
Flexible Hash Table Implementations

Presentation · 07. September 2017
Tobias Maier

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

www.kit.edu

for Near Drop in Replacement



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Possible Topics/Focuses

more on DySECT (the paper presented at ESA)

collection of small tidbits
increasing memory inplace (2 methods)

interface construction

removing contention from shared variables

1



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Interface – Main Ideas

user expectation

similar library functions
interface used in literature

possible problems (analyzing an interface)

more powerful interface
ease of implementation
misusability

2



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Interface – Functionality and Performance

auto it = table.find(k);

if (it != end) it->second += 5;

update operation

bool b = table.update(k,

[](value type& cur) {

using dedicated update

cur+=5;
});

3



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Interface – Misusability

iterator as return type

iterators give pointers

moving elements can lead to errors

operations invalidate iterators

change iterators to not return pointers

refresh iterators

4



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Overallocation – For Inplace Resize

allocation (initially unmapped)used memory

inplace growing

limited portability

+

-

writing to virtual memory ≈ increasing local allocation

very large virtual memory allocation

only changed cells are mapped to physical memory

1 mem page offcut

5



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Overallocation – Multi Table Inplace Resize

subtables are islands of physical memory in a virtual
allocation

no explicit indirection+

tab 0 tab 1 tab 2

allocation (initially unmapped) mapped memory

equally space tables in virtual memory

M = overalloc size
T = number of subtables

tabi @ M/T · i

6



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Parallelization – Some Initial Thoughts

Große Tabelle⇒ viele unabhängige Zugriffe

Häufiger Zugriff auf die selben Variablen

häufig vermeidbar durch lokale Duplizierung

Beschränkt durch Speicherbandbreite

Parallele Datenstrukturen für Informationsaustausch

Wachsende Tabellen benötigen Koordination

+

+

-

-

-

+

7



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Parallelization – Optimizing Often Used Members

table ptr
n

...

global object

?

insert(...)

table ptr is smart

n has contentious updates

copying is expensive

exact value is changing

8



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Parallelization – Optimizing Often Used Members

per thread handle
per thread handle

table ptr

...

global object

?

table ptr
loc n
...

per thread handle

?

insert(...)

parent ptr

approx n

get handle()

epoch

table ptr is smart

n has contentious updates

copying is expensive

exact value is changing

move interface to handle to
avoid misusability

cache the pointer copy

update approx n
with local counts

8



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Final Size Not Known A Priori

conservative estimate

strict bound might not be reasonable

less space efficient

n

εn

n′

εn′

n ≤ n′

9



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Final Size Not Known A Priori

conservative estimate

optimistic estimate

might overfill

needs growing strategy

n

εn

n′

εn′

n ≈ n′

slow

n′

εn′

needs growing

9



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Final Size Not Known A Priori

conservative estimate

number of elements changes over time

optimistic estimate

cannot be initialized with max size

9



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Resizing

growing has to be in small steps

basic approaches

additional table full migration inplace+reorder

+

reorder

most common
in libraries

10



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k ) = h(k ) · size

maxHash + 1

very fast migration due to cache efficiency

11



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k ) = h(k ) · size

maxHash + 1

very fast migration due to cache efficiency

11



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k ) = h(k ) · size

maxHash + 1

very fast migration due to cache efficiency

inplace variant going from right to left
not portable

11



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Multi Table Approach

T = 2c subtables with expected equal count
reduces memory during subtable migration

h(k )⇒ ht (k ) for the subtable hp(k ) within the table

ht (k )
hp(k )

12



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Cuckoo Displacement

H alternative buckets per element
h1(k ), ..., hH (k )

buckets of B cells

if buckets are full, move existing elements

breadth-first-search

H-ary B-Bucket Cuckoo Hashing
[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

h1(k )

h2(k )

13



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Cuckoo Displacement

H alternative buckets per element
h1(k ), ..., hH (k )

buckets of B cells

if buckets are full, move existing elements

breadth-first-search

H-ary B-Bucket Cuckoo Hashing
[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

h1(k )

h2(k )

13



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Contribution – Dynamic Space Efficient Cuckoo Table

use subtables of unequal size (use powers of 2)

use displacements to equalize load imbalance

doubling one subtable⇔ small overall factor

hi (k )⇒ hi t (k ) table and hip(k ) position in table

h2t (k ) h1t (k )
h2p(k ) h1p(k )

14



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Contribution – Dynamic Space Efficient Cuckoo Table

use subtables of unequal size (use powers of 2)

use displacements to equalize load imbalance

doubling one subtable⇔ small overall factor

hi (k )⇒ hi t (k ) table and hip(k ) position in table

h2t (k ) h1t (k )
h2p(k ) h1p(k )

14



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Contribution – Dynamic Space Efficient Cuckoo Table

use subtables of unequal size (use powers of 2)

use displacements to equalize load imbalance

doubling one subtable⇔ small overall factor

hi (k )⇒ hi t (k ) table and hip(k ) position in table

h2t (k ) h1t (k )
h2p(k ) h1p(k )

14



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Result – Insertion into Growing Table

enforced min load δ
0.85 0.90 0.95 1.0

tim
e

pe
ro

p
·(

1−
δ
)

0
50

15
0

25
0[n
s]

1
1−δ “expected time” per insertion

B =8, H =3DySECT
Cuckoo
Lin Prob
Robin Hood

B =8, H =3

15



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Result – Word Count Benchmark

enforced min load δ
0.85 0.90 0.95 1.0

tim
e

pe
ro

p

0
20

0
40

0
60

0
80

0

not normalized

[n
s] DySECT

Cuckoo
Lin Prob
Robin Hood

B =8, H =3
B =8, H =3

CommonCrawl (avg. 12×)

16



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Result – Load Bound

0.9

216

0.99

0.999
1

218 222 224

0.927

0.967
0.978

0.989

0.997
0.997
0.998
0.9998

number of cells

hi
gh

es
ta

ch
ie

ve
d

lo
ad

220

B =8, H =3
B =8, H =2
B =4, H =3
B =4, H =2

we are in cooperation to prove bounds

17



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Conclusion

lack of published work on dynamic hash tables

cuckoo displacement offers more untapped potential

only dynamic tables offer true space efficiency

even simple techniques are largely unpublished

code available:https://github.com/TooBiased/DySECT

DySECT
addressing uses bit operations
no overallocation constant lookup

18



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

(Ab)using Overallocation

tab 0 tab 1 tab 2

allocation (initially unmapped) mapped memory

subtables are islands of physical memory in a virtual
allocation

inplace growing

no explicit indirection

limited portability

+

+

-

writing to virtual memory ≈ increasing local allocation

19



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Result - Successful Find

1.0
load factor

0.950.90.850.8

tim
e

pe
ro

p
[n

s]

10
0

20
0

30
0

40
0

0

DySECT
Cuckoo
Lin Prob
Robin Hood

B =8, H =3
B =8, H =3

20



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Result - Unsuccessful Find

1.00.950.90.850.8
load factor

tim
e

pe
ro

p
[n

s]

10
0

20
0

30
0

40
0

0

DySECT
Cuckoo
Lin Prob
Robin Hood

B =8, H =3
B =8, H =3

21


