V,E, c, w), k ∈ N, ε, objective ∈ {λ−1, cut},max ∈ N
Result: Π = {V1, ..., Vk}

1 Π = {V1, ..., Vk} := RECURSIVEBISECTION(H, 1, k, ε, objective)
2 do
3 m :=METRIC(H,Π, objective)
4 Π = {V1, ..., Vk} := RECURSIVEREFINEMENT(H,Π, ε, 1, k, objective)
5 improvement := m−METRIC(H,Π, objective)
6 max := max− 1

7 while (improvement > 0) ∧ (max 6= 0)

peat this refinement multiple times. It is possible that no k-way local search at the nodes of
the recursive bisection tree with depth d > 0 could find an improvement. If the k-way local
search at the root node with depth d = 0 improves the partition, then a second refinement
at the nodes with depth d > 0 can lead to improvements. This algorithm exploits the fact
that after k-way local search at a node with depth d can change the partition so that local
searches at nodes with depth d > d′ can find better results.
Consider a refinement of the hypergraph in Figure 4.3. The 2-way local search of the sub-
partitions in Box 1 and 2 does not improve the current objective. However, the 4-way local
search of the original partition in Box 3 can find a better result. The 4-way local search
improved the partition, so vertices have been exchanged between blocks. So by repeating
the local search of the subpartitions in Box 1 and 2 it is possible to find an improvement.
On top of that if the 2-way local search in Box 1 and 2 improved the objective, the 4-way
local search in Box 3 can find an improvement a second time.
First Algorithm 13 computes an ε-balanced k-way partition with the recursive bisection
algorithm. Then the recursive refinement algorithm of Section 4.3.1 is applied until no
improvement can be found or the algorithm has been applied max times. The metric (cut
or connectivity) is calculated before and after the refinement to decide if the partition has
improved.

4.3.3 Preferred Local Search on Small Subpartitions

Performing a k-way local search on a big partition is slower than performing a k′-way par-
tition on a smaller partition, where k > k′. We adopt the same idea as in Section 4.3.2
to refine a partition at the nodes of the recursive bisection tree multiple times. However,
the following algorithm prefers to refinements at nodes with maximum depth. So we prefer
k-way local search on smaller partitions, which have a better running time. For this purpose
we modify the recursive refinement algorithm described in Section 4.3.1. The algorithm
starts with an ε-balanced k-way partition Π computed by a recursive bisection algorithm.

28

4.3 Local Search at the Nodes of the Recursive Bisection Tree

Figure 4.4: Illustration the recursive refinement of the nodes of the recursive bisection tree. Local
searches at nodes with higher depth are preferred. Step 1 to 17 correspond to the order
of the k-way local search refinements. The arrows a and b correspond to an additional
recursive refinement after a local search has improved the objective. In Step 3 and 10
the k-way local search improves the partition.

First Π is divided into two subpartitions Π′1 and Π′2, which correspond to the subhyper-
graphs of a bisection in the recursive bisection algorithm. In other words, Π′1 and Π′2 are
represented by two nodes in the recursive bisection tree. Secondly, Π′1 and Π′2 are refined
recursively. Then a k-way local search is applied at Π. If this local search improved the
objective then Π′1 and Π′2 are refined recursively again. The algorithm ends if the k-way
local search at the node with depth d = 0 cannot improve the partition.
Figure 4.4 illustrates this procedure. The green boxes contain the hypergraphs and parti-
tions of a recursive bisection tree on which the local search can be applied. In this example
the local search is applied first in Step 1 and 2. Then the refinement in Step 3 finds an
improvement and we recursively refine the partition in Step 1 and 2 again. Furthermore,
the refinements in Step 4 to 9 do not find an improvement and so the original hypergraph
with its partition is refined in Step 10. This local search finds an improvement and so the
partition of the original hypergraph is recursively refined. Since the local searches from
Step 11 to 17 do not find any improvements, the refinement is terminated.

The pseudo-code of this algorithm can be found in Algorithm 14. The partition Π =
{Vkl , ..., Vkr} is divided into two subpartitions Π′1 = {Vkl+m, ..., Vkr} and Π′2 = {Vkl , ...,
Vkl+m−1}. Then they are recursively refined in Line 4 and 5. A k-way local search is
applied in Line 10 on Π. If this local search improved the partition, Π′1 and Π′2 are recur-
sively improved again in Line 14. This leads to potentially more local search refinements
at smaller hypergraphs and few large ones.

29

4 Better Recursive Bisection Algorithm

Algorithm 14: Refinement at the Nodes of the Recursive Bisection Tree, while Preferring
k-way Local Search on small Subpartitions
Input: H = (V,E, c, w),Π = {V1, ..., Vk}, ε, kl ∈ N, kr ∈ N, objective ∈ {λ−1, cut}
Result: Π = {V1, ..., Vk}

RECURSIVEREFINEMENTTREE(H,Π, ε, kl, kr, objective)
1 k := kr − kl + 1
2 if k >= 2 then
3 m := dk

2
e

4 RECURSIVEREFINEMENTTREE(H, ε, kl +m, kr, objective)
5 RECURSIVEREFINEMENTTREE(H, ε, kl, kl +m− 1, objective)
6 (H ′ = (V ′, E ′, c′, w′),Π′ = {Vkl , ..., Vkr}) :=

EXTRACT(H,Π, {kl, ..., kr}, objective)
7 B := {e ∈ E ′ | λ(e) > 1}

8 ε′ := (1 + ε)
d c(V)

k
e

d c(V
′)

k′ e
− 1

9 old_metric :=METRIC(H ′,Π′, objective)
10 Π′ := LOCALSEARCH(H ′,Π′, B, ε′, objective)
11 improvement := old_metric−METRIC(H ′,Π′, objective)
12 Π := (Π \ {Vkl , ..., Vkr}) ∪ Π′

13 if improvement > 0 then
14 RECURSIVEREFINEMENTTREE(H, ε, kl, kr, objective)
15 end
16 end

4.4 Local Search on Unfinished Partitions

In the following section, we present algorithms which use the top-down approach. In the
previous algorithms, the recursive bisection tree was created depth first. This means after
each bisection we bisect a hypergraph with maximum depth, which is no leaf of the recur-
sive bisection tree. The recursive bisection tree is created in the same order as it would be
traversed by a depth first search. However, during a top-down approach, the k-way local
searches refinements are performed on unfinished partitions. The blocks of an unfinished
partition correspond to the nodes of the recursive bisection tree, whose depths differ by
one. In other words,the recursive bisection has to bisect the hypergraph in the same order
as the breadth first search would traverse the recursive bisection tree.
This alternative recursive bisection algorithm maintains a set S of hypergraphs which still
have to be bisected. S is initialized with the input hypergraph and the depth d is set to zero.

30

4.4 Local Search on Unfinished Partitions

Figure 4.5: Example of the the alternative recursive bisection algorithm.

The algorithm successively removes a hypergraph H ∈ S with depth d. H is bisected into
H1 and H2. Note that the depth of H1 and H2 is d + 1. If they do not correspond to a
leaf in the recursive bisection tree, they are added to S. If S does not contain a hypergraph
with depth d, then d is increased by one. The algorithm stops if S is empty. Figure 4.5
illustrates the computation of an ε-balanced k-way partition with this algorithm. First the
set S = {H} contains the input graph which has depth d = 0 (see Step 1). Then H is
removed and replaced by his subhypergraphs H1 and H2 which have depth d′ = 1. So in
Step 2 S = {H1, H2}. No hypergraph of depth d = 0 is contained in S and so the next
hypergraph which should be bisected had depth d′ = 1. In Step 3 H2 is bisected into H ′3
andH ′4. Since the vertices ofH ′3 andH ′4 are blocks of the final partition, they are not added
to S. After Step 3 S only contains H1. During the last Step 4 H1 is bisected into H ′1 and
H ′2 and the algorithm ends. Note that H ′1, H ′2, H ′3 and H ′4 have depth d′′ = 2 and are leaves
of the recursive bisection tree.
The following algorithms are going to refine the partitions which correspond to the set S.
In Figure 4.5 the k-way local searches can be applied in Step 2,3 and 3, on the partitions
corresponding to {H1, H2}, {H1, H

′
3, H

′
4} and {H ′1, H ′2, H ′3, H ′4}.

Local search refinement after each bisection. The following algorithm uses the
top-down approach. The basic idea is to bisect the input hypergraph successively with
the alternative recursive bisection algorithm described in Section 4.4. After each bisection
a k-way local search is applied on the unfinished partition. First the set S is initialized
with the triple (V, 1, k), where V is the vertex set of the hypergraph and k is the number
of blocks of the final partition. The following process is repeated until S contains a final
partition. Note that S contains vertex sets corresponding to hypergraphs which have the
same depth in the recursive bisection tree. For each (Vi, kl, kr) ∈ S the number of blocks

31

4 Better Recursive Bisection Algorithm

Algorithm 15: Refinement after each Bisection
Input: H = (V,E, c, w), k ∈ N, ε, objective ∈ {λ−1, cut}
Result: Π = {V1, ..., Vk}

1 S := {(V, 1, k)} // S is initialized with the vertices of H
2 while |S| 6= k do // If S contains k vertex sets, then S is the final partition
3 S ′ := ∅ // We use S ′ to temporarily store vertex sets after bisection
4 for (Vi, kl, kr) ∈ S do // Iterate over S
5 Π := S ∪ S ′ // Π is the unfinished partition before bisection
6 S := S \ {(Vi, kl, kr)} // Remove the vertex set which is partitioned from S
7 k := kr − kl + 1 // k is the numer of blocks in which Vi has to be partitioned
8 if k = 1 then // Vi is a block of the final partition
9 S ′ := S ′ ∪ {(V,E, k)} // Vi is not bisected

10 else
11 m := dk

2
e

12 H ′ := EXTRACT(H,Π, (, kl, kr))
13 {V1, V2} := COMPUTEBISECTION(H, , 2, ε, objective) // Bisect Vi
14 S ′ := S ′ ∪ {(V1, kl, kl +m− 1), (V2, kl +m, kr)}
15 Π := S ∪ S ′ // Π is the unfinished partition
16 B := {e ∈ E | λ(e) > 1} // B contains the border hyperedges
17 (H,Π) := LOCALSEARCH(H,Π, B, ε) // Appy local search at Π
18 update S and S’ according to the improved partition Π

19 S := S ′

20 Π := S

k = kr − kl + 1 in which Vi shall be partitioned is calculated. If k = 1, then Vi is a block
of the final partition and corresponds to a leaf in the recursive bisection tree. If k > 1, then
Vi is bisected and added to the set S ′. S ′ contains the vertex sets which correspond to the
nodes of the recursive bisection tree, whose depth is bigger by one than that of S. Note
that all vertices of V are contained in S or S ′. Then a k-way local search is applied on the
unfinished partition Π = S ∪ S ′. After iterating over all elements of S and removing them
S ′ contains the vertex sets which are bisected next. Algorithm 15 is the pseudo-code of this
algorithm.

Reducing the number of local searches. The previous algorithm performs a k-way
local search algorithm after each bisection on a partition which contains all the vertices of
the input hypergraph. This results in O(k) local search over large partitions. We modify
Algorithm 15 so that only O(log(k)) k-way local searches are performed. The first ap-
proach is to apply the local search only on partitions which contain blocks that correspond

32

4.5 2-Way Local Search with Active Block Scheduling

to nodes of the recursive bisection tree with same depth. So after bisecting each vertex set
in S the k-way local search is performed on S ′. In Algorithm 15 the local search will be
applied in Line 19 instead of Line 17. Since the height of the recursive bisection tree lies in
O(log(k)), only O(log(k)) local searches are performed. The second approach is to apply
the k-way local searches at the end of the alternative recursive bisection. The algorithm
computes the partition like Algorithm 15. Instead of performing a k-way local search after
each bisection in Line 17, only the last w ∈ O(log(k)) local searches are applied. In other
words, the algorithm starts the local search refinement after k − w bisections have been
computed. The number w of k-way local searches is a tuning parameter.

4.5 2-Way Local Search with Active Block
Scheduling

The following algorithm refines an ε-balanced k-way partition after recursive bisection
similar to the algorithms in Section 4.3. Instead of applying a k-way local search algorithm
on subhypergraphs, we apply a 2-way local search algorithm between two adjacent blocks.
The main idea is to perform several fast 2-way local searches instead of few slow k-way
local searches. For this reason we construct the quotient graph Q = (Qv,Qe) of the input
hypergraphH = (V,E, c, w) and the partition Π = {V1, ..., Vk}. The quotient graph is used
to schedule the 2-way local search algorithms. We use active block scheduling [21, 12].
First all blocks are set active. The algorithm works in passes. In each pass we iterate over
all adjacent blocks {V1, V2}, where at least one is active, and we apply a 2-way local search.
Blocks which have not changed during a pass are considered inactive for the next pass, so
blocks which do not change are avoided. The algorithm ends if all blocks are inactive. The
pseudo-code can be found in Algorithm 16.

4.6 Active Block Scheduling During Uncoarsening

The following algorithm combines the 2-way local search algorithm with active block
scheduling and the multilevel paradigm. For this purpose a hypergraph is coarsened, then
an initial ε-balanced k-way partition is calculated. During uncoarsening no k-way local
search algorithm is applied but the active block scheduling algorithm 16.
Algorithm 17 computes an ε-balanced k-way partition Π of a hypergraph H optimizing
the metric objective. In Line 1, H is coarsened according to Section 3.1.1. Then an ini-
tial partition is calculated in Line 5 according to Section 3.1.2. Finally, the hypergraph is
uncoarsened again according to Section 3.1.3 in Line 6. During the uncoarsening the par-
tition Π is refined with the active block scheduling refinement algorithm 16 in Line 8. The
2-way local searches in algorithm 16 are initialized with the uncoarsened vertices {u, v}.

33

4 Better Recursive Bisection Algorithm

Algorithm 16: 2-way Local Search Refinement with Active Block Scheduling
Input: H = (V,E, c, w),Π = {V1, ..., Vk}, ε, objective ∈ {λ−1, cut}
Result: Π = {V1, ..., Vk}

1 Qv := {V1, ..., Vk} = Π
2 Qe := {{a, b} ⊆ Qv | ∃e ∈ E : {a, b} ⊆ Λ(e)}
3 Q := (Qv,Qe) // Quotient graph of H and Π
4 ∀v ∈ Qv : active(v) := true // All blocks are set active
5 while ∃v ∈ Qv : active(v) = true do // Stop the refinement if all blocks are inactive
6 ∃v ∈ Qv : active′(v) := false // All blocks are set inactive for the next pass
7 foreach {a, b} ∈ Qe ∧ (active(a) ∨ active(b)) do // Iterate over all adjacent

// blocks where at least one is active
Π′ := {a, b}

8 (H ′ = (V ′, E ′, c′, w′),Π′ = {Vi, Vj}) :=
EXTRACT(H,Π, {id(a), id(b)}, objective)

9 B := {e ∈ E ′ | λ(e) > 1}
10 if |B| = 0 then // If there are no border vertices

// no refinement has to be done
continue

11 ε′ := (1 + ε)
d c(V)

k
e

d c(V
′)

k′ e
− 1

12 old_metric :=METRIC(H ′,Π′, objective)
13 Π′ := LOCALSEARCH(H ′,Π′, B, ε′, objective) // Apply the 2-way local search
14 improvement := old_metric−METRIC(H ′,Π′, objective)

Π := (Π \ {a, b}) ∪ Π′

15 if improvement > 0 then // If the objective has improved a and b
// are set active for the next pass

active′(a) := true
16 active′(b) := true

17 active := active′

34

4.6 Active Block Scheduling During Uncoarsening

Algorithm 17: Direct k-way Partitioning with Active Block Scheduling During Uncoars-
ening
Input: H = (V,E, c, w), ε, k ∈ N, objective ∈ {λ−1, cut}
Result: Π = {Vkl , ..., Vkh}

1 while H is not small enough do
2 (u, v) := argmaxu∈V score(u)
3 H := CONTRACT(H, u, v)

4 end
5 Π′ = {V1, ..., Vk} := COMPUTEINITIALPARTITION(H, ε, k)
6 while H is not completely uncoarsened do
7 (H,Π, u, v) := UNCONTRACT(H,Π)
8 Π := PAIREWISEREFINEMENT(H,Π, ε, objective, {u, v})
9 end

Algorithm 18: Perform V-Cycles after Recursive Bisection
Input: H = (V,E, c, w), k ∈ N, ε, objective ∈ {λ−1, cut},max ∈ N
Result: Π = {V1, ..., Vk}

1 Π = {V1, ..., Vk} := RECURSIVEBISECTION(H, 1, k, ε, objective)
2 do
3 old_metric :=METRIC(H,Π, objective)
4 Π := PERFORMVCYCLE(H,Π, objective, ε)
5 improvement := old_metric−METRIC(H,Π, objective)
6 max := max− 1

7 while (improvement > 0) ∧ (max > 0)

4.7 Recursive Bisection with V-Cycle Refinement
Similar to the previous algorithms we want to optimize an ε-balanced k-way partition
calculated by a recursive bisection algorithm. The following Algorithm 18 computes a
partition and then refines it with V-Cycles. V-Cycles are explained in Section 3.3. The
input parameters of Algorithm 18 of are a hypergraph H , the number of blocks k, the
imbalance ε, the metric to optimize objective and the maximum number of V-Cycles
max. The result is an ε-balanced k-way partition Π. First an ε-balanced k-way partition
is calculated by the recursive bisection algorithm in Line 1. Then Π is repetitively refined
by V-Cycles 6 in Line 4. If no improvement could be found or the maximum number of
V-Cycles is reached, the algorithm stops.

35

4 Better Recursive Bisection Algorithm

4.8 Algorithm Overview

Table 4.1 contains an overview of the algorithms presented in 4 with a small description
and a reference to the detailed description.

Table 4.1: This table contains an overview of the different algorithms described in the previous
sections.

Algorithm Description Reference
KaHyPar-R recursive bisection Algorithm 7
RB+OL recursive bisection with one local search at the end Algorithm 9
RB+LD recursive bisection with local search at the nodes dur-

ing partitioning
Section 4.3

RB+L recursive bisection with local search at the nodes of
the recursive bisection tree after partitioning

Algorithm 12

RB+LC recursive bisection with repeated local search at the
nodes of the recursive bisection tree after partitioning

Algorithm 13

RB+LT recursive bisection with preferred local search at the
bottom nodes of the recursive bisection tree

Section 4.3.3

RBA alternative recursive bisection Section 4.4
RBA+L O(k) local search on unfinished partitions Section 15
RBA+LL O(log(k)) local search on unfinished partitions with

the same depth in the recursive bisection tree
Section 4.4

RBA+LLE O(log(k)) local search at the end on unfinished parti-
tions

Section 4.4

RB+AB recursive bisection with active block scheduling re-
finement

Algorithm 16

KaHyPar-K+AB direct k-way partitioning with active block scheduling
during uncoarsening

Algorithm 17

RB+LVC recursive bisection with V-Cycle refinement after par-
titioning

Algorithm 18

36

5 Experimental Evaluation

The algorithms introduced in Section 4 use k-way local search to refine an ε-balanced
k-way partition computed with recursive bisection. To evaluate these algorithms we com-
puted k-way partitions of a set of hypergraphs with the different algorithms. In the follow-
ing sections we present the results of these experiments. Section 5.1 explains the experi-
mental environment, the tuning parameters and the test instances. We present the different
statistics we used to analyse the experimental results in Section 5.2. Finally, in Section 5.3
we discuss the experimental results. To get an overview of the different algorithms, we
compute them on a hypergraph set containing 25 hypergraphs. This allows us to determine
the algorithms, on which we perform further tests. Secondly, we evaluate the results of a
larger set. Then we compare two of our best algorithms to the state-of-the-art partitioner.
An overview of the different algorithms can be found in Table 4.1. The plots are created
with R (version 3.5.0).

5.1 Experimental Setup

5.1.1 Environment

The experiments are performed on the BwUniCluster [1, 2]. For each hypergraph and al-
gorithm we associate a single node with Intel Xeon E5-2670 (Sandy Bridge) processors, a
processor frequency of 2.6 GHz, 2 sockets, 16 cores, 64 GB of main memory and a local
disc with 2 TB [2]. Each socket has a tree level cache with 8x64 KB memory at level 1,
8x256 KB at level 2 and 20 MB at level 3. Each node has an adapter to connect to the
InfiniBand 4X FDR interconnect. The different nodes are connected by an InfiniBand 4X
FDR interconnect. The operating system of each node is Red Hat Enterprise Linux (RHEL)
7.4. The maximum running time for the different algorithms is one day.

5.1.2 Tuning Parameters

An experiment instance is a hypergraph, an algorithm and the different parameters of the
algorithm. Each experiment instance is calculated on a single node of the BwUniCluster
with a maximum main memory of 62 GB. The hypergraphs are partitioned with recursive
bisection. The coarsening algorithm is the heavy lazy algorithm. The coarsening rating

37

5 Experimental Evaluation

function is the heavy edge rating function described in Section 3.1.1. Coarsening is per-
formed until 160k vertices are left, where k is the number of blocks. During uncoarsening
the partition is refined with 2-way local search. The local search during uncoarsening is
stopped if there have been 350 fruitless moves in a row during refinement. A fruitless
move is a move that could not improve the current best objective. The initial partition is
calculated like described in Section 3.1.2.

5.1.3 Instances

The instances used to test the algorithms in Section 4 are a subset of a hypergraph bench-
mark set [22]. This benchmark set contains instances from the benchmark sets of the
ISPD98 VLSI Circuit Benchmark Suite [5], the University of Florida SuiteSparse Matrix
Collection [8] and the international SAT Competition 2014 [4]. The weight of the ver-
tices and nets are one. The full benchmark set and subset can be found on the website of
KaHyPar-CA [3]. Table A.1 lists 25 hypergraphs used to get an overview of the different
algorithms, while Table A.2 lists 107 hypergraphs to perform further tests.
The hypergraph in the benchmark set can be divided into six types [12, 13]. The DAC and
ISPD hypergraphs are VLSI instances and their vertices have a low average degree and
their nets a low average size. On the other side, the SPM instances have a high average
vertex degree and net size. Primal, literal and dual are three different SAT representations.
Primal instances have a large vertex degree and small net size, while the opposite is the
case for dual instances. Literal instances have a smaller average vertex degree than primal
instances, but it is smaller than those of dual instances. The net size of literal instances is
small.
Since the implementation of the algorithms includes randomization each hypergraph is par-
titioned ten times with the same algorithm with different initial seeds s ∈ {0, 1, 2, 3, 4, 5, 6,
7, 8, 9}. Each hypergraph is partitioned in k ∈ {4, 8, 16, 32, 64, 128, 256, 512, 1024} blocks.
The imbalance of the output partition is ε = 0.03.

5.2 Statistics

To evaluate the different algorithm we use the performance plots introduced in the recursive
bisection paper of KaHyPar [23]. The plot relates the smallest average and minimum ob-
jective of all algorithms to the corresponding objective of each algorithm on a per-instance
base. The metric can be cut or connectivity. The average metric is the average over the
metrics of the different seeds and the minimum metric is the minimum over the metrics for
the different seeds. For each algorithm we calculate for each instance 1− best/algorithm
where best is the best algorithm for the instance. Then these ratios are sorted in decreasing
order. To reduce right skewness the plots use a cube root scale for y axis. Note that the
values at the y axis are between 0 and 1. If an algorithm has a value of 0 for an instance, it

38

5.2 Statistics

has produced the best partition. If the value is close to 1 the algorithm has produced a bad
partition compared to the others. An algorithm is considered to produce better partitions
than another if its values are below those of the other.
Another method to compare two algorithms is to calculate the improvement from one al-
gorithm to the baseline. We distinguish between average improvement and minimum im-
provement. The improvement is calculated as follows: (1− g(algorithm.metric)

g(baseline.metric)
) ∗ 100 where

g is the geometric mean. algorithm.metric and baseline.metric are the metrics (cut or
connectivity) of the different instances of the algorithm and the baseline. The average im-
provement uses the average over the metrics of the different seeds while the minimum
improvement uses the minimum. The improvement of an algorithm is expressed in per-
centages. If the algorithm has a better cut or connectivity, then the baseline, than the
improvement is negative. If the baseline provides better results than the improvement is
positive. The average time of an algorithm is the geometric mean over the different execu-
tion times of all experimental instances. The average running time is expressed in seconds.
To compare the different algorithms we use the Friedman test, a statistic significance
test [9]. The null-hypothesis states that all algorithms are equivalent. The test returns a
p-value for each algorithm pair. If the p-value between two algorithms is high, it is likely
that their results are statistically equivalent. A small p-value below α = 0.01 states that the
results of two algorithms are significantly different.

39

5 Experimental Evaluation

Figure 5.1: This figure contains the results of the Friedman test for most of the algorithms listed
in Table 4.1. The test was computed on the results of the small hypergraph subset A.1
for cut (left) and connectivity (right). The two axes contain the different algorithms
and the values in the matrix represent the p-value.

5.3 Experimental Results

5.3.1 Overview of The Different Algorithms

To get an overview of the performance of the algorithms we used the Friedman test with
Rom correction. The tests are performed on the small hypergraph set listed in Table A.1.
Figure 5.1 presents the results of the Friedman test in matrix form. The average improve-
ment, minimum improvement and average running time of these experiments are summed
up in Table 5.1 for cut and connectivity.
Note that for cut (Figure 5.1 left) recursive bisection with one k-way local search at the fi-
nal partition (RB+OL) does not improve KaHyPar-R. According to Table 5.1 RB+OL only
has an improvement of 0.18%. On the other hand, Figure 5.1 (right) shows that RB+OL
and KaHyPar-R are statistically different for connectivity. RB+OL improves connectivity
by 0.99%. The average running time for cut and connectivity almost has not increased, so
the metric can be improved with little effort. The insignificant additional running time of
RB+OL can be explained by the fact that only one k-way local search is applied, which is
insignificant to the running time of the recursive bisection.
By investing more additional running time recursive bisection with local search refinement
at the nodes of the recursive bisection (RB+L) improves cut by 1.42% and connectivity
by 1.40%. According to the Friedman test, this improvement is significantly better than
that of RB+OL. During the refinements at the nodes of the recursive bisection tree, the
algorithm performs O(k) k-way local searches. Note that most of the local searches are

40

5.3 Experimental Results

Table 5.1: This table contains the average improvement (Avg.), minimum improvement (Min.) and
average time (Time) of the different refinement algorithms for cut and connectivity. The
baseline is the original recursive bisection (KaHyPar-K).

Algorithm Avg. (%) Min. (%) Time (s) Avg. (%) Min. (%) Time (s)

cut λ−1

KaHyPar-R 0.00 0.00 53.64 0.00 0.00 67.04
KaHyPar-K 0.90 0.66 50.46 1.42 1.15 30.21
RB+OL 0.16 0.18 54.62 1.07 0.99 68.13
RB+L 1.45 1.42 56.21 1.48 1.40 69.59
RB+LC 1.83 1.79 88.49 1.83 1.76 106.12
RB+LT 1.81 1.77 70.18 1.83 1.75 84.15
RBA+L 0.77 0.88 724.50 1.29 1.24 581.58
RBA+LL 0.01 0.14 57.52 1.13 1.01 70.90
RBA+LLE 1.19 1.26 67.14 1.28 1.18 80.74
RB+LVC 2.62 2.53 186.95 2.46 2.23 175.96
RB+AB 1.24 1.27 125.85 1.12 1.08 115.79

applied on small subpartitions. RB+L provides better results than RB+OL because more
local searches are applied. Furthermore, it is possible that the refinements found by the
k-way local searches at the subpartitions lead to a better refinement at the larger portions.
By repeating the local search at the nodes of the recursive bisection tree (RB+LC) the met-
rics could be improved significantly compared to RB+L. RB+LC improves cut by 1.79%
and connectivity by 1.76%, but its average running time is more than 1.5 times longer. The
recursive bisection algorithm with repeated local search at the nodes of the recursive bisec-
tion, which prefers local search at the lower nodes (RB+LT), produces results which are
statistically equivalent to those of RB+LC. However, the average running time of RB+LT
is smaller for cut and connectivity. RB+LC possibly has a better improvement than RB+L,
because after refining a partition, it is possible that a k-way local search at subpartitions
finds further improvements.
RB+LT applies the k-way local search refinements in the same order as RB+LC. Instead of
continuing the local search refinements at the nodes of the recursive bisection tree after a
local search has found an improvement, RB+LT restarts the refinement at the bottom nodes.
This results in more k-way local search refinements at small partitions. The stop condition
for both algorithms is the same: The algorithm cannot improve the objective at the nodes
of the recursive bisection tree. So RB+LT computes the refinement at smaller partitions,
this may lead to similar results and different running times.
The recursive bisection algorithm with local search after each bisection (RBA+L) has an
average running time that is more than 9 times higher than that of KaHyPar-R. RBA+L
improves cut by 0.88% and connectivity by 1.24%. RBA+L performs O(k) local searches
on the original hypergraph. The previous algorithms on the other side perform the lo-

41

5 Experimental Evaluation

cal searches on subpartitions. This could explain the longer running time. Despite the
additional running time, it provides worse results than RB+L, RB+LC and RB+LT. One
explanation may be that RBA+L improves the objective between subpartitions. Applying a
local search on unfinished partitions corresponds to refining a partition, where each block
contains more than one block of the final partition. This could make bisection harder for
the recursive bisection algorithm.
The results of the recursive bisection algorithm with local search refinement at each depth
(RBA+LL) are statistically equivalent to those of RB+OL. The average running time of
RBA+LL is higher. Since RB+L provides better results and has a lower average running
time than RBA+L and RBA+LL, we do not perform further experiments for those two al-
gorithms.
Of those algorithms performing the local search on the unfinished partitions, RBA+LLE
has the best minimum improvements 1.26% for cut and 1.18% for connectivity. Its average
running time is approximately 1.2 times larger than that of KaHyPar-R. It is statistically
equivalent to RB+L. RBA+LLE performs the different O(log(k)) k-way local searches on
the original hypergraph, not subhypergraphs. This can explain the longer running time.
RBA+LLE performs less k-way local search refinements than RBA+L, but finds better re-
sults. RBA+LLE skips the first k− 2 ∗ log(k) refinements of RBA+L. It avoids the k-local
search on partitions containing large blocks, which have to be bisected a lot during the
algorithm. This could explain the different improvements.
The results of recursive bisection with 2-way local search refinement with active block
scheduling are statistically equivalent to those of RB+L and RBA+LLE for cut and RB+L,
RBA+L, RBA+LLE for connectivity. The best improvement provides the recursive bisec-
tion algorithm with one V-cycle refinement after the partitioning (RB+LVC). It improves
cut by 2.53% and connectivity by 2.23%. According to the Friedman test, the results of
RB+LVC are significantly different to those of the other algorithms for cut. For connectiv-
ity the results of RB+LVC are not statistically different to those of RB+LC. Compared to
KaHyPar-R, its average running time is 3.5 times longer for cut and 2.6 times for connec-

Figure 5.2: This Figure sums up the experimental results of RB+L, RB+LT and RB+LVC. The
pot on the left side shows the improvement of cut and the plot on the right side the
improvement of connectivity from the original recursive bisection.

42

5.3 Experimental Results

tivity. If we refine the partition with multiple V-Cycles, it may be improved further but the
running time will increase significantly. We have tried recursive bisection with a maximum
of 30 V-cycles but we had to stop the experiments due to their long running time. So we
compute RB+LVC with only one V-cycle on the big subset.
Figure 5.2 sums up the experimental results of RB+L, RB+LT and RB+LVC in a perfor-
mance plot. RB+LVC provides the best results for more than half of the instances. The
second-best algorithm is RB+LT. Even if RB+L does not calculate the best metric it is
situated most of the time under direct k-way partitioning (KaHyPar-K). All in all RB+L,
RB+LT and RB+LVC provide better results than direct k-way partitioning and improve the
metric of the original recursive bisection.
Figure 5.3 shows the experimental results of the direct k-way partitioning algorithm with
active block scheduling refinement during uncoarsening (KaHyPar-K+AB). The experi-
ments are performed on the small hypergraph set listed in Table A.1. KaHyPar-K+AB pro-
vides worse partitions for cut (left) and connectivity (right) than the original direct k-way
algorithm (KaHyPar-K). According to Table 5.2, cut becomes 3.16% worse and connectiv-
ity becomes 2.36% worse than direct k-way. Compared to KaHyPar-K the average running
of KaHyPar-K+AB is more than twenty times slower. Due to the bad average running time
and the poor improvements, we do not calculate further experiments for KaHyPar-K+AB.

Figure 5.3: Comparing the resulting partitions of the direct k-way algorithm and the direct k-way
algorithm with active block scheduling refinement. The pot on the left side shows the
improvement of cut and the plot on the right side the improvement of connectivity.

Table 5.2: Comparing the direct k-way algorithm with direct k-way algorithm with active block
refinement while optimizing cut and λ−1. The table contains the average improvement
(Avg.), minimum improvement (Min), and average running time (Time).

Algorithm Avg. (%) Min. (%) Time (s) Avg. (%) Min. (%) Time (s)

cut λ−1

KaHyPar-K 0.00 0.00 55.42 0.00 0.00 55.42
KaHyPar-K+AB -3.16 2.79 1345.31 -2.36 1.91 1234.15

43

5 Experimental Evaluation

Figure 5.4: This figure contains the results of the Friedman test for most of the algorithms listed
in Table 4.1. The test was computed on the results of the large hypergraph set A.2 for
cut (left) and connectivity (right). The two axes contain the different algorithms and
the values in the matrix represent the p-value.

5.3.2 Experiments on the Larger Hypergraph Set

The results of the large hypergraph subset, listed in Table A.2, are presented in the follow-
ing section. Figure 5.4 contains the p-values of the Friedman test with Rom correction.
Table 5.3 contains the average improvement, minimum improvement and average time of
the experiments on the big benchmark subset. According to the Friedman test, the direct
k-way algorithm (KaHyPar-K) provides results for cut, which are statistically equivalent to
those of RB+OL. Furthermore, they have approximately the same minimum improvement.
Compared to KaHyPar-K the average running time of RB+OL is approximately 1.4 times
longer.
RB+AB and RB+L are statistically equivalent for cut and connectivity. They both have
similar minimum improvements, but the average running time of RB+AB is significantly
larger. We can assume that the other algorithms are not statistically equivalent because
their p-value is below α = 0.01. The large running time of RB+AB could be explained
by the highly localized approach. We only apply 2-way local searches with active block
scheduling. An explanation would be that the 2-way local searches find a lot of small
improvements. So the active block scheduling algorithm would continue and the over all
improvement could be small.
RB+L improves cut by 0.982% and connectivity by 1.119%. RB+OL improves cut by
0.712% and connectivity by 0.878%. They need no significant additional running time.
This reinforces the interpretation made in the previous section. The running time of RB+L
and RB+OL is not significantly different to that of the original recursive bisection.
The recursive bisection algorithm with one V-Cycle refinement (RB+LVC) provides the
best improvement for both metrics. However, it is 5.9 times slower for cut and 4.46 times

44

5.3 Experimental Results

Table 5.3: The table sums up the results for all experiment instances of the large hypergraph set
A.2. It contains the average improvement (Avg.), minimum improvement (Min), and
average running time (Time).

Algorithm Avg. (%) Min. (%) Time (s) Avg. (%) Min. (%) Time (s)

cut λ−1

KaHyPar-R 0.000 0.000 166.82 0.000 0.000 234.65
RB+OL 0.732 0.712 168.08 0.897 0.878 236.52
RB+L 1.009 0.982 171.22 1.206 1.199 240.30
RB+LT 1.424 1.382 212.55 1.655 1.638 296.72
RB+AB 0.944 0.948 367.58 1.065 1.053 408.12
RB+LVC 2.243 2.178 984.71 2.624 2.512 1046.25
KaHyPar-K 0.700 0.730 230.43 1.512 1.504 195.49

slower for connectivity than KaHyPar-R. For cut all recursive bisection algorithms with
k-way local search refinement except RB+OL have a better minimum improvement than
KaHyPar-K. On the other hand, only RB+LT and RB+LVC provide better results than
direct k-way partitioning for connectivity. An explanation for this fact may be that for
connectivity a k-way local search can find better results than a 2-way local search. The
k-way local search refinement has a much more global view. Only RB+LT and RB+LVC
use enough k-way local searches to improve the results of the recursive bisection. So it
is possible that for connectivity RB+LT finds the best improvements at the larger subparti-
tions.
Table 5.4 contains the minimum improvement and Table 5.5 the average running time of
calculating an ε-balanced k-way partition, while optimizing cut and connectivity, for the
different partition sizes. All in all the the improvements found by the k-way local search
refinements and the average running time get larger with the number of blocks k. Espe-
cially the average running time of RB+AB gets larger. This could be explained by the fact
that during active block scheduling 2-way local searches are performed on adjacent blocks.
By increasing the number of blocks k, the number of 2-way local searches refinements in-
creases. Additionally if the blocks are highly connected , the number of refinements might
increase because we refine pairs of blocks, where at least one block is active.
The improvements of RB+LVC get smaller when k gets larger, while RB+LT gets an im-
provement over 2% for partitions with more than 512 blocks. However, the average running
time for RB+LT is approximately two times larger than that of the original recursive bisec-
tion. The results for connectivity are similar. RB+LVC provides better results for small k,
while RB+LT improves the objective by more than 2% for large partitions for connectivity.
The size of the recursive bisection tree increases with the number of blocks k. A larger
recursive bisection tree leads to possibly more local search refinements. This can explain
the increase in running time and improvement with k for RB+LT. For large k a lot of test
instances exceed the time limit of one day for RB+LVC.

45

5 Experimental Evaluation

Table 5.4: This table contains the minimum improvements (%) of the different refinement algo-
rithms for the different partition sizes (k) and objectives (Obj.). The algorithms are
compared to the baseline: KaHyPar-R.

Obj. Algorithm k=4 k=8 k=16 k=32 k=64 k=128 k=256 k=512 k=1024

cut

RB+OL 0.318 0.555 0.511 0.682 0.847 0.873 0.933 0.993 0.826
RB+L 0.318 0.674 0.635 0.880 1.058 1.164 1.324 1.638 1.436
RB+LT 0.398 0.809 0.859 1.193 1.460 1.612 1.840 2.429 2.326
RB+AB 0.383 0.980 0.953 1.097 1.136 1.035 1.067 1.032 0.890
RB+LVC 1.759 2.979 2.654 2.656 2.592 2.150 1.931 1.456 0.974
KaHyPar-K 2.107 2.064 1.179 0.447 -0.111 0.179 -0.245 0.494 -0.021

λ−1

RB+OL 0.282 0.435 0.649 0.830 0.968 1.091 1.200 1.320 1.317
RB+L 0.282 0.525 0.832 1.063 1.231 1.412 1.631 1.987 2.183
RB+LT 0.333 0.664 1.132 1.438 1.666 1.889 2.170 2.724 3.252
RB+AB 0.340 0.756 0.946 1.114 1.207 1.267 1.348 1.342 1.280
RB+LVC 1.763 2.848 3.020 3.163 3.033 2.734 2.517 1.804 1.397
KaHyPar-K 2.009 2.454 2.402 2.166 1.587 0.794 0.384 0.712 0.640

Table 5.5: This table contains the average running time (s) of the different refinement algorithms
for the different partition sizes (k) and objectives (Obj.).

Obj. Algorithm k=4 k=8 k=16 k=32 k=64 k=128 k=256 k=512 k=1024

cut

KaHyPar-R 116.9 155.6 171.9 163.5 193.5 181.7 168.6 174.5 182.9
RB+OL 117.0 155.8 172.0 164.0 194.1 183.1 170.7 177.3 187.8
RB+L 117.0 156.2 172.9 165.5 196.6 186.7 175.7 184.3 197.9
RB+LT 117.4 157.2 175.6 170.5 211.0 223.5 243.9 304.5 368.0
RB+AB 119.1 161.7 185.4 197.8 276.7 331.6 469.6 715.7 1091.4
RB+LVC 334.3 599.6 738.5 1155.4 2030.4 1498.8 1021.2 844.3 609.7
KaHyPar-K 176.7 275.7 108.2 198.9 424.6 311.7 208.4 174.6 179.1

λ−1

KaHyPar-R 135.5 193.3 179.8 216.4 267.3 299.7 351.6 224.2 252.6
RB+OL 135.7 193.7 180.3 217.2 268.5 301.4 354.9 227.7 259.1
RB+L 135.7 194.0 181.1 218.6 270.9 305.9 361.6 236.2 271.0
RB+LT 136.1 195.8 184.0 225.9 287.4 350.1 459.0 372.6 526.0
RB+AB 137.4 204.5 192.5 248.2 337.4 447.4 709.5 611.9 935.5
RB+LVC 333.3 478.9 617.2 767.9 1336.0 1486.4 2931.5 781.5 628.8
KaHyPar-K 78.8 164.3 70.9 99.5 272.0 241.5 483.4 145.4 206.8

46

5.3 Experimental Results

Figure 5.5: This figure contains the improvement plots for cut. The top left plot contains all in-
stances, while the other show the results for the different partition sizes. The instances
which exceeded the time limit of one day are represented at the top of each plot. In-
feasible solutions correspond to imbalanced partitions.

47

5 Experimental Evaluation

Figure 5.6: This figure contains the improvement plots for connectivity. The top left plot contains
all instances, while the other show the results for the different partition sizes. The
instances which exceeded the time limit of one day are represented at the top of each
plot. Infeasible solutions correspond to imbalanced partitions.

48

5.3 Experimental Results

Figures 5.5 and 5.6 show the improvement plots for the different partition sizes k. Over
all instances (top left) RB+LVC provides the best results for both metrics. RB+LT has
the second-best results for cut and KaHyPar-K for connectivity. The original recursive
bisection computes the worst results, which means that each algorithm could improve the
objective. For cut and small k, RB+LVC and direct k-way provide the best results. With
increasing block number, the improvement of direct k-way gets smaller and of that RB+LT
gets larger, until it surpasses that of RB+LVC. For connectivity the improvements over all
instances are similar to that for cut. RB+LVC provides the best improvement for partitions
smaller or equal than 256. The direct k-way algorithm remains longer the second-best al-
gorithm, until RB+LT surpasses both for partitions larger than 512. For small k (≤ 32)
RB+OL, RB+L, RB+LT provide similar results. This could be explained by the fact that
for small k RB+L and RB+LT do not apply as many local search refinements as for large k.
The number of k-way local searches applied increases with k and so does the improvement,
especially for RB+LT. All in all the results of the improvement plots match to those of the
minimum improvement in Table 5.4.
Figures 5.7 and 5.8 contain the improvement plots for the different hypergraph types. Ta-
ble 5.6 and 5.7 contain the minimum improvement and average running time of the different
hypergraph types. The improvements are similar for all hypergraph types, except for the
Dual hypergraphs where only RB+LVC could improve the objective. Dual instances have
a large net size. An explanation could be that the k-way local search refinements could
not improve the objective. It is hard for k-way local search to remove large nets between
different blocks. This can be explained by the fact that the local search we use is move
based. This means only one vertex is moved at a time. This can be observed in the average
running time of RB+LT, which is similar to that of RB+L. Note that RB+L and RB+LT
apply the local search refinements at the same subpartitions. The difference between these
algorithms is that RB+LT can repeat the refinements if it finds improvements. The similar
running times indicate that the k-way local searches could not find a lot of improvements.
RB+LVC uses a V-Cycle, which coarsens the hypergraph. By coarsening a hypergraph the
net size becomes smaller, which can be the reason why RB+LVC can improve the objective
for Dual instances.
RB+LT improved the objective by more than 2% for the ISPD, Pimal and Literal hyper-
graphs. All these hypergraphs have a small average net size, which might be the reason
why the k-way local search refinements can improve the objective. For these hypergraphs
RB+L provides significantly worse results than RB+LT. This could be caused by the re-
peated local search at the nodes of the recursive bisection tree of RB+LT.
For cut RB+LVC has an improvement of 3.144% for ISPD and 3.155% for Dual hyper-
graphs. Note that the average running time of RB+LVC is significantly higher for the Dual
hypergraphs. While optimizing connectivity metric, RB+LVC has worse results for ISPD
and better results for Dual hypergraphs. RB+LVC provides the best improvement for Dual
hypergraphs, but has the longest average running time.

49

5 Experimental Evaluation

Table 5.6: This table contains the minimum improvements (%) of the different refinement algo-
rithms for the different graph types and objectives (Obj.). The algorithms are compared
to the baseline: KaHyPar-R.

Obj. Algorithm * DAC ISPD Primal Literal Dual SPM

cut

RB+OL 0.732 0.654 1.386 1.584 1.451 0.033 0.338
RB+L 1.009 0.877 1.750 1.917 1.733 0.079 0.632
RB+LT 1.424 1.141 2.326 2.424 2.334 0.115 1.029
RB+AB 0.944 1.656 1.945 1.367 1.351 0.252 0.632
RB+LVC 2.243 3.987 3.144 2.302 2.339 3.155 1.736
KaHyPar-K 0.700 1.562 1.479 2.058 1.219 -1.216 0.389

λ−1

RB+OL 0.897 0.321 1.460 1.820 1.483 0.137 0.603
RB+L 1.206 0.463 1.836 2.107 1.662 0.306 0.979
RB+LT 1.655 0.743 2.299 2.604 2.254 0.530 1.439
RB+AB 1.065 0.983 1.740 1.463 1.370 0.740 0.828
RB+LVC 2.624 3.488 2.700 2.856 2.764 3.543 2.244
KaHyPar-K 1.512 2.528 2.256 3.452 2.613 -1.841 1.236

Table 5.7: This table contains the average running time (s) of the different refinement algorithms
for the different graph types and objectives (Obj.).

Obj. Algorithm * DAC ISPD Primal Literal Dual SPM

cut

KaHyPar-R 166.8 519.9 98.0 158.4 221.7 320.1 117.9
RB+OL 168.1 519.1 98.5 160.7 224.8 322.2 118.5
RB+L 171.2 521.5 100.3 165.6 230.5 327.1 120.5
RB+LT 212.6 532.4 131.6 263.3 364.1 331.0 135.0
RB+AB 367.6 668.4 278.4 505.8 799.1 460.4 204.7
RB+LVC 984.7 4844.7 356.2 464.1 756.4 2535.3 773.6
KaHyPar-K 230.4 1294.2 74.9 102.1 200.2 313.2 227.8

λ−1

KaHyPar-R 234.6 894.9 115.7 170.2 229.5 510.1 168.8
RB+OL 236.5 898.3 116.8 173.5 233.4 512.9 169.6
RB+L 240.3 900.0 118.2 179.1 239.9 519.9 172.1
RB+LT 296.7 955.3 155.7 288.3 402.5 571.9 193.1
RB+AB 408.1 1353.9 222.2 471.8 708.3 666.6 230.1
RB+LVC 1046.3 7360.9 271.6 489.7 783.0 2199.8 713.7
KaHyPar-K 195.5 876.8 48.9 94.9 155.5 241.8 203.1

50

5.3 Experimental Results

Figure 5.7: These improvement plots show the improvement for the different hypergraph types.
The optimized metric is cut.

Figure 5.8: These improvement plots show the improvement for the different hypergraph types.
The optimized metric is connectivity.

51

5 Experimental Evaluation

5.3.3 Comparison to State-Of-The-Art Partitioner

Finally, we compare our recursive bisection with V-Cycle refinement (RB+LVC) and re-
cursive bisection with repeated k-way local search at the nodes of the recursive bisec-
tion tree (RB+LT) with state-of-the-art hypergraph partitioner. We compare with four
KaHyPar [11, 22, 23] configurations (KaHyPar-R, KaHyPar-CA, KaHyPar-MF, KaHyPar-
R-MF), two hMetis [14] configurations (hMetis-R, hMetis-K) and two PaToH [24] config-
urations (PaToH-Q, PaToH-D). For the tuning parameters and description of the different
algorithms, we refer to the corresponding publications [6, 12, 13, 15, 16, 23].
Figure 5.9 contains the improvement plots which compare RB+LVC and RB+LT to the
state-of-the-art partitioner for cut and connectivity. For cut (top) RB+LVC provides a bet-
ter objective than the other algorithms except KaHyPar-MF, while RB+LT performs results
which are similar to those of KaHyPar-R-MF. For connectivity (bottom) RB+LVC performs
the second-best results after KaHyPar-MF. Note that the performance difference between
RB+LVC and KaHyPar-MF is bigger for connectivity than for cut. RB+LT produces simi-
lar results than KaHyPar-CA.
Table 5.8 contains the average running time for the different algorithms. Note that KaHyPar-
MF computes better partitions in a shorter time than RB+LVC for cut and connectivity. On
the other side, RB+LT computes similar results than KaHyPar-R-MF and has a similar run-
ning time for cut. Finally, the results of KaHyPar-R-CA are similar to those of RB+LT, but
it is approximately 1.5 times faster than RB+LT.

Table 5.8: The table compares the average running time (s) of the different algorithms.
metric/algo KaHyPar-R RB+LT RB+LVC KaHyPar-CA KaHyPar-R-MF KaHyPar-MF hMetis-R hMetis-K PaToH-Q PaToHs-D

cut 165.84 177.01 1138.45 - 180.64 436.71 319.34 178.60 15.75 3.88
λ−1 221.44 235.41 844.36 164.98 - 221.60 339.11 171.68 17.41 4.22

52

5.3 Experimental Results

Figure 5.9: The plot on the top is the improvement plot for the cut metric, while the bottom plot
is the improvement plot for connectivity. The tests were performed on the hypergraph
set A.2 for partition sizes k ∈ {4, 8, 16, 32, 64, 128}.

53

5 Experimental Evaluation

54

6 Discussion

6.1 Conclusion

In this thesis we combine the recursive bisection algorithm with k-way local search. The
main idea is to improve the objective during and after the recursive bisection by applying
k-way local search refinements.
Our first algorithm applies one k-way local search after the recursive bisection. This algo-
rithms improved slightly the objective with slightly no additional running time. Further-
more, we engineered three algorithms which applied the k-way local search at the nodes of
the recursive bisection tree. The first one applied the refinements bottom up. The second
one repeated this procedure until no improvement could be found. And the last one prefers
local search at the bottom nodes of the recursive bisection tree. These algorithms signif-
icantly improve the partition provided by the recursive bisection algorithm. However, the
repeated k-way local search refinements are accompanied by significantly lager running
times.
Moreover, we designed three algorithms which perform the refinements at unfinished par-
titions during recursive bisection. One of these algorithms performs a k-way local search
after each bisection. This approach results in a much larger running time than the original
recursive bisection. Its improvement is worse than that of the previous algorithms. The
second algorithm performs a k-way local search refinement at each level of the recursive
bisection tree. This algorithm has a similar running time than recursive bisection but has
nearly no improvement. The third algorithm applies O(log(k)) local search refinements at
the end of the recursive bisection. It provides significantly better results than the previous
algorithms.
We describe an algorithm, which refines the partition after recursive bisection with multi-
ple 2-way local searches. We use active block scheduling to refine blocks pair wise with
2-way local search. This approach has a similar improvement as recursive bisection with
local search refinements at the nodes of the recursive bisection tree. However, it has a sig-
nificantly higher running time.
One of our algorithms modifies a direct k-way algorithm. We refine the partition during un-
coarsening with 2-way local searches with active block scheduling instead of k-way local
search. This algorithm has a much higher running time and provides much worse parti-
tions.
Finally, we suggest an algorithm, which refines the partition provided by recursive bisec-
tion with V-Cycles. The running time of applying multiple V-Cycles is much too high, so

55

6 Discussion

we perform only one. This is still one of our slowest algorithms, but it provides the best
results.
Our most promising algorithms are RB+L, RB+LT and RB+LVC. RB+L can refine the
partition provided by the recursive bisection algorithm with little extra running time and
scales well with k. RB+LT on the other side needs more extra running time but has bet-
ter improvements. The improvement of both algorithms gets better with large k. Finally,
RB+LVC needs more extra running time but provides the best results for small k.

6.2 Future Work

We performed the test on two hypergraph sets containing 25 and 107 hypergraphs. To
get more reliable results and statements the tests should be performed on more hyper-
graphs. Furthermore, we want to test the algorithms for even bigger partitions, to see how
they scale. Moreover, we should test the remaining algorithms (RBA+L, RBA+LL and
RBA+LLA) on a larger hypergraph set. Additionally we should compare our refinement
algorithms to the state-of-the-art algorithms for large k. We could also work on combin-
ing the different refinement approaches into one algorithm. Finally, we could combine
KaHyPar-FM and the different refinement algorithms.

56

A Hypergraph Sets

Table A.1: Small hypergraph subset to quickly test algorithms

hypergraph name
ISPD98_ibm06.hgr
ISPD98_ibm07.hgr
ISPD98_ibm08.hgr
ISPD98_ibm09.hgr
ISPD98_ibm10.hgr
laminar_duct3D.mtx.hgr
mixtank_new.mtx.hgr
mult_dcop_01.mtx.hgr
RFdevice.mtx.hgr
sat14_6s9.cnf.dual.hgr
sat14_6s133.cnf.dual.hgr
sat14_6s133.cnf.hgr
sat14_6s153.cnf.dual.hgr
sat14_6s153.cnf.hgr
sat14_6s153.cnf.primal.hgr
sat14_aaai10-planning-ipc5-pathways-17-step21.cnf.hgr
sat14_aaai10-planning-ipc5-pathways-17-step21.cnf.primal.hgr
sat14_atco_enc2_opt1_05_21.cnf.hgr
sat14_atco_enc2_opt1_05_21.cnf.primal.hgr
sat14_dated-10-11-u.cnf.dual.hgr
sat14_dated-10-11-u.cnf.hgr
sat14_dated-10-11-u.cnf.primal.hgr
sat14_dated-10-17-u.cnf.dual.hgr
sat14_hwmcc10-timeframe-expansion-k45-pdtvisns3p02-tseitin.cnf.primal.hgr
vibrobox.mtx.hgr

57

A Hypergraph Sets

Table A.2: Large hypergraph subset to test algorithms

hypergraph name
2cubes_sphere.mtx.hgr
2D_54019_highK.mtx.hgr
af_4_k101.mtx.hgr
af_shell1.mtx.hgr
Andrews.mtx.hgr
as-caida.mtx.hgr
av41092.mtx.hgr
BenElechi1.mtx.hgr
c-61.mtx.hgr
case39.mtx.hgr
cfd1.mtx.hgr
ckt11752_dc_1.mtx.hgr
cnr-2000.mtx.hgr
coupled.mtx.hgr
dac2012_superblue14.hgr
dac2012_superblue16.hgr
dac2012_superblue19.hgr
dac2012_superblue3.hgr
dac2012_superblue9.hgr
denormal.mtx.hgr
dielFilterV2clx.mtx.hgr
EternityII_A.mtx.hgr
ex19.mtx.hgr
gearbox.mtx.hgr
hvdc1.mtx.hgr
Ill_Stokes.mtx.hgr
ISPD98_ibm09.hgr
ISPD98_ibm10.hgr
ISPD98_ibm11.hgr
ISPD98_ibm12.hgr
ISPD98_ibm13.hgr
ISPD98_ibm14.hgr
ISPD98_ibm15.hgr
ISPD98_ibm16.hgr
ISPD98_ibm17.hgr
ISPD98_ibm18.hgr
laminar_duct3D.mtx.hgr
lhr14.mtx.hgr
light_in_tissue.mtx.hgr

58

Lin.mtx.hgr
lp_pds_20.mtx.hgr
m14b.mtx.hgr
mc2depi.mtx.hgr
mixtank_new.mtx.hgr
mult_dcop_01.mtx.hgr
NotreDame_actors.mtx.hgr
opt1.mtx.hgr
para-4.mtx.hgr
pdb1HYS.mtx.hgr
Pd_rhs.mtx.hgr
pkustk11.mtx.hgr
poisson3Db.mtx.hgr
powersim.mtx.hgr
Pres_Poisson.mtx.hgr
psse2.mtx.hgr
sat14_dated-10-11-u.cnf.primal.hgr
sat14_dated-10-17-u.cnf.dual.hgr
sat14_dated-10-17-u.cnf.hgr
sat14_dated-10-17-u.cnf.primal.hgr
sat14_hwmcc10-timeframe-expansion-k45-pdtvisns3p02-tseitin.cnf.dual.hgr
sat14_hwmcc10-timeframe-expansion-k45-pdtvisns3p02-tseitin.cnf.hgr
sat14_hwmcc10-timeframe-expansion-k45-pdtvisns3p02-tseitin.cnf.primal.hgr
sat14_itox_vc1130.cnf.dual.hgr
sat14_itox_vc1130.cnf.hgr
sat14_itox_vc1130.cnf.primal.hgr
sat14_manol-pipe-c8nidw.cnf.dual.hgr
sat14_manol-pipe-c8nidw.cnf.hgr
sat14_manol-pipe-c8nidw.cnf.primal.hgr
sat14_manol-pipe-g10bid_i.cnf.dual.hgr
sat14_manol-pipe-g10bid_i.cnf.hgr
sat14_manol-pipe-g10bid_i.cnf.primal.hgr
sat14_MD5-28-4.cnf.dual.hgr
sat14_MD5-28-4.cnf.hgr
sat14_MD5-28-4.cnf.primal.hgr
sat14_openstacks-sequencedstrips-nonadl-nonnegated-os-sequencedstrips-p30_3.085-
SAT.cnf.dual.hgr
sat14_openstacks-sequencedstrips-nonadl-nonnegated-os-sequencedstrips-p30_3.085-
SAT.cnf.hgr
sat14_openstacks-sequencedstrips-nonadl-nonnegated-os-sequencedstrips-p30_3.085-
SAT.cnf.primal.hgr
sat14_SAT_dat.k85-24_1_rule_3.cnf.dual.hgr

59

A Hypergraph Sets

sat14_SAT_dat.k85-24_1_rule_3.cnf.hgr
sat14_SAT_dat.k85-24_1_rule_3.cnf.primal.hgr
sat14_SAT_dat.k90.debugged.cnf.dual.hgr
sat14_SAT_dat.k90.debugged.cnf.hgr
sat14_SAT_dat.k90.debugged.cnf.primal.hgr
sat14_slp-synthesis-aes-top29.cnf.dual.hgr
sat14_slp-synthesis-aes-top29.cnf.hgr
sat14_slp-synthesis-aes-top29.cnf.primal.hgr
sat14_UCG-15-10p1.cnf.dual.hgr
sat14_UCG-15-10p1.cnf.hgr
sat14_UCG-15-10p1.cnf.primal.hgr
sat14_UR-15-10p1.cnf.dual.hgr
sat14_UR-15-10p1.cnf.hgr
sat14_UR-15-10p1.cnf.primal.hgr
sat14_UR-20-5p0.cnf.dual.hgr
sat14_UR-20-5p0.cnf.hgr
sat14_UR-20-5p0.cnf.primal.hgr
shock-9.mtx.hgr
shyy161.mtx.hgr
skirt.mtx.hgr
sme3Db.mtx.hgr
spmsrtls.mtx.hgr
Stanford.mtx.hgr
stokes128.mtx.hgr
TF16.mtx.hgr
thermomech_TC.mtx.hgr
torso3.mtx.hgr
vibrobox.mtx.hgr
water_tank.mtx.hgr
waveguide3D.mtx.hgr

60

Bibliography

[1] bwunicluster. https://www.urz.uni-heidelberg.de/en/
bwunicluster. Accessed: 23.09.2018.

[2] Bwunicluster hardware and architecture. https://www.bwhpc-c5.de/
wiki/index.php/BwUniCluster_Hardware_and_Architecture#
Architecture_of_bwUniCluster. Accessed: 23.09.2018.

[3] Detailed experimental results for sea’17 publication "improving coarsening schemes
for hypergraph partitioning by exploiting community structure". https://algo2.
iti.kit.edu/schlag/sea2017/. Accessed: 23.09.2018.

[4] The sat competition 2014. http://www.satcompetition.org/2014/. Ac-
cessed: 23.09.2018.

[5] Charles J. Alpert. The ispd98 circuit benchmark suite. In Proceedings of the 1998
International Symposium on Physical Design, ISPD ’98, pages 80–85, New York,
NY, USA, 1998. ACM.

[6] T.N. Bui and C. Jones. A heuristic for reducing fill-in in sparse matrix factorization.
12 1993.

[7] Aydın Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and Christian Schulz.
Recent Advances in Graph Partitioning, pages 117–158. Springer International Pub-
lishing, Cham, 2016.

[8] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Trans. Math. Softw., 38(1):1:1–1:25, December 2011.

[9] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res., 7:1–30, December 2006.

[10] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving network
partitions. In 19th Design Automation Conference, pages 175–181, June 1982.

[11] Vitali Henne, Henning Meyerhenke, Peter Sanders, Sebastian Schlag, and Christian
Schulz. n-level hypergraph partitioning, 2015.

[12] Tobias Heuer, Peter Sanders, and Sebastian Schlag. Network Flow-Based Refine-
ment for Multilevel Hypergraph Partitioning. In Gianlorenzo D’Angelo, editor, 17th
International Symposium on Experimental Algorithms (SEA 2018), volume 103 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 1:1–1:19, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[13] Tobias Heuer and Sebastian Schlag. Partitioning by Exploiting Community Structure.
In Costas S. Iliopoulos, Solon P. Pissis, Simon J. Puglisi, and Rajeev Raman, editors,

61

https://www.urz.uni-heidelberg.de/en/bwunicluster
https://www.urz.uni-heidelberg.de/en/bwunicluster
https://www.bwhpc-c5.de/wiki/index.php/BwUniCluster_Hardware_and_Architecture#Architecture_of_bwUniCluster
https://www.bwhpc-c5.de/wiki/index.php/BwUniCluster_Hardware_and_Architecture#Architecture_of_bwUniCluster
https://www.bwhpc-c5.de/wiki/index.php/BwUniCluster_Hardware_and_Architecture#Architecture_of_bwUniCluster
https://algo2.iti.kit.edu/schlag/sea2017/
https://algo2.iti.kit.edu/schlag/sea2017/
http://www.satcompetition.org/2014/

Bibliography

16th International Symposium on Experimental Algorithms (SEA 2017), volume 75
of Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–21:19,
Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[14] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hy-
pergraph partitioning: applications in vlsi domain. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 7(1):69–79, March 1999.

[15] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hy-
pergraph partitioning: applications in vlsi domain. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 7(1):69–79, March 1999.

[16] George Karypis and Vipin Kumar. Multilevel k-way hypergraph partitioning. In
Proceedings of the 36th Annual ACM/IEEE Design Automation Conference, DAC
’99, pages 343–348, New York, NY, USA, 1999. ACM.

[17] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs.
The Bell System Technical Journal, 49(2):291–307, Feb 1970.

[18] Thomas Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Vieweg
and Teubner Verlag, Stuttgart, 1992.

[19] Thang Nguyen Bui and Curt Jones. Finding good approximate vertex and edge parti-
tions is np-hard. Information Processing Letters, 42(3):153 – 159, 1992.

[20] Alex Pothen. Graph Partitioning Algorithms with Applications to Scientific Comput-
ing, pages 323–368. Springer Netherlands, Dordrecht, 1997.

[21] Peter Sanders and Christian Schulz. Engineering multilevel graph partitioning algo-
rithms. In Camil Demetrescu and Magnús M. Halldórsson, editors, Algorithms – ESA
2011, pages 469–480, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[22] Sebastian Schlag, Yaroslav Akhremtsev, Tobias Heuer, and Peter Sanders. Engineer-
ing a direct k-way hypergraph partitioning algorithm, 01 2017.

[23] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders,
and Christian Schulz. k-way hypergraph partitioning via n-level recursive bisection,
2015.

[24] Aleksandar Trifunovi? and William J. Knottenbelt. Parallel multilevel algorithms for
hypergraph partitioning. Journal of Parallel and Distributed Computing, 68(5):563 –
581, 2008.

[25] Chris Walshaw. Multilevel refinement for combinatorial optimisation problems. An-
nals of Operations Research, 131(1):325–372, Oct 2004.

62

	Abstract
	Introduction
	Motivation
	Contribution
	Structure of Thesis

	Fundamentals
	General Definitions

	Related Work
	n-Level Hypergraph Partitioning
	Coarsening
	Initial Partitioning
	Uncoarsening

	Local Search
	Local Search of Kerninghan and Lin
	FM Local Search of Fiduccia and Matheyses
	Localized adaptive k-way FM Local Search

	V-Cycle
	Recursive Bisection

	Better Recursive Bisection Algorithm
	Generals Concepts
	Single Local Search after Recursive Bisection
	Local Search at the Nodes of the Recursive Bisection Tree
	Single Local Search at each Node
	Repeated Local Search
	Preferred Local Search on Small Subpartitions

	Local Search on Unfinished Partitions
	2-Way Local Search with Active Block Scheduling
	Active Block Scheduling During Uncoarsening
	Recursive Bisection with V-Cycle Refinement
	Algorithm Overview

	Experimental Evaluation
	Experimental Setup
	Environment
	Tuning Parameters
	Instances

	Statistics
	Experimental Results
	Overview of The Different Algorithms
	Experiments on the Larger Hypergraph Set
	Comparison to State-Of-The-Art Partitioner

	Discussion
	Conclusion
	Future Work

	Hypergraph Sets
	Bibliography

