

High Quality Hypergraph Partitioning

Algorithms II · January 28, 2019 Sebastian Schlag

Institute of Theoretical Informatics · Algorithmics Group

Graphs and Hypergraphs

Graph
$$G = (V, E)$$
vertices edges

- Models relationships between objects
- Dyadic (2-ary) relationships

Hypergraph H = (V, E)

- Generalization of a graph⇒ hyperedges connect ≥ 2 nodes
- Arbitrary (d-ary) relationships
- Edge set $E \subseteq \mathcal{P}(V) \setminus \emptyset$

Partition hypergraph $H = (V, E, c : V \to \mathbb{R}_{>0}, \omega : E \to \mathbb{R}_{>0})$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

 \blacksquare Blocks V_i are **roughly equal-sized**:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Partition hypergraph $H = (V, E, c : V \to \mathbb{R}_{>0}, \omega : E \to \mathbb{R}_{>0})$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

■ Blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Partition hypergraph $H = (V, E, c : V \to \mathbb{R}_{>0}, \omega : E \to \mathbb{R}_{>0})$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

■ Blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Common Objectives:

• cut: $\sum_{e \in Cut} \omega(e)$

Partition hypergraph $H = (V, E, c : V \to \mathbb{R}_{>0}, \omega : E \to \mathbb{R}_{>0})$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

■ Blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Common Objectives:

- cut: $\sum_{e \in Cut} \omega(e)$
- Connectivity: $\sum_{e \in \text{cut}} (\lambda 1) \omega(e)$

Partition hypergraph $H = (V, E, c : V \to \mathbb{R}_{>0}, \omega : E \to \mathbb{R}_{>0})$ into k disjoint blocks $\Pi = \{V_1, \ldots, V_k\}$ such that

■ Blocks V_i are roughly equal-sized:

imbalance parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

Objective function on hyperedges is minimized

Common Objectives:

- cut: $\sum_{e \in Cut} \omega(e)$
- Connectivity: $\sum_{e \in \text{cut}} (\lambda 1) \omega(e)$

blocks connected by e

Applications

VLSI Design

Warehouse Optimization

Complex Networks

Route Planning

Simulation

Scientific Computing

Applications

VLSI Design

Warehouse Optimization

Complex Networks

Route Planning

Simulation

Parallel Sparse-Matrix Vector Product (SpM×V)

[Catalyürek, Aykanat]

$$y = A b$$

Setting:

- Repeated SpM×V on supercomputer
- lacktriangle A is large \Rightarrow distribute on multiple nodes
- Symmetric partitioning $\Rightarrow y \& b$ divided conformally with A

Parallel Sparse-Matrix Vector Product (SpM×V)

[Catalyürek, Aykanat]

$$y = Ab$$

 b_j b_k

Task: distribute *A* to nodes of supercomputer such that

- work is distributed evenly
- communication overhead is minimized

Setting:

- Repeated SpM×V on supercomputer
- lacksquare A is large \Rightarrow distribute on multiple nodes
- Symmetric partitioning $\Rightarrow y \& b$ divided conformally with A

$$A \in \mathbf{R}^{16 \times 16}$$

$$A \in \mathbf{R}^{16 \times 16}$$

$$A \in \mathbf{R}^{16 \times 16}$$

Load Balancing?

$$\Rightarrow 9$$

$$\Rightarrow$$
 12

$$\Rightarrow$$
 14

$$\Rightarrow$$
 12

$$A \in \mathbf{R}^{16 \times 16}$$

Load Balancing?

$$\Rightarrow$$
 9

$$\Rightarrow$$
 12

$$\Rightarrow$$
 14

$$\Rightarrow$$
 12

Commuication Volume?

$$A \in \mathbf{R}^{16 \times 16}$$

Load Balancing?

$$\Rightarrow$$
 9

$$\Rightarrow$$
 12

$$\Rightarrow$$
 14

$$\Rightarrow$$
 12

Commuication Volume?

$$A \in \mathbf{R}^{16 \times 16}$$

Load Balancing?

$$\Rightarrow 9$$

$$\Rightarrow$$
 12

$$\Rightarrow$$
 14

$$\Rightarrow$$
 12

Commulcation Volume? ⇒ 24 entries!

Commulcation Volume? ⇒ 24 entries!

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

One vertex per row:

$$\Rightarrow V_R = \{v_1, v_2, \dots, v_{16}\}$$

One hyperedge per column:

$$\Rightarrow E_C = \{e_1, e_2, \ldots, e_{16}\}$$

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

One vertex per row:

$$\Rightarrow V_R = \{v_1, v_2, \ldots, v_{16}\}$$

One hyperedge per column:

$$\Rightarrow E_C = \{e_1, e_2, \ldots, e_{16}\}$$

$$v_i \in V_R$$
:

- Inner product of row i with b
- $ightharpoonup \Rightarrow c(v_i) := \# \text{ nonzeros}$

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

One vertex per row:

$$\Rightarrow V_R = \{v_1, v_2, \ldots, v_{16}\}$$

One hyperedge per column:

$$\Rightarrow E_C = \{e_1, e_2, \ldots, e_{16}\}$$

$$v_i \in V_R$$
:

- Inner product of row i with b
- $\Rightarrow c(v_i) := \# \text{ nonzeros}$

$$e_j \in E_C$$
:

Set of vertices that need b_j

$$A \in \mathbf{R}^{16 \times 16} \Rightarrow H = (V_R, E_C)$$

One vertex per row:

$$\Rightarrow V_R = \{V_1, V_2, \ldots, V_{16}\}$$

One hyperedge per column:

$$\Rightarrow E_{C} = \{e_{1}, e_{2}, \dots, e_{16}\}$$

Solution: ε -balanced partition of H

- $v_i \in$
- Balanced partition ~> computational load balance
- \blacksquare In \blacksquare Small ($\lambda 1$)-cutsize \leadsto minimizing communication volume
- ightharpoonup \Rightarrow $c(v_i) := # nonzeros$

 \blacksquare Set of vertices that need b_j

Load Balancing?

Load Balancing?

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

Where are the cut-hyperedges?

Commuication Volume?

Where are the cut-hyperedges?

Load Balancing?

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

$$\Rightarrow$$
 12

Commulcation Volume? ⇒ 6 entries!

How does Hypergraph Partitioning work?

How does

Bad News:

- Hypergraph Partitioning is NP-hard
- Even finding good approximate solutions for graphs is NP-hard

Successful Heuristic: Multilevel Paradigm

Successful Heuristic: Multilevel Paradigm

Successful Heuristic: Multilevel Paradigm

Taxonomy of Hypergraph Partitioning Tools

Taxonomy of Hypergraph Partitioning Tools

Why Yet Another Multilevel Algorithm?

Why Yet Another Multilevel Algorithm?

Why Yet Another Multilevel Algorithm?

Min-Hash Based Sparsification

[ALENEX'17]

local search

Min-Hash Based Sparsification

[ALENEX'17]

Min-Hash Based Sparsification

[ALENEX'17]

Algorithm $A \leftarrow \begin{cases} \text{Config } \mathcal{C}_1 \\ \text{Config } \mathcal{C}_2 \end{cases}$ Algorithm Configuration

[Öhl, Bachelor's Thesis]

Latest Experimental Results - Quality

Latest Experimental Results - Running Time

KaHyPar - Karlsruhe Hypergraph Partitioning

- n-Level Partitioning Framework
- Objectives:
 - Cut
 - Connectivity $(\lambda 1)$
- Partitioning Modes:
 - Recursive bisection
 - Direct k-way
- Advanced Features:
 - Evolutionary algorithm
 - Flow-based refinement
 - Advanced local search algorithms
- http://www.kahypar.org

