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Possible Topics/Focuses

more on DySECT (the paper presented at ESA)

collection of small tidbits
increasing memory inplace (2 methods)

interface construction

removing contention from shared variables
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Interface – Main Ideas

user expectation

similar library functions
interface used in literature

possible problems (analyzing an interface)

more powerful interface
ease of implementation
misusability
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Interface – Functionality and Performance

auto it = table.find(k);

if (it != end) it->second += 5;

update operation

bool b = table.update(k,

[](value type& cur) {

using dedicated update

cur+=5;
});
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Interface – Misusability

iterator as return type

iterators give pointers

moving elements can lead to errors

operations invalidate iterators

change iterators to not return pointers

refresh iterators
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Overallocation – For Inplace Resize

allocation (initially unmapped)used memory

inplace growing

limited portability

+

-

writing to virtual memory ≈ increasing local allocation

very large virtual memory allocation

only changed cells are mapped to physical memory

1 mem page offcut
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Overallocation – Multi Table Inplace Resize

subtables are islands of physical memory in a virtual
allocation

no explicit indirection+

tab 0 tab 1 tab 2

allocation (initially unmapped) mapped memory

equally space tables in virtual memory

M = overalloc size
T = number of subtables

tabi @ M/T · i
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Parallelization – Some Initial Thoughts

Große Tabelle⇒ viele unabhängige Zugriffe

Häufiger Zugriff auf die selben Variablen

häufig vermeidbar durch lokale Duplizierung

Beschränkt durch Speicherbandbreite

Parallele Datenstrukturen für Informationsaustausch

Wachsende Tabellen benötigen Koordination

+

+

-

-

-

+
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Parallelization – Optimizing Often Used Members

table ptr
n

...

global object

?

insert(...)

table ptr is smart

n has contentious updates

copying is expensive

exact value is changing
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Parallelization – Optimizing Often Used Members

per thread handle
per thread handle

table ptr

...

global object

?

table ptr
loc n
...

per thread handle

?

insert(...)

parent ptr

approx n

get handle()

epoch

table ptr is smart

n has contentious updates

copying is expensive

exact value is changing

move interface to handle to
avoid misusability

cache the pointer copy

update approx n
with local counts
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Final Size Not Known A Priori

conservative estimate

strict bound might not be reasonable

less space efficient

n

εn

n′

εn′

n ≤ n′
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Final Size Not Known A Priori

conservative estimate

optimistic estimate

might overfill

needs growing strategy

n

εn

n′

εn′

n ≈ n′

slow

n′

εn′

needs growing
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Final Size Not Known A Priori

conservative estimate

number of elements changes over time

optimistic estimate

cannot be initialized with max size
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Resizing

growing has to be in small steps

basic approaches

additional table full migration inplace+reorder

+

reorder

most common
in libraries
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Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k ) = h(k ) · size

maxHash + 1

very fast migration due to cache efficiency
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Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k ) = h(k ) · size

maxHash + 1

very fast migration due to cache efficiency

inplace variant going from right to left
not portable
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Multi Table Approach

T = 2c subtables with expected equal count
reduces memory during subtable migration

h(k )⇒ ht (k ) for the subtable hp(k ) within the table

ht (k )
hp(k )
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Cuckoo Displacement

H alternative buckets per element
h1(k ), ..., hH (k )

buckets of B cells

if buckets are full, move existing elements

breadth-first-search

H-ary B-Bucket Cuckoo Hashing
[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

h1(k )

h2(k )
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Contribution – Dynamic Space Efficient Cuckoo Table

use subtables of unequal size (use powers of 2)

use displacements to equalize load imbalance

doubling one subtable⇔ small overall factor

hi (k )⇒ hi t (k ) table and hip(k ) position in table

h2t (k ) h1t (k )
h2p(k ) h1p(k )
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Result – Insertion into Growing Table
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Result – Word Count Benchmark
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Result – Load Bound
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Conclusion

lack of published work on dynamic hash tables

cuckoo displacement offers more untapped potential

only dynamic tables offer true space efficiency

even simple techniques are largely unpublished

code available:https://github.com/TooBiased/DySECT

DySECT
addressing uses bit operations
no overallocation constant lookup
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(Ab)using Overallocation

tab 0 tab 1 tab 2

allocation (initially unmapped) mapped memory

subtables are islands of physical memory in a virtual
allocation

inplace growing

no explicit indirection

limited portability

+

+

-

writing to virtual memory ≈ increasing local allocation
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Result - Successful Find
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Result - Unsuccessful Find

1.00.950.90.850.8
load factor

tim
e

pe
ro

p
[n

s]

10
0

20
0

30
0

40
0

0

DySECT
Cuckoo
Lin Prob
Robin Hood

B =8, H =3
B =8, H =3

21


