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Abstract

This thesis investigates the performance of distributed graph algorithms on network
graphs. More precisely, it looks at ways the communication structure can be optimized by
replicating the data from a few vertices to all parallel tasks. We propose multiple simple
heuristics that can be used to choose replicated vertices and evaluate their performance
both in a communication model as well as based on a practical distributed implementation
using sparse matrix-vector multiplication as a model problem. Additionally, we used the
distributed implementation as the basis for the PageRank algorithm.

Experimental results seem to indicate that data replication indeed has the potential to
speed up distributed graph algorithms quite signi�cantly. On a few network graphs, we
observed runtime reductions of more than 25%, but only when the data assigned to each
vertex was su�ciently large, i.e., when communication latencies play only a small role.
On other graphs however, we were not able to observe any speedups. This is consistent
with results from the communication model, where we observed very mixed impacts of
data replication.

Zusammenfassung

Diese Arbeit untersucht die Performance von verteilten Graphalgorithmen auf Graphen
mit Netzwerkstruktur. Im Speziellen betrachtet sie die in verteilten Graphalgorithmen
auftretenden Kommunikationsstrukturen und wie diese optimiert werden können, indem
die zu wenigen “wichtigen” Knoten gehörenden Daten repliziert werden. Wir stellen
mehrere einfache Heuristiken zur Auswahl dieser replizierten Knoten vor und unter-
suchen ihre E�ektivität und E�zienz basierend auf einem Kommunikationsmodell und
in einer echten verteilten Implementierung. Als Modellproblem verwenden wir hierzu
die Multiplikation einer dünn-besetzten Matrix mit einem Vektor. Aufbauend auf diesem
Baustein wurde zudem der bekannte PageRank-Algorithmus implementiert.

Die experimentellen Ergebnisse deuten darauf hin, dass Replikation das Potential hat,
die Kommunikation in verteilten Graphalgorithmen deutlich zu beschleunigen: Für einige
Eingabegraphen konnten wir um mehr als 25% reduzierte Laufzeiten beobachten. Diese
Ergebnisse lassen sich allerdings nur beobachten, wenn wir das Produkt einer Matrix mit
mehreren rechten Seiten berechnen, also die Kommunikationslatenzen eine vernachlässig-
bare Rolle im Vergleich zur Bandbreite spielen. Auf vielen Netzwerkgraphen konnten wir
keinerlei positiven E�ekt der Replikation beobachten. Diese Beobachtungen decken sich
mit den sehr unterschiedlichen Ergebnissen basierend auf dem Kommunikationsmodell.
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1. Introduction

Since the early ages of computing, graphs have been the objects at the center of many
algorithms. With the digital age entering more and more of our lives, the amount of
real-world data collected grows faster and faster. Much of this data contains relational in-
formation, whose analysis requires sophisticated algorithms. This growing amount of data
is however not mirrored by a corresponding growth in single-core performance of modern
computers. As even the performance of multicore processor starts to hit a limit, we need
to move to larger, distributed systems to still be able to handle these input sizes. Another
important development is the growing divergence between communication and memory
performance on the one hand and computational power on the other hand in parallel and
distributed systems. On modern systems, avoiding or minimizing communication and
synchronization becomes more and more important.

This thesis evaluates a speedup technique for communication in distributed graph
algorithms on a class of irregularly structured graphs. On these graphs, we can trade-o�
communication for computation in order to speed up the overall algorithm, which is
especially interesting in terms of the aforementioned trends.

Structure of the thesis

Chapter 2 introduces the basic concepts of (hyper-)graph partitioning, parallel program-
ming models and sparse matrices. Additionally, it describes iterative algorithms that can
be used to compute solutions to linear systems and Eigenvalue problems, which we will
later use as an application example for distributed SpMV computation. Chapter 3 lists
previous e�orts in the theoretical treatment and implementation of distributed graph
algorithms. It also introduces distributed sparse matrix-vector multiplication (SpMV) as a
model problem and common models for its parallel communication. Finally, it introduces
the structural properties and generation models for our central objects of study - network
graphs as well as the PageRank metric as an example for an Eigenvalue problem that is
encountered based on network graphs. Chapter 4 introduces data replication as an exten-
sion of normal distributed implementations of SpMV, extends previous communication
models to incorporate replicated data and heuristics for the choice of replicated vertices.
Finally, it gives an outlook to extensions of the data replication model for multilevel appli-
cations. Chapter 5 presents a practical evaluation of data replication as a communication
optimization technique, partly based on a communication model and partly implemented
on real hardware. Chapter 6 discusses the implications of the experimental results and
conclusions which lead to potential further areas of exploration.
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2. Fundamentals

In this chapter, we introduce the basic notions of graphs and hypergraphs and their
connection to sparse matrices, graph and hypergraph partitions and their application in
parallel algorithms as well as graph and matrix reordering.

2.1. Graph Theory

The central object of study for this thesis are graphs G = (V ,E), both undirected in the
context of graph partitioning and directed when representing data �ow or computations,
where we also allow self-loops. We use the following notation throughout the thesis:

Definition 2.1: Graph notation

For a graph G = (V ,E), we write V = V (G) for the vertex set and E = E(G) for its
edge set.
For a vertex u ∈ V , we denote by N(u) = {v | (u,v) ∈ E} the (forward-)
neighborhood and by N←(u) = {v | (v,u) ∈ E} the backward-neighborhood of u.
Similarly, deg(u) = |N(u)| denotes the (forward-)degree and deg←(u) = |N←(u)|
the backward-degree of u.
Finally, we denote by G← = (V ,E←) the backwards graph we get by reversing
all edges, i.e., E← = {vu | uv ∈ E}, and by Gbi = (V ,E ∪ E←) the corresponding
bidirected graph.

We will often use the natural relationship between graphs and square matrices:

Definition 2.2: Relationship between graphs andmatrices

To every graph G = (V ,E), we can de�ne an adjacency matrix A(G) by ordering the
vertices V = {v1, . . . ,vn}:

aij =

{
1, vjvi ∈ E

0, vjvi < E

Conversely, to every square matrix A ∈ Rn×n there exists a corresponding graph
with vertices V = {v1, . . . ,vn} and edges E = {vjvi | aij , 0} describing its sparsity
pattern.
Remark: Our de�nition of an adjacency matrix is transposed compared to its usual
de�nition, because then, the edge directions in the graph correspond to the direction
of data �ow when computing the matrix-vector product A(G)x
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2. Fundamentals
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Figure 2.1.: Example of a hypergraph with vertices v1, . . . ,v7 and nets h1 = {v1,v3,v6},
h2 = {v2,v4,v5}, h3 = {v5}, h4 = {v3,v4,v7}, h5 = {v7,v8} and its bipartite
representation.

If we relax the requirement that every edge connects exactly two vertices, thus allowing
an arbitrary number of vertices per edge, we arrive at the concept of hypergraphs:

Definition 2.3: Hypergraph

A hypergraphH consists of a set of verticesV and netsN ⊆ P(V) (also sometimes
called hyperedges). For a given net n ∈ N , the vertices v ∈ n are called pins.
Each Hypergraph also has a natural correspondence to a bipartite graph, which we
shall call the bipartite representation:
For a hypergraph H = (V,N), we de�ne a bipartite graph with the vertex set
V ∪N , where a vertex v ∈ V and a net n ∈ N are connected by an edge if v is a
pin of n, i.e., v ∈ n.

Hypergraphs are able to directly model more complex relationships involving multiple
vertices, and are thus sometimes the preferred model for communication between parallel
processes, as we will see later. Figure 2.1 shows an example of such a hypergraph with
its bipartite representation. Note that while empty nets are not explicitly forbidden, they
usually don’t have a practical application and can thus be ignored.

2.2. Graph Partitioning

Graph partitioning is a fundamental tool for work distribution and load balancing in a
large number of parallel programming applications. It is based on the observation that
graphs can encode a large variety of computational tasks described by operations and
their dependencies. For a given graph G = (V ,E), a k-way partition is a partition of its
vertex set into k disjoint parts: V = V1 Û∪ . . . Û∪ Vk . To simplify the notation, we introduce
the partition function p giving the unique part index for each vertex: p(v) = i ⇔ v ∈ Vi .
Based on such a partition, the edges and vertices can be classi�ed as follows:

4



2.2. Graph Partitioning

Figure 2.2.: Graph partition (l) and its quotient graph (r). Cut edges are drawn in black,
inner edges in the respective part colors.

Definition 2.4: Boundary and interior of parts

cut-edge uv : u and v are in di�erent parts, i.e., p(u) , p(v)
inner edge uv : u and v are in the same part, i.e., p(u) = p(v)
boundary vertex v : v has neighbors in other parts, i.e., it is incident to a cut edge.
inner vertex v : v only has neighbors in the same part
We denote the set of all cut-edges by Ecut and the set all of cut-edges incident to the
part Vi by Ecuti .

The global structure of a graph partition can also be described using the so-called
quotient graph. The vertices of the quotient graph are all parts of the partition, where
two partitions are connected by a partition if there is any cut edge between these parts.
Figure 2.2 shows an example of a graph partition with its corresponding quotient graph.

If we additionally equip the graph with node weights w : V → R≥0 and edge weights1

c : E → R≥0, we can describe the quality of a graph partition based on the following
quantities:

Definition 2.5: Key quantities of a graph partition

Balance
avg. part weight: w(V ) = w(V )/k
part weight: w(Vi) =

∑
v∈Vi w(vi)

imbalance: I (G) = maxki=1w(Vi)/w(V )

Cut-edges
part cut-size: c(Vi) =

∑
e∈Ecuti

c(e)

total cut-size: c(G) =
∑k

i=1 c(Vi)
bottleneck cut-size: cmax (G) = maxki=1 c(Vi)
A graph partition is called ε-balanced if its imbalance is at most 1 + ε , i.e., its largest
part is at most εw(V ) larger than the average part.

1If unspeci�ed, we assume unit node and edge weights w ≡ 1, c ≡ 1.

5



2. Fundamentals

The goal of a graph partitioning algorithm is then to �nd a k-way partition of an input
graph that is ε-balanced and minimizes the total (or bottleneck) cut-size.

Remark 2.1: Existence of a feasible solution

For arbitrary vertex weights, even deciding if a feasible solution ful�lling the balance
constraint exists is NP-hard, as it can be used to encode the BinPacking problem.
For unit vertex weights w ≡ 1, the average part weight is usually modi�ed to force
the existence of a feasible solution for every imbalance ε > 0:

w(V ) = dw(V )/ke

With a few modi�cations, the general approach of graph partitioning can also be
extended to hypergraphs, which are able to more exactly model the communication
encountered in distributed graph algorithms. A k-way partition of a hypergraph H =
(V,N) is a partition of the vertices into k parts V = V1 Û∪ . . . Û∪ Vk . Again, we
introduce the partition function p : V → {1, . . . ,k} to assign the part index to every
vertex. Based on this, we can give the following description of the resulting cut:

Definition 2.6: Connectivity

For each net n ∈ N , the partition function p(n) gives us the connectivity set, i.e., the
set of parts which n intersects. With this, we can again distinguish between cut-
and inner nets:
cut net n: n contains pins from more than one part, i.e., |p(n)| > 1
inner net n: n contains only pins from a single part, i.e., |p(n)| = 1

We denote the set of all cut nets by Ncut and the set all of cut nets connected to the
partVi by Ncut

i .

As with regular graph partitioning, we want to compute a hypergraph partition with
limited imbalance ε , while optimizing a cut size metric. For hypergraphs, there are two
such metrics which are commonly used (for simplicity, we assume unit hyperedge weights):

Definition 2.7: Cut size metrics for hypergraphs

The simplest de�nition of a cut size metric is the number of cut nets:

c(Vi) =
∑

n∈Ncut
i

1,

however, the communication volume of distributed algorithms is often better mod-
eled by the cut connectivity:

c(Vi) =
∑

n∈Ncut
i

(|p(n)| − 1).

Based on these per-part cuts, we again de�ne total and bottleneck cut metrics.

6



2.3. Parallel Programming Models

P1 P2 P3

Shared memory

P1 P2 P3

Communication network

locallocallocal

Figure 2.3.: Parallel programming models: shared and distributed memory

Hypergraph partitioning provides a generalization of graph partitioning in that every
graph partition is also a hypergraph partition constructed by converting every edge from
the graph into a two-element net in a hypergraph. The cut of the graph partition is
then equal to both the number of cut nets and the cut connectivity of the corresponding
hypergraph partition. The increased �exibility of hypergraphs proves important in the
exact modeling of the communication volume for distributed algorithms, as we will see
later.

Both graph partitioning and hypergraph partitioning as its generalization are NP-
complete problems, and can thus in practice only be optimized approximately using
various heuristics. These heuristics mostly operate by �rst computing a suitably good
initial partition, which is then re�ned using local searches that move individual vertices
or groups of vertices between parts to improve the objective.

2.3. Parallel Programming Models

For the theoretical treatment of parallel algorithms, many programming models were
developed over the years, mostly based on di�erent granularities of parallelism as well as
di�erent hardware capabilities and limitations.

The most fundamental distinction in these models lies in the way in which di�erent
parallel tasks are able to communicate and synchronize (See Figure 2.3):

Shared-memory programming models assume that all parallel tasks have read and write
access to a shared area of memory, which can be used to synchronize and (implicitly)
communicate between these tasks. Arguably the most important model is the CREW-
PRAM2 model. It allows multiple parallel processes read access to the same memory word,
but only exclusive write operations, which means that for all write accesses, the algorithm
must either make sure that they can never intersect, or use synchronization primitives
to ensure exclusive access to this memory location. The runtime of an algorithm in the
PRAM model is the time until the last parallel process �nishes.

While such applications can theoretically be implemented directly using the tools
provided by most modern programming languages, frameworks like OpenMP3 are often
used to take care of work distribution, synchronization and low-level thread management,
which would otherwise need to be implemented explicitly.

2Concurrent Read, Exclusive Write Parallel Random Access Machine
3Open Multi-Processing

7



2. Fundamentals

p1

p2

p3

p4

local computation data
exchange

local computation

Figure 2.4.: Runtime of a bulk synchronous parallel process

Distributed-memory programming models require the parallel tasks to explicitly ex-
change data by passing messages. Most distributed-memory applications are implemented
using the Message Passing Interface (MPI), which provides low-level communication oper-
ations as well as more complicated collective operations. There are many di�erent models
approximating the runtime characteristics of distributed algorithms, especially depend-
ing on the communication structure. However, the applications described in this thesis
exclusively use collective communication operations, so their runtime is best described
using the bulk synchronous parallel (BSP) model. As Figure 2.4 shows, an algorithm in the
BSP model consists of alternating steps of local computation and data exchange/global
communication. The runtime of such an algorithm is then the maximum time necessary for
local computations and communication over all distributed nodes, as the communication
step entails an implicit synchronization between all nodes. The runtime is thus limited by
both the slowest local computation step as well as the slowest communication step of all
parallel processes.

Remark 2.2: Nodes and vertices

To avoid name confusion with the elements of a graph, we will exclusively use nodes
to describe distributed parallel processes and vertices for the graph elements.

In the development of algorithms with increasing degrees of parallelism, many problems
exhibit properties where the actual computations play a diminishing role compared to
unavoidable communication between di�erent parallel tasks. This need for communication
can arise both on a �ne-grained parallelism level (processor cores) and on very coarse
levels (compute nodes or even groups of nodes that are physically or logically “close”).

In distributed computing, one usually distinguishes between two communication modes:
In peer-to-peer communication (p2p), individual tasks communicate with a small number
of other tasks. This communication mode is usually used if the parallel tasks only need to
exchange small amounts of data at irregular intervals.

During collective operations, all tasks or a large number of tasks participate in a data
exchange operation. Such operations are usually implemented using p2p communication.
There are many di�erent types of collective operations, some of which are described in
the following:4

4Note that these are only descriptions of the logical operations, not their real implementation

8



2.4. Sparse Matrices

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1

2

3 1

2

3

st
ep

step

Figure 2.5.: Tree broadcast (left) and reduction (right) with 8 parallel processes

Definition 2.8: Types of collective operations

All-to-all Each task i sends a message mij to each other task j. These ex-
changed messages may all be of the same size (regular), of varying
sizes (irregular) or even empty (sparse).

(All-)Gather Each task i sends a message mi . One task (or all tasks) receives the
combined messages (m1, . . . )

(All-)Reduce Each task i sends a message mi . The messages are accumulated
using an associative binary operation ⊕, and one task (or all tasks)
receives the result

⊕
imi

Broadcast A single task sends a messagem to all other tasks

All mentioned collective operations except for all-to-all communication can all be
implemented based on tree-shaped reduction and broadcast as shown in Figure 2.5. Both
operations require dlog2 pe steps forp parallel processes, and each process sends or receives
at most two messages per step. A parallel reduction or broadcast of n bytes thus, assuming
a full duplex interconnection, takes time 2(Tstart + nTbyte) logp, where Tbyte is the time
to transmit a single byte and Tstart is the transmission latency. For irregular all-to-all
communication, it is di�cult to give a general runtime bound, as the runtime can strongly
depend on hardware characteristics, among others the bandwidth and latency for a single
message, how many independent pairs of nodes can communicate in parallel, and also the
number and sizes of messages to be exchanged. We will simply use the total or bottleneck
communication volume as a runtime approximation, i.e., the combined size of all messages
sent by all nodes or the “slowest” node.

2.4. Sparse Matrices

In practical applications, for example as a spatial discretization of di�erential operators
often occurring in partial di�erential equations, the resulting matrices closely resemble
the geometry of the underlying space, especially its sparse neighborhood structure: Each
row or column only contains a few non-zero entries belonging to the “neighboring” rows
or columns in a geometric sense. Storing all the zero entries in-between would be a waste

9



2. Fundamentals

of memory (and also computational power), so the sparse structure of these matrices is
usually leveraged by only storing and computing with non-zero entries.

Due to their often irregular structure, sparse matrices need specialized formats to
e�ciently store them. Depending on the use case, several formats can provide the best
runtime-memory tradeo�:

• The coordinate format (COO) stores the entries of a sparse matrix directly as a list of
(row, column,value) tuples, similar to the edge list representation of its correspond-
ing graph. While this format is probably the most simple, it is usually di�cult to
use in practical algorithms.

• The compressed sparse row format (CSR) stores the concatenated column indices of
all non-zeros together with the corresponding index range for each row and is thus
equivalent to the (transposed! See De�nition 2.2) adjacency array structure of the
graph whose adjacency matrix has the same sparsity structure as the sparse matrix.
In practice, its usage and advantages can be compared to the row-major storage
order for dense matrices.

• The compressed sparse column format (CSC) stores the row indices of all non-zeros
together with the corresponding index ranges for all columns, and is thus equivalent
to the CSR representation of the untransposed matrix. It is thus similar to the
column-major storage order for dense matrices.

Figure 2.6 shows an example of the CSR and CSC format for a small sparse matrix. The
sorted order of the column and row indices is not strictly necessary, but usually improves
the performance of corresponding kernels by improving the spatial locality of the memory
accesses.

When we want to use a sparse matrix A ∈ Rn×m to compute the matrix-vector product
y = Ax , the sequential implementations are straightforward (assumingy is zero-initialized):

Algorithm 2.1: SpMV for di�erent sparsematrix formats

Function SpMV_CSR(ranges, col, value, x, y)
for row = 0, . . . ,n do

for i = ranдes[row], . . . , ranдes[row + 1] − 1 do
y[row] ← y[row] +values[i] · x[col[i]]

Function SpMV_CSC(ranges, row, value, x, y)
for col = 0, . . . ,m do

for i = ranдes[col], . . . , ranдes[col + 1] − 1 do
y[row[i]] ← y[row[i]] +value[i] · x[col]

Function SpMV_COO(row, col, value, x, y)
for i = 0, . . . ,nnz do

y[row[i]] ← y[row[i]] +value[i] · x[col[i]]

In these sequential implementations, there are no signi�cant di�erence in terms of
performance – except for the larger memory footprint of the COO for matrices with at

10



2.5. Graph and Matrix Reordering
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Figure 2.6.: Compressed row and column storage format for a sparse matrix

least a few entries per row/column. When parallelizing them on a shared-memory system
however, the results are signi�cantly di�erent: The CSR kernel can easily be parallelized
by distributing the di�erent rows among di�erent parallel processes - all write accesses
operate on distinct entries of y and require no synchronization. The CSC and COO kernels
don’t share this property: There, two di�erent parallel processes can try to read from or
write to the same entry of y, which is why these implementations require atomic read
and write operations to avoid race conditions. In practice, it should be expected that
shared-memory parallel CSR kernels achieve much better performance than their CSC or
COO counterparts.

2.5. Graph and Matrix Reordering

When using them in any algorithm, both matrices and graphs are usually stored and
accessed by assigning indices to the rows/columns or vertices. While in many situations,
there is a natural indexing order available either by construction or due to structural
properties of the graph or matrix, it may sometimes prove useful to use another indexing
order.

For (sparse) matrices, such reordering is frequently used in numerical linear algebra, for
example to reduce �ll-in when computing matrix decompositions. Popular examples of this
are the Cuthill–McKee algorithm [1] and the nested dissection order [2]. Reordering can
also be used to improve the memory locality and thus the cache utilization of a variety of
algorithms, as has been demonstrated for geometric data using space-�lling curves [3]. In
the context of graphs, reordering can be used to compress adjacency-array representations
by making sure that the neighborhoods of most graphs are within a small index range,
thus making them easily compressible using delta-encoding [4].
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Finally, reordering gives a natural representation of (hyper-)graph partitions: By re-
ordering the vertices such that each part forms a consecutive index interval, we no longer
need to store the partition function p, but can simply check by comparing its index to the
boundaries of the part whether a vertex belongs to this part. Additionally, the conversion
between part-local indices and global indices can be greatly simpli�ed: If the pth part
consists of vertices from the index range [ap,bp), we can simply translate between a local
vertex numbering in Vp and the global numbering in V by adding or subtracting ap .

From the view of the underlying matrix, such a partition-based reordering brings the
matrix into a blocked form - the computation of a sparse matrix-vector product with
coherently k-way partitioned vectors can thus be understood in its reordered form

A =
©­­«
A11 · · · A1k
...
. . .

...
Ak1 · · · Akk

ª®®¬ , x =
©­­«
x1
...
xk

ª®®¬ , y =
©­­«
y1
...
yk

ª®®¬ (2.1)

y = Ax ⇔yi =
k∑
j=1

Aijxj

where the blocks Aij describe the contributions of xj to yi .

2.6. Iterative Solvers for Linear and Eigenvalue Problems

2.6.1. Linear Systems

Large, sparse linear systems of equations Ax = b occur in a large number of scienti�c
computing applications. Common direct solvers for such systems usually break down
on the large scale, as the sparse structure of A usually cannot be maintained: They rely
on operations like the LU -, QR- or Cholesky decomposition, which often can produce
signi�cant �ll-in even for very sparse matrices.

The solution for this problem lies in iterative solvers, which respect the sparsity structure
of A and can still produce very good approximations to the exact solution x in a small
number of iterations. A large variety of iterative solvers have been developed for di�erent
applications. They can be roughly classi�ed as:

• Krylov Subspace Methods, which can be categorized into two groups: The �rst
group are methods based on the Arnoldi process computing an orthonormal basis
for the Krylov spaces

Kn(A,b) = span{b,Ab,A2b, . . . ,An−1b} (2.2)

like the GMRES method for general matrices. The second group are methods based
on the Non-Symmetric Lanczos Process computing biorthogonal bases for two
Krylov spaces Kn(A,b) and Kn(A

∗, b̂) like the BiCG family. The conjugate gradient
(cg) method for symmetric positive-de�nite matrices can be considered part of both
groups, as the Lanczos and Arnoldi process are equivalent in this case.

12



2.6. Iterative Solvers for Linear and Eigenvalue Problems

• Multigrid Methods that combine a hierarchy increasingly coarse representations of
the linear system connected by restriction and prolongation operators with iterative
solvers on the di�erent levels, like geometric and algebraic multigrid methods.

• A large variety of Fixed-Point Iteration Methods that can either be used directly as
iterative solver, or as preconditioners in other methods, like the Jacobi and, Gauß-
Seidel iteration and incomplete factorization methods (ILU, incomplete Cholesky)

Preconditioners are easy-to-evaluate operators P ≈ A−1 that usually increase the conver-
gence rate of iterative solvers and are implicitly applied by solving the linear system

PAx = Pb (2.3)

instead of Ax = b
At their core, all of these methods use sparse matrix-vector products combined with

other operations like scalar products, linear combinations of vectors and operations on
smaller dense matrices that usually have a lower complexity than the SpMV operation,
which is why we mostly concentrate on the SpMV operations. Most operations necessary
for these solvers can easily be parallelized, which is why they are of special interest for
HPC applications.

We want to focus on the General minimal residual (GMRES) method introduced by Saad
and Schultz [5] as it works with the most general set of matrices and can easily be adapted
for Eigensolvers. Due to its simplicity and embarrassingly parallel implementation, we will
additionally combine it with a Jacobi preconditioner. The GMRES algorithm consists of
two parts: The computation of an orthonormal basis for the Krylov spaces Km(A,b) using
the modi�ed Gram-Schmidt method (MGS) and the minimum-residual approximation

xm = argmin
x∈Km(A,b)

‖Ax − b‖ (2.4)

of the solution of our linear system Ax = b.
The Arnoldi process described in Algorithm 2.2 computes a basis Vm = (v1 . . .vm) of

Km(A,b) and the coe�cients Hm = (hij)ij of the Arnoldi relation

AVm = Vm+1Hm, Hm ∈ R
(m+1)×m with hij = 0 for i > j + 1 (2.5)

The minimum residual-approximation x ∈ Km(A,b) can then be computed using the
orthonormality of Vm: With ρ = ‖b‖ and using z = VT

mx we have

‖b −Ax ‖ = ‖ρv1 −AVmz‖ = ‖ρv1 −VmHmz‖ = ‖ρe1 − Hmz‖,

so it su�ces to solve the simpler least-squares problem

ẑ = argmin
z∈Rm

‖ρe1 − Hmz‖ (2.6)

and get the corresponding solution x̂ = Vmz.
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Algorithm 2.2: Arnoldi process withmodified Gram-Schmidt orthonormalization

v1 ← b/‖b‖
for j = 1, 2, . . . do

ṽj+1 ← Avj
for i = 1, . . . , j do

hij ← 〈vi , ṽj+1〉
ṽj+1 ← ṽj+1 − hijvi

end
hj+1,j ← ‖ṽj+1‖
vj+1 ← ṽj+1/hj+1,j

end

This smaller problem (2.6) is most easily solved using theQR decomposition ofHm. Here
we can use the Hessenberg form of the matrix and the fact that Hm grows by adding a row
and column per iteration. Thus for Hm−1 = Qm−1Rm−1 where Qm−1 ∈ R

m×m is unitary and
Rm−1 ∈ R

m×(m−1) is an upper triangular matrix, we can derive

R̃m =

=: Q̃T
m︷       ︸︸       ︷(

QT
m−1 0
0 1

)
Hm =

(
Rm−1

=: h̃•,m︷     ︸︸     ︷
QT
m−1h•,m

0 hm+1,m

)
Thus we only need to �nd a unitary matrix Gm such that Rm = GmR̃m is upper-triangular.
Then with Qm = Q̃mG

T
m, we get the QR decomposition Hm = QmRm of the next iteration

step. A simple choice of Gm is the Givens rotation

Gm =
©­«
In−1

c s
−s c

ª®¬ with c2 + s2 = 1

To zero the last row of R̃m, the parameters c, s only need to satisfy ahm+1,m = bh̃mm.
For a practical implementation, it does not make sense to store the matrix Qm directly.
Instead, we store only the parameters ci , si of the givens rotations and use them to evaluate
every multiplication by Qm = G1G2 · · ·Gm. The complete QR decomposition based on
computing the Givens parameters ci , si and upper triangular matrix Rm = (rij)ij is described
in Algorithm 2.3.

While the decomposition algorithm could also be reordered to apply each Givens rotation
to whole rows of Rm, the formulation in Algorithm 2.3 has the advantage that Rm can grow
in the same way as Hm during the Arnoldi process. This approach has another helpful
side-e�ect: With the QR decomposition, our optimization problem (2.6) can be rewritten
based on the isometry properties of Qm:

‖ρe1 − Hmz‖ = ‖ρQ
T
me1 − Rmz‖
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The �rstm entries of the residual ρQT
me1 − Rmz can be set to zero by solving the triangular

system
QT
me1 = Rmz (2.7)

for z, the last entry of QT
me1 then gives the norm of the residuum of (2.4) due to the

orthonormality of Qm and Vm. Thus, using algorithm 2.3, we can continuously update
the right-hand QT

me1 to compute the residuum norm ‖b −Ax ‖ of our minimum-residuum
approximation, which can be useful as a stopping criterion. This implicitly covers the case
that the solution of Ax = b already lies in Km(A,b), which leads to hm+1,m = 0.

Algorithm 2.3:QR decomposition of HessenbergmatrixHm

Rm ← upper triangle of Hm

for j = 1, . . . ,m do
for i = 1, . . . , j − 1 do(

rij
ri+1,j

)
=

(
ci si
−si ci

) (
rij
ri+1,j

)
end
Determine cj , sj such that cjhj+1,j = sjrjj and c2j + s

2
j = 1

rjj ← cjrjj + sjhj+1,j
end

The convergence speed of GMRES cannot be bounded in general based on the Eigenval-
ues of A, as Greenbaum et al. [6] showed for non-normal matrices. However, for normal
matrices, Liesen and Tichỳ [7] proved tight worst-case bounds based on the spectrum of
A. Still, without a-priori knowledge about the properties of the matrix A under study, we
cannot give suitable bounds for the minimum-residual approximation (2.4) before actually
computing the Krylov basis and Arnoldi relations. In exact arithmetic, GMRES would
compute an exact solution after at most n steps forA ∈ Rn×n, as the Krylov spaces Km(A,b)
become A-invariant when they contains the solution x to Ax = b.

The storage required for the basis vectorsVm grows linearly with the number of iterations
m and can overwhelm the available memory even large parallel computers. Thus in
practice one often uses GMRES with restarts after a limited number k of iteration, also
called GMRES(k). To this aim, the intermediate solution x computed before the restart will
be used to compute the residual r = b −Ax . Instead of the original system, the following
run of GMRES then computes the solution ∆x of the modi�ed system r = A∆x , which we
can combine to the solution A(x + ∆x) = b of the original system. This approach leads to
a slower convergence of the algorithm in terms of the number of iterations, but can still
be faster in practice.

2.6.2. Eigenvalue Problems

The simplest way to compute Eigenvalues and Eigenvectors of a square matrix A ∈ Rn×n

is based on the power iteration: Assuming A is diagonizable with Eigenpairs

(λ1,b1), . . . (λn,bn), |λ1 | ≥ · · · ≥ |λn |,
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we can write any vector x ∈ Rn using the Eigenbasis x = c1b1 + · · · + cnbn . Repeated
multiplication with A thus gives us

Akx = λk1c1b1 + · · · + λ
k
ncnbn

based on the properties of the Eigenvectors. This vector can give a very good approximation
to the Eigenvector corresponding to the largest Eigenvalue: Assuming c1 , 0 and |λ1 | �
|λ2 |, we can assume w.l.o.g.5 that c1 = 1 and λ1 = 1, so Akx is an approximation to
the Eigenvector b1 with error



Akx − b1


 = O(‖λk2x ‖). The convergence speed of the

power iteration thus only depends on the quotient η := |λ2 |/|λ1 | between the two largest
Eigenvalues.

Repeated multiplication with A can thus be used to compute an Eigenvector correspond-
ing to the largest Eigenvalue in the so-called power iteration �rst introduced by von Mises
and Pollaczek-Geiringer [8]:

Algorithm 2.4: Power iteration

x0 ← initial guess for b1
for i = 1, 2, . . . do

x̃i ← Axi−1
xi ← x̃i/‖x̃i ‖

end

The normalization step is necessary as the norm of the iterates xi grows like λi1. To get
an approximation to the Eigenvalue λ1, we can use the Rayleigh quotient

ρi =
〈xi ,Axi〉

〈xi ,xi〉

‖xi ‖=1
= 〈xi ,Axi〉

which is equal to the Eigenvalue if xi is an Eigenvector.
The power law iteration allows only the computation of the largest Eigenpair (λ1,b1),

but we can use two observations to compute other Eigenpairs:

Ax = λx ⇔ (A − sI )x = (λ − s)x (2.8)
Ax = λx ⇔ A−1x = λ−1x for invertible A (2.9)

If we have a good initial guess ρ ≈ λi for an Eigenvalue with Eigenvector x , i.e., |ρ − λi | �
|ρ − λj | for i , j , we can use a power iteration using B := (A − ρI )−1 instead of A, because
(λ − ρ)−1 is then the largest Eigenvalue of B with corresponding Eigenvector x . The exact
computation of B would be numerically unstable due to the matrix inversion, so in practice
we solve the linear equation Bx̃i = xi−1 for x̃i instead.

We can even continuously update the guess ρ using the Rayleigh quotient to increase
the convergence speed η, which gives us the so-called Rayleigh quotient iteration

5By replacing A with λ−11 A and x with c−11 x
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Algorithm 2.5: Rayleigh quotient iteration

x0 ← initial guess for b1
ρ0 ← initial guess for λi
for i = 1, 2, . . . do

Solve (A − ρi−1I )x̃i = xi−1 for x̃i
xi ← x̃i/‖x̃i ‖
ρi ← 〈xi ,Axi〉

end

For normal matrices, i.e. matrices satisfying A∗A = AA∗, the Rayleigh quotient iteration
leads to a locally cubic convergence of the sequence (ρi) of Eigenvalue approximations.

Due to the similarities in the repeated multiplication to the power iteration, the Hes-
senberg matrix Hm computed during the Arnoldi process has similar Eigenvalues as A,
so its entries can be used to compute an approximation to the spectrum of A, if we are
interested in computing multiple Eigenpairs at the same time.

There is a second group of Eigenvalue solvers that are able to compute multiple Eigen-
pairs simultaneously without computing an intermediate matrix like Hm. An example for
these so-called matrix-free solvers is the Locally Optimal Block Preconditioned Conju-
gate Gradient method (LOBPCG) introduced by Knyazev [9] that solves the generalized
Eigenvalue problem

Ax = Bλx

with positive-de�nite B. This equation has only solutions with real Eigenvalues and
B-orthogonal Eigenvectors. We know that this Eigenbasis X satis�es

AX = BXΛ,XTBX = I with Λ = diag(λ1, . . . , λn)

Due to these properties, theB-orthogonal basisX of eigenvectors withXTBX = I minimizes
the trace tr(XTAX ), which is exactly when we know that XTAX = XTBXΛ = Λ holds. A
possible approach to compute Eigenvectors corresponding to larger Eigenvalues of A is
thus the application of an optimization algorithm to the optimization problem

min
XT BX=I

tr(XTAX ).

Naïve LOBPCG can have some issues with stability, but a recent work by Duersch et
al. [10] showed how the orthogonalization can be improved in terms of robustness and
e�ciency to make LOBPCG more usable in practice.
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Many distributed graph algorithms share a similar, so-called vertex-centric structure based
on alternating steps of local computation and data exchange with neighboring vertices.
This lead to the development of several distributed graph frameworks like Pregel [11] and
GraphLab [12]. As the generality provided by these frameworks would far exceed the
scope of this work, we choose a model problem that somewhat realistically represents
the communication and computation structure of many graph algorithms: Sparse matrix-
vector multiplication (SpMV), i.e. the computation of the product

y = Ax

where A is a sparse matrix and x is one or multiple column vectors. Here, the graph
corresponding to the sparsity pattern of A describes the data �ow from entries of x to
entries of y, where each edge amounts to a multiplication aijxj and every vertex to the
accumulation of these contributions. Examples for such computation and neighborhood
data exchange patterns are clustering algorithms like Label Propagation proposed by
Raghavan et al. [13] or algorithms for the computation of closeness measures like the
Algebraic Distance introduced by Chen and Safro [14].

3.1. Distributed SpMV

The simplest distributed-memory parallelizations of an SpMV computations y := Ax with
a square matrix A are based on a symmetric or one-dimensional partitioning of the matrix
and vector – the elements of both the input and output vector are partitioned the same
way. While this approach provides less �exibility in terms of load balancing than more
sophisticated types of partitioning, it has an important advantage for a large class of
applications: If the SpMV computation has to be iterated multiple times – for example
in an iterative solver for linear systems – there is no need to exchange data between
iterations, as the input and output vector partitions coincide.

There are two natural ways to extend such a partition of x and y to a partition of the
matrix A – by partitioning A row-wise or column-wise. These two partitioning approaches
lead to the following distributed SpMV implementation variants:

We consider the graphG = (V ,E) corresponding toA and a partitionV = V1 Û∪ . . . Û∪ Vk
of its vertices (and thus x and y). This means that we compute the SpMV product on k
distributed nodes, where the ith node stores only the entries of x and y for vertices from
Vi , as well as the corresponding rows/columns from A. Based on this partition and for a
�xed node i , we call all vertices v ∈ Vi local and all other vertices v < Vi non-local. We can
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compute a single entry of y corresponding to a vertex u as

yu =

send-�rst:
store locally︷                     ︸︸                     ︷∑

uv∈E
v∈Vi

wuvxv

︸      ︷︷      ︸
compute-�rst:
store locally

+

︸           ︷︷           ︸
receive from each part

∑
uv∈E
v<Vi

wuv

receive︷︸︸︷
xv

Here we see the impact of the partitioning of A: if we partition row-wise, we only need to
consider contributions from all vertices to local vertices, thus we need all relevant entries of
x , but only the local entries fromy (send-�rst). If we partitionA column-wise, we only need
to store the local entries of x , but instead have to compute and exchange the contributions
from the local vertices to all entries of y (compute-�rst). Figure 3.1 and Algorithm 3.1
shows these two partitioning and implementation variants from the view of a single
boundary vertex and a parallel process, respectively. They are based on the distributed
SpMV implementation described by Uçar and Aykanat [15]. The implementation can either
send the entries that are required by other tasks before executing the computations (send-
�rst) or compute the local contributions to all non-local vertices and send them instead
(compute-�rst) – the computation simply gets shifted from the sender to the receiver,
which causes no change in the communication volume and computation balance for a
matrix with symmetric sparsity pattern, but can have a large impact in non-symmetric
cases.

Algorithm 3.1: Distributed SpMV

Parallel process storing part p with its local vectors xl ,yl and corresponding
rows/columns A•l /Al• of the whole matrix A.

Send-�rst
for q = 1, . . . ,k, q , p do

xsnd ← gather(xl ,N←(Vq) ∩Vp)
Send xsnd to Part q
Receive xqrcv from Part q

end
yl ← Al• · (xl |x

1
rcv | · · · |x

k
rcv)

T

Compute-�rst
(yl |y

1
snd
| · · · |yk

snd
)T ← A•l · xl

for q = 1, . . . ,k, q , p do
Send yq

snd
to Part q

Receive yrcv from Part q
yl ← yl + scatter(yrcv ,N (Vq) ∩Vp)

end

It is easy to see that the send-�rst and compute-�rst implementation are in a sense dual
to each other: aside from the reversed order of communication and computation, send-�rst
stores all columns of A and uses a sparse gather operation to distribute the local data to
other parts, while compute-�rst stores all rows of A and uses a sparse scatter operation to
combine the contributions of other parts to the local data.
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yixj

aij · xj ∑
ỹk ←

∑
j local

akj · xj

send ỹk
receive ỹki
yi ←

∑
j local

aij · xj +
∑

k ỹ
k
i

yixj

xj ∑
aij · send xi

receive xk
yi ←

∑
j aij · xj

compute-�rst/column-wise send-�rst/row-wise

Figure 3.1.: Two possible implementations of distributed SpMV with 1D partitioning, where
i represents the vertex currently being processed and k represents a neighbor-
ing vertex in another part.

3.2. Communication Models

Central to every distributed graph algorithm is the assignment of vertices and edges to
the di�erent parallel tasks. This load balancing task strongly in�uences the runtime and
scalability of a distributed algorithm. Usually, two objectives need to be optimized for such
a load balancing approach to achieve a good result: 1. the amount of messages exchanged
between processes should be minimal – both in terms of message size and message count
– and 2. each process should have roughly the same amount of work to perform locally.

These two objectives nicely translate into the objectives and constraints used in (hyper-)
graph partitioning: The (hyper-)graph cut size gives a good (or even exact) model for the
communication volume, while the balance constraint can be used to ensure a balanced
distribution of work when assigning to each vertex a weight corresponding to the amount
of computation it generates.

We want to look at three partitioning approaches that can be used in distributed SpMV
implementations: Symmetric graph partitioning, column-wise and row-wise hypergraph
partitioning.

Definition 3.1: Symmetric graph partitioning

For the square sparse matrix A we build the corresponding graph G . To each vertex
v we assign the weight deg(v) + 1 (compute-�rst) or deg←(v) + 1 (send-�rst). We
partition the undirected graph Gbi corresponding to G with these vertex weights.

Graph partitioning is generally only considered on undirected graphs, which is why we
need to use Gbi . The weight of a vertex v corresponds to the number of multiply-and-add
operations that need to be executed to compute yv (send-�rst) or the number of multiply-
and-add operations that involve xv (compute-�rst). The + 1 is necessary to avoid vertices
of weight 0 during the partitioning, as there is at least some overhead involved with each
vertex. In case of the compute-�rst implementation, the number of operations is not strictly
correct, as the partial results ỹki still need to be accumulated, but for larger graphs and not
too many parts, this overhead is usually negligible. A balanced graph partition thus means
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that every part has roughly the same number of �oating point operations to compute,
which should lead to a balanced computation runtime (ignoring the parallelization potential
and memory locality etc.). The graph partitioning approach is however not able to exactly
model the communication volume: In the send-�rst model, when we have three vertices
u,v,w , with v and w in the same part and cut edges u → v,u → w ∈ E, the data from
xu only needs to be transmitted to the part storing v and w once, but the graph partition
nevertheless counts both cut edges as communication. The dual observation holds for
the compute-�rst model, where two edges from one part to the same vertex only cause a
single unit of communication.

To describe the improved hypergraph models, we introduce some additional notation.
For the sparse square matrix A, we write

nz(A, i, ·) = {j | Aij , 0}, nz(A, ·, j) = {i | Aij , 0}

for the set of non-zero column/row indices in row/column i/j and nnz(· · · ) = |nz(· · · )| for
the corresponding size. Using this notation, we can give exact hypergraph models for the
communication volume in both implementations. They are described in more detail in the
work by Çatalyürek and Aykanat [16].

Definition 3.2: Column-wise hypergraph partitioning

We build a hypergraph with verticesV = {c1, . . . , cn} corresponding to the columns
with weights nnz(A, ·, j) for cj and nets N = {r1, . . . , rn} corresponding to the rows,
where ri = {cj | j ∈ nz(A, i, ·)} is the set of columns with non-zero entries in row i .

When we use the hypergraph partition from the column-wise partitioning approach
in a distributed SpMV implementation using the compute-�rst approach, the (total or
bottleneck) connectivity cut size of the partition is equal to the communication volume of
the all-to-all operation.

Definition 3.3: Row-wise hypergraph partitioning

We build a hypergraph with verticesV = {r1, . . . , rn} corresponding to the rows
with weights nnz(A, i, ·) for ri and nets N = {c1, . . . , cn} corresponding to the
columns, where cj = {ri | i ∈ nz(A, ·, j)} is the set of rows with non-zero entries in
column j.

Like with the column-wise approach, we can use the hypergraph partition to partition
the vectors x and y during a distributed SpMV computation. The (total or bottleneck)
connectivity objective of the hypergraph partition is then again equal to the communication
volume of the send-�rst implementation.

In case not only the total communication volume needs to be optimized, but the bot-
tleneck volume and number of messages is also important, Acer et al. [17] show how
the recursive bisection approach to hypergraph partitioning can be used in hypergraph
communication models to simultaneously balance total volume V , bottleneck volume B,
computation volume C and the number of messages M by minimizing an objective of the
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form
V + βM, while keeping C + αB balanced between parts.

They achieve this by, after each recursive bisection step, increasing the weight of all nodes
by the α−weighted communication volume they caused to their neighboring part, and
introducing a β−weighted net for each message that needs to be passed between these
parts.

Finally, there are also two-dimensional partitioning approaches that partition the entries
of x and y and even the individual computations aijxj independently. These can be divided
into three groups according to Çatalyürek et al. [18]: Firstly, there is the �ne-grained two-
dimensional partitioning approach that models each multiplication aijxj corresponding to
a non-zero entry as a vertex and introduces one net per row and column that connects
all non-zeros from this row/column. This approach allows for the greatest �exibility
in load balancing, but signi�cantly complicates the data exchange. Secondly, jagged
partitioning �rst partitions the rows or column of the sparse matrix and then partitions
the columns or rows of the resulting sub-matrices independently. Finally, checkerboard
partitioning approaches start like the jagged approach, but partition the columns or rows
of all sub-matrices coherently, which leads to a checkerboard-type pattern in the reordered
matrix.

Aside from hypergraph partitioning, the �ne-grained two-dimensional partitioning
approach shares a few similarities with edge partitioning methods introduces in the
PowerGraph framework by Gonzalez et al. [19]. Recent work by Schlag et al. [20] showed
how such edge partitions can be computed e�ciently in parallel without the need to fall
back to – usually comparably slow – hypergraph partitioning methods.

3.3. (Hyper-)Graph Partitioning Algorithms

Even though graph and hypergraph partitioning are NP-complete problems, in prac-
tice, there are many heuristics that are able to e�ciently and e�ectively optimize many
partitioning instances. These heuristics can be roughly classi�ed as follows:

• Initial partitioning heuristics can be used to compute a bi- or multi-way partition of
an input (hyper-)graph without a preexisting partition. Among the most well-known
initial partitioners are spectral partitioning methods based on the Eigenvalues and
-vectors of matrices associated with the input graph, like the Fiedler Eigenvector [21]
of the Laplacian matrix. Other approaches include traversal-based approaches,
random partitions or even exact solutions based on Integer Linear Program formu-
lations [22]. Initial partitioning algorithms are usually only used for small input
graphs, but there it may be sensible to even employ an ensemble of many di�erent
initial partitions, from which we can choose the partition with the best objective.
When an initial partitioner is only able to compute bisections, but a multi-way
partition is needed, the recursive bisection paradigm is used to recursively split the
input until we have enough parts.

• Local search algorithms take an existing partition and iteratively improve its objective
function or balance by moving vertices between parts. Many of these algorithms are
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based on the Kernighan-Lin heuristic [23]. The heuristic was subsequently improved
in terms of runtime by Fiduccia and Mattheyses [24] as a linear-time algorithm.
Other approaches are based on �ow networks [25] [26] that minimize the objective
in the form of a min-cut problem. While most of these local search algorithms are
formulated for two-way partitions, they can be adapted for multi-way partitions
either by executing them for every pair of parts, or by combining them by iteratively
choosing the “best” pair of parts that promises the largest objective improvements.

• Coarsening algorithms recursively compute a coarser representation of a large input
(hyper-)graph until it is small enough to be partitioned using an initial partitioner.
Typical coarsening approaches are either clustering- or matching-based [27]. While
graphs with a regular structure often pro�t from matching-based coarsening, clus-
tering or community detection approaches can work very well on network graphs,
as Meyerhenke et al. [28], and Heuer and Schlag [29] recently showed for graphs
and hypergraphs, respectively.

Coarsening, initial partitioning and local search (or re�nement) algorithms can be com-
bined in the multilevel paradigm to compute partitions even for large (hyper-)graphs.
In this approach, the input is �rst coarsened until initial partitioning becomes feasible.
The initial partition can then be unpacked recursively, with local searches improving the
intermediate partitions until we reach the �nest hierarchy level.

This multilevel approach is employed by all popular graph and hypergraph partitioning
frameworks. Among them are KaHIP [30] and METIS [31] for graph partitioning and
KaHyPar [32], PaToH [33], hMETIS [34] and Zoltan [35] for hypergraphs.

3.4. Network Graphs

The main motivation for studying the implementation of distributed graph algorithms
with replication lies in the structure of a large class of graphs, the so-called network graphs.
Their irregular structure compared to other scienti�c computing applications makes it
sensible to introduce a special treatment for small parts of the graph which speed up the
whole distributed algorithm.

Graphs with a network structure occur everywhere, in natural contexts like biological
networks, in sociological concepts like social networks as well as in technological con-
texts in the form of communication networks and web graphs. Despite these numerous
backgrounds, they share a number of common properties that have been observed in all
of these areas. Networks often show heavily skewed degree distributions, meaning they
have only few vertices of high degree, while most vertices have a very low degree. One
common assumption is that their vertex degrees are approximately distributed according
to a power-law distribution (which is why they are also called scale-free graphs):
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Definition 3.4: Power-law distribution

A random variable X follows a (discrete) power-law distribution if

P(X = d) = c · d−k

for suitable constants c,k > 0.

Empirically, power-law distributions can be identi�ed using histograms or a log-log
plot of the (decreasingly) sorted sequence of values against their rank in the sequence,
which we use throughout this thesis to demonstrate the scale-free property of graphs.
However, statistical testing for power-law distributions is more complex, and Clauset
et al. [36] [37] even showed that exact power-law distributions are surprisingly rare in
real-world networks. Still, we don’t actually need exact power-law degree distributions
for our ideas to work, a heavily tailed degree distribution with few vertices of large degree
can be su�cient.

Network graphs show very interesting connectivity structures: They usually have a
small diameter, i.e., most pairs of vertices are connected by a short path through the
graph, which is also known as the Small-World E�ect. This has been observed in E-Mail
communication [38] as well as online social networks [39]. Networks usually have a
large connected component that contains most of the vertices. This component can
only be disconnected by removing a certain threshold number of vertices, after which
the component decomposes into many smaller components. If this situation occurs, the
resulting graph usually gives a much larger degree of freedom to partitioning algorithms,
as independent components can be moved without changing the cut metrics, especially
for improving the imbalance. This resistance against disconnection of a graph is called the
percolation threshold [40] and can be rather high compared to other, more regular graphs
like grids. Another notable measure that can be used to identify network-like properties
is the clustering coe�cient, which measures the probability that adjacency relations are
transitive, i.e., the probability that a path u −v −w implies the existence of the edge uw .

Definition 3.5: Clustering coe�icient

The clustering coe�cient of a graph G = (V ,E) is given by

C(G) =
Number of closed triplets in G

Number of triplets in G
=
|{(u,v,w) ∈ V 3 | uv,vw,uw ∈ E}|

|{(u,v,w) ∈ V 3 | uv,vw ∈ E}|

Holland and Leinhardt [41] showed that this transitivity often occurs in social networks,
which was again corroborated by Watts and Strogatz [38].

There are several popular models for the generation of random network graphs. Here
we want to focus on two well-researched models that generate graphs with some of the
aforementioned properties, either by construction or inherently.

The Barabási-Albert random graph model [42] is based on a preferential attachment
process. Starting from a small seed graph, we iteratively add one vertex at a time and
connect it to δ vertices from the previous graph chosen at random with probabilities
proportional to their degree. This models a purely random attachment of new members
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of a network to the existing structure with a preference to attach to high-degree vertices
and produces a network with a power-law degree distribution of the form d−3. However,
Barabási-Albert graphs don’t reproduce the high clustering coe�cient observed in real-
world networks, as their clustering coe�cient decays with increasing network size [43].
The preferential attachment process with parameter δ can be implemented as follows,
based on Batagelj and Brandes [44]:

Algorithm 3.2: Preferential attachment graph generation

Seed graph G0 = (V0,E0) with n0 vertices growing to n vertices:
V ← V0, E ← E0
for u = n0, . . . ,n − 1 do

V ← V ∪ {u}
for i = 0, . . . ,δ − 1 do

Choose e ∈ E uniformly at random
Choose vertex v of e uniformly at random
E ← E ∪ {uv}

end
end

Krioukov et al. [45] observed that many network graphs can be embedded into the
hyperbolic plane H2

ζ
with constant curvature −ζ 2 < 0 such that vertices that are placed

close to each other on H2
ζ

are connected in the graph with high probability. This gave rise
to the random hyperbolic graph model for networks, also called the hyperbolic geometric
graph model: We choose n points at random in the Poincaré disk representation of H2

ζ

with uniform angle θ and radius r according to the probability density

p(r ) = α
sinhαr

coshαR − 1

for parameters α ,R > 0. The probability that two vertices at coordinates (θ , r ) and (θ ′, r ′)
are then connected is based on their distance

d = cosh−1(cosh ζ r cosh ζ r ′ − sinh ζ r sinh ζ r ′ cos |θ − θ ′|)/ζ

While one could use a naïve implementation of the above description as an O(n2)
algorithm to build a random hyperbolic graph, there exist improved implementations
that work in subquadratic time by exploiting the geometric structure of the point set, like
the approach by von Looz et al. [46]. Figure 3.2 shows an example for such a hyperbolic
geometric graph embedded into H2

ζ
.

Krioukov et al. [45] also showed that random hyperbolic graphs follow a power-law
degree sequence, and Gugelmann et al. [47] proved that they additionally have a clustering
coe�cient close to 1 with high probability for α > 1

2 .
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Figure 3.2.: Random hyperbolic graph with 200 vertices, α = 0.8 and R = 5 in the Klein
disk model (left) and Poincaré disk model (right).

3.5. Vertex Centrality

Much work has gone into the structural analysis of network graphs from many di�erent
viewpoints. An important aspect are metrics that measure the centrality of a vertex. A
simple centrality measure is the degree of a vertex, but over time, many di�erent measures
were developed: Bavelas [48] introduced the closeness metric, i.e., the reciprocal sum of
all shortest-path distances to other vertices, and Freeman [49] proposed to use a vertex’s
betweenness, i.e., the fraction of all shortest paths passing through it. A number of
centrality measures are based on the Eigenvectors of the adjacency matrix or other related
matrices of the network graph. The last important group of centrality measures is based
on random walks through the graph, where the probability to arrive at a certain vertex is
used to measure its centrality. Arguably the most popular random walk approach is the
PageRank model by Brin et al. [50][51] which is used in part to rank results in the Google
search engine.

Initially, PageRank was not formulated as a random walk, but instead as the steady-state
of an iterative process that distributes the PageRank of every web-page evenly among the
pages pointed to by outgoing hyperlinks, so the updated PageRank of a page is the sum of
the contribution along all incoming hyperlinks:

PageRank(v) ←
∑
uv∈E

1
deg(u)PageRank(u)

The equivalent random-walk formulation of PageRank models the behavior of a “random
surfer” visiting a series of web pages by randomly following links, and frequently restarting
at a random page. If the graph G = (V ,E) represents a set of web pages as vertices and a
hyperlink from web page u to web page v by the directed edge uv , we can formalize the
behavior of the random surfer as follows: The surfer moves from vertex u to vertex v with
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probability

puv =

{
(1 − ω) 1

deg(u) + ω
1
|V | , if uv ∈ E

ω 1
|V | otherwise

,

where ω ∈ [0, 1] is the restart probability, i.e., the probability that the surfer restarts from
a random vertex of G.

This random walk can naturally be interpreted as a discrete, �nite Markov chain, which
for ω > 0 is even irreducible. Thus we can use its transition probability matrix P = (puv)
to describe its unique stationary distribution π as its stochastic left Eigenvector

PTπ = π such that π ≥ 0 and ‖π ‖1 = 1

This stationary distribution gives the probability to �nd the random surfer at any given
vertex, and can thus be used as a centrality measure.
In practice, this dense matrix P is separated into P = (1 − ω)L + ωE with

Luv =

{
1/deg(u), if uv ∈ E
0 otherwise

and Euv = 1

This way we can compute the matrix-vector product PTx for stochastic x as

PTx = (1 − ω)LTx + ω1,

only having to evaluate the sparse matrix-vector product LTx . We will later use the
calculation of the PageRank vector of a distributed graph using the Power iteration and
Rayleigh quotient iteration as an application example for distributed SpMV.
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The sparse all-to-all communication employed in distributed SpMV implementations, when
combined with a high-quality (hyper-)graph partition, provides a good trade-o� between
computation imbalance and communication volume in regular graphs/matrices, which
are usually found in scienti�c computing applications. In these applications, no single
or few vertices cause a large amount of computation or communication by themselves.
By contrast, in network graphs, the connectivity (before partitioning) or communication
volume (after partitioning) can be strongly lopsided towards a few important vertices.
In consequence, these vertices are both di�cult to handle in partitioning algorithms (as
moving any of them in a local optimization phase can cause large changes in the cut size
and imbalance) and the distributed implementation itself (where they can be responsible
for a larger number of p2p messages).

To address these issues, we want to introduce a special treatment for these “important”
vertices: We trade o� communication for computation by storing the data belonging to
these vertices in every distributed node – thus replicating it – and use suitable collective
operations instead of p2p communication to collect the contributions from other vertices.

We �rst want to show how the distributed SpMV implementation from Section 3.1
can be extended to handle replicated vertices. We then also extend the communication
model based on 1D partitioning from Section 3.2 to the replicated case and propose several
heuristics which can be used to choose the vertices to be replicated. Finally, we show how
our approach to data replication could be extended using a two-level or even multilevel
partitioning.

4.1. Basic Idea

We will �rst illustrate how the replicated vertices can be incorporated and updated in the
send-�rst model

yu =

stored locally︷                     ︸︸                     ︷∑
uv∈E
v∈Vi

wuvxv +
∑
uv∈E
v<Vi

wuv

p2p︷︸︸︷
xv

For a partition V = VR Û∪ V1 Û∪ . . . Û∪ Vk where VR denotes the set of replicated vertices,
we use k distributed nodes where node i stores only data relevant to vertices in VR ∪Vi –
the data from VR is then replicated to every node. When computing the entries of y for
a non-replicated vertex u ∈ Vi , we can simply treat replicated vertices like local vertices,
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which do not need to be exchanged with other nodes:

yu =

stored locally︷                                           ︸︸                                           ︷∑
uv∈E
v∈VR

wuvxv +
∑
uv∈E
v∈Vi

wuvxv +
∑
uv∈E

v<VR∪Vi

wuv

p2p︷︸︸︷
xv

When u ∈ VR is replicated, we can locally compute the contributions of VR and Vi to u,
but the contributions from other parts Vj needs to be collected as well. For this, we can
use an All-Reduce collective operation: We locally compute the contributions of Vi to u
and All-Reduce them to arrive at the sum of contributions from V1 ∪ · · · ∪ Vk at every
distributed node. Formally, this means we compute

yu =

stored locally︷             ︸︸             ︷∑
uv∈E

v replicated

wuvxv +

combined via All-Reduce︷                                ︸︸                                ︷∑
uv∈E
v local

wuvxv +
∑
uv∈E

v non-local

wuvxv

To simplify the notation, we will assume like in section 2.5 that the columns and rows of A
are reordered such that x and y are partitioned into consecutive ranges, which gives us the
following block-structure of A, where xR and yR store the entries belonging to replicated
vertices:

©­­­­«
yR
y1
...
yk

ª®®®®¬
=

©­­­­«
ARR AR1 · · · ARk

A1R A11 · · · A1k
...

...
. . .

...
AkR Ak1 · · · Akk

ª®®®®¬
·

©­­­­«
xR
x1
...
xk

ª®®®®¬
Based on this partition, we can amend Algorithm 3.1 to incorporate the replicated

vertices:

Algorithm 4.1: Distributed SpMVwith replication

Parallel process storing part p with its local vectors xl ,yl , replicated vectors xR,yR
and corresponding blocks ARR,ARl ,Al•/A•l of the whole matrix A.

Send-�rst
for q = 1, . . . ,k, q , p do

xsnd ← gather(xl ,N←(Vq) ∩Vp)
Send xsnd to Part q
Receive xqrcv from Part q

end
yR ← ARRxR + allreduce(ARlxl )
yl ← Al• · (xR |xl |x

1
rcv | · · · |x

k
rcv)

T

Compute-�rst
(yl |y

1
snd
| · · · |yk

snd
)T ← A•l · xl

yl ← yl +AlRxR
yR ← ARRxR + allreduce(ARlxl )
for q = 1, . . . ,k, q , p do

Send yq
snd

to Part q
Receive yrcv from Part q
yl ← yl + scatter(yrcv ,N (Vq) ∩Vp)

end
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The di�erences to Algorithm 3.1 are in the treatment of data as local and non-local:
1. for the computation of yl we treat xR and xl as local data, but for the computation of
yR we need to use the All-Reduce operation and 2. for the p2p-communication, we only
exchange data from non-replicated vertices xl /yl .

4.2. Communication Model

We now want to show how the one-dimensional hypergraph models for the SpMV com-
munication volume introduced in section 3.1 can be extended to account for replicated
nodes. We start o� with a square matrix A and its corresponding graph G = (V ,E). For
simplicity, we describe the operation only the terms of vertices and edges ofG , but keep in
mind that these operations correspond to changes in the rows/columns and entries of A.

When replicated, a vertex no longer needs to take part in the all-to-all operation, which
leads to reduced communication both for the vertex itself as well as all neighboring
vertices from other parts. The associated multiplication with the ARR are executed on
every node and can simply be ignored in the balancing constraints. In case we had a
large number of replicated vertices, it can be necessary to modify the imbalance limit ε .
The computation ARlxl would have occurred in the compute-�rst model anyways, in the
send-�rst model, we need to incorporate it internally. Conversely, the operation AlRxR
would have been computed in the send-�rst model, but needs to additionally be considered
in the compute-�rst model.

In total, we need to make the following changes in the hypergraph models to incorporate
a set R of replicated vertices:

Definition 4.1: 1D hypergraph partitioning with replicated vertices

We start o� with a row-wise/column-wise k-way hypergraph partition
V = V1 ∪ · · · ∪ Vk of a matrix A and modify it as follows:

Send-�rst Compute-First

Vertices/Pins Remove all vertices/pins corresponding to replicated rows/
columns

Nets/Hyperedges Remove all nets corresponding to replicated columns/rows
Vertex weights Add nnz(A,R, i) to w(ri) Add nnz(A, j,R) to w(cj)

Imbalance limit With wR = nnz(A,R,R) and w = nnz(A)/k replace ε by

ε′ = ε
w

w −wR/k
a

aThis transformation is only valid under the assumption that the replication itself is balanced,
i.e., the amount of computation caused by replicated vertices was the same in every part before
replication.

To compute the total communication volume, we assume that the runtime ratio between
an All-Reduce operation and a single p2p message on a single vector entry is α : 1. The
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u

Figure 4.1.: E�ect of replication on the bottleneck communication volume

communication volume caused by the part p is then, in terms of the hypergraph cut
connectivity (De�nition 2.7):

c(Vp) + α |R | (4.1)

The modi�ed hypergraph models incorporating replication give us an additional advan-
tage: If we remove the replicated vertices and nets from the hypergraph, we can re-partition
the modi�ed hypergraph without these usually “heavy” vertices, which can make it easier
for the hypergraph partitioner to satisfy the balance criterion, thus potentially speeding
up the partitioning or leaving more freedom for optimizing the communication volume.
In extreme cases, the replication could even cause the remaining graph to become discon-
nected, which again could simplify partitioning, as long as the partitioning algorithms can
deal with disconnected graphs and the resulting bin-packing problem.

Based on this communication model, we can now turn to the choice of replicated vertices,
which has a great impact on the e�ectiveness of replication, both for speeding up the
partitioning as well as for optimizing the communication time.

4.3. Replication Heuristics

The most important ingredient for the use of replication is a good choice of replicated
vertices. Their replication should greatly reduce the total or bottleneck communication
volume and potentially make the remaining graph more partitioner-friendly.

First of all, we want to show the impact of a single replication on the overall commu-
nication volume: as Figure 4.1 shows, the replication of a vertex u has an e�ect on both
the part Vi containing u as well as all parts that are connected to u by a cut-edge. The
communication volume of Vi gets decreased by the number of other parts Vj that u is
connected to, while at the same time the communication volume of all neighboring parts
Vj gets decreased by 1. When we want to optimize the bottleneck communication volume
in a graph, this has an important e�ect: With a good choice of “important” vertices, we
can simultaneously decrease the communication volume of many parts.

We propose four replication heuristics for such a choice of vertices: Three heuristics
based solely on the distribution of certain vertex properties, and a fourth heuristic that
tries to greedily optimize the communication volume based on the exact communication
model from section 4.2.

First we start of with a most naïve heuristic: As network graphs approximately follow a
power-law degree distribution, it stands to reason that the vertex degree is a good predictor
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Figure 4.2.: Degree and cut-degree distribution in the uk-2002 web graph

for the connection of a vertex to the whole graph. We would expect that vertices of high
degree also leads to a high cut degree and connectivity when partitioned in a graph or
hypergraph model. Figure 4.2 and Table 5.1 show a justi�cation for this approach in
that for a graph with an approximate power-law degree distribution, the cut-degrees of a
partitioned graph follow such a power-law degree as well, especially for large cut-degrees.1
This replication heuristic would have the advantage that we can compute it even without
partitioning the graph. Other candidates for such an importance metric we can use to
choose vertices for replication are the cut-degree and cut connectivity of a vertex, as
they give a good prediction for the communication volume reduction when replicating
this vertex. Thus we have the following replication heuristics purely based on per-vertex
metrics:

1. Degree Replication
We replicate them vertices with the largest degree in G

2. Cut-Degree Replication
We replicate them vertices with the largest cut-degree in the partitioned G

3. Connectivity Replication
We replicate them vertices with the largest cut connectivity in the partitioned G

1We can identify a power-law distribution as a straight line in a log-log plot of the value against their
decreasing rank
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Finally, we want to show how the communication model from section 4.2 can be used
in a greedy optimization approach attempting to minimize the communication time based
on the communication volume:

Algorithm 4.2: Greedy replication

Based on a graph G = (V ,E) with a k-way partition V = V1 ∪ · · · ∪ Vk .
Compute the cut connectivity c(v) for all vertices v ∈ V
Compute the cut connectivity c(Vi) for all parts i = 1, . . . ,k
R ← ∅
for i = 1, . . . ,m do

p ← argmaxki=1 c(Vi)
u ← argmaxu∈Vp c(u) (resp. argmaxu∈V c(u))
R ← R ∪ {u}
Update c(v) for neighbors of u
Update c(Vi) for p and neighboring parts of u

end

This replication approach has the advantage that it continuously updates the communi-
cation volume of the remaining unreplicated vertices and thus might be able to better adapt
to changes in the graph structure due to the replication. These updates can be implemented
using two combined addressable priority queues for parts and vertices, ordered by c(Vi)
and c(v) respectively.

However, the greedy replication approach in itself can produce sub-optimal results
in terms of the bottleneck communication volume – as the experimental results in the
communication model will later show. The reason for this can be understood based on an
extreme case: we want to look only at a single replication step in a graph of the following
structure, visualized in Figure 4.3. We have a bottleneck part p, where the vertex u has
the largest connectivity and v has a lower connectivity. u is only connected to c1 parts
with very low communication volume, but there are c2 < c1 other bottleneck parts with
the same communication volume as p that are all connected to v . Replicating u would
not lower the bottleneck volume, as it only lowers the communication volume of p and
the parts of lower communication volume, but the c2 parts neighboring v still cause the
overall bottleneck. On the other hand, replicating v would lower the volume of part p
by c2 and the volume of all neighboring parts by 1, which decreases the total bottleneck
volume by 1 as well.

It should be noted that for all replication heuristics we proposed here, we only looked at
the communication volume of the resulting SpMV implementation. However, replication
can also have a large impact on the amount and balance of computation that has to be
executed on every distributed node. The aforementioned replication heuristics can of
course also optimize the computation as a side-e�ect, but that was not the central goal for
their choice.
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Figure 4.3.: Sketch of a counterexample graph showing the non-optimality of greedy
replication

4.4. Two-Level Replication

In this section, we want to summarize how the current approach to replication can be
extended based on a two-level graph partition, while also showing the basic tools necessary
to extend this to a true multi-level approach. Two-level replication has the potential
advantage that we can replicate vertices that would only cause a lot of communication
within a small group of parts in a one-level replication scheme.

We start o� with a graph G = (V ,E) partitioned with replicated vertices
V = VR Û∪ V1 Û∪ . . . Û∪ Vk1 . Each part corresponds to an induced subgraphGi = G[Vi], which
can again be partitioned with replication in a k2-way partitionVi = VRi Û∪ Vi1 Û∪ . . . Û∪ Vik2 .

We can use this two-level replicated partition to implement a distributed SpMV as
follows: Arranging the distributed nodes in a k1 × k2 grid, the node at coordinates (i, j)
stores the data relevant to vertices fromVR ∪VRi ∪Vij . As before, we reorder the entries of
x and y such that the vertex ranges VR,VR1,V11, . . . ,V1k2,VR2V21 . . .Vk1k2 are consecutive:

©­­­­­­­­­­­­­­­«

yR
yR1
y11
...

y1k2
yR2
y21
...

yk1k2

ª®®®®®®®®®®®®®®®¬

=

©­­­­­­­­­­­­­­­«

ARR

corresponds to V1︷                               ︸︸                               ︷
ARR1 AR11 · · · AR1k2

corresponds to V2, ..., Vk1︷                                ︸︸                                ︷
ARR2 AR21 · · · ARk1k2

AR1R AR1R1 AR111 · · · AR11k2 AR1R2 AR121 · · · AR1k1k2
A11R A11R1 A1111 · · · A111k2 A11R2 A1121 · · · A11k1k2
...

...
...

. . .
...

...
...

. . .
...

A1k2R A1k2R1 A1k211 · · · A1k21k2 A1k2R2 A1k221 · · · A1k2k1k2
AR2R AR2R1 AR211 · · · AR21k2 AR2R2 AR221 · · · A21k1k2
A21R A21R1 A2111 · · · A211k2 A21R2 A2121 · · · A21k1k2
...

...
...

. . .
...

...
...

. . .
...

Ak1k2R Ak1k2R1 Ak1k211 · · · Ak1k21k2 Ak1k2R2 Ak1k221 · · · Ak1k2k1k2

ª®®®®®®®®®®®®®®®¬

·

©­­­­­­­­­­­­­­­«

xR
xR1
x11
...

x1k2
xR2
x21
...

xk1k2

ª®®®®®®®®®®®®®®®¬
Based on this ordering, we can formulate the distributed SpMV with two-level replication.

We have three kinds of communication here: inter-group communication between nodes
(p, i), (p, j), intra-group communication between the “leaders” (p, 1), (q, 1) of two groups
p,q and global communication between nodes (p,q), (s, t):

• The inter-group communication solely consists of reductions and broadcasts used
to compute the contributions to locally or globally replicated vertices VRp ,VR . The
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R1|R2 R3

R1 R1

R1

Figure 4.4.: Four phases of two-level All-Reduce in a (3,4)-way partition:
1. Reduce R1,R2 to local groups, 2. Reduce R1 from local group leaders, Broad-
cast R3 to local groups, 3. Broadcast R1 to local group leaders, 4. Broadcast R1
to local groups

contributions �rst get reduced and stored at the group leader and can then, after
adding the contributions from other parts, be broadcast to the whole group again.

• The intra-group communication using the group leaders also consists of reductions
and broadcasts to compute the contributions to globally replicated verticesVR . Addi-
tionally, we need to compute the contribution of locally replicated vertices VRq from
other parts q , p to the locally replicated vertices VRp from part p, which can be im-
plemented using an All-To-All communication between the group leaders. Here the
choice of group leader for each group could be used to balance the communication
bottleneck within a group.

• The global communication is used for two tasks. As before, we need to exchange
data to compute the contributions from non-replicated vertices Vqj from other parts
(q, j) , (p, i) to local non-replicated vertices Vpi in a global All-To-All operation.
Secondly, we need to collect the contributions from other non-replicated vertices
Vqj ,q , p to locally replicated vertices VRp . There are two ways this could be
implemented, depending on the communication network characteristics: Either the
group leader is solely responsible for collecting these contributions and broadcasting
them afterwards, or each node (p, i) in the group communicates with its counterparts
(q, i) in other groups, and the contributions get accumulated using an All-Reduce
operation. The �rst approach minimizes the amount of messages that need to be
exchanged, while the second approach balances the communication better within
the group. In the following description, we solely show the �rst approach.

Algorithm 4.3 shows the complete distributed SpMV implementation in its send-�rst
variant. Note that the three reduction/broadcast operations R1,R2,R3 can be combined
into a single collective operation without additional synchronization: Figure 4.4 shows
how we can execute the reductions R1,R2 within the group �rst and using the intermediate
results to complete the reduction part of the All-Reduce operation R1 and the broadcast
operation R3.

The general approach of recursively partitioning and subdividing can be repeated in
multiple levels, constructing a hierarchy of replicated and local vertices. For hierarchies
with many levels, it can also make sense to study the all-to-all communication further, as
much of the communication volume will occur within a group. However, this is out of the
scope of this work due to its complexity.
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Algorithm 4.3: Distributed SpMVwith two-level replication

Parallel process storing part (p,q) with its local vectors xpq,ypq , second-level repli-
cated vectors xRp ,yRp , �rst-level replicated vectors xR,yR and corresponding blocks
ARR,ARRp ,ARpq,ARp•,Apq• of the whole matrix A. We only show the send-�rst im-
plementation here.
for (s, t) = (1, 1), . . . , (k1,k2), (s, t) , (p,q) do

if t = 1 then xsnd ← gather(xpq,N←(VRs ∪Vst ) ∩Vpq)
else xsnd ← gather(xpq,N←(Vst ) ∩Vpq)
Send xsnd to Part (s, t)
Receive xstrcv from Part (s, t)

end
ŷ1R ← allreduce(k1,k2)

(s,t)=(1,1)(ARst · xst ) (R1)

if q = 1 then
ŷ2R ← allreducek1s=1(ARRs · xRs ) (R2)

ŷRp ← ARs• · (x
11
rcv | · · · |x

k1k2
rcv )

T

Broadcast yR,yRp to (p, 1), . . . , (p,k2) (R3)

end
yR ← ARR · xR + ŷ

1
R + ŷ

2
R

yRp ← ARpR · xR +ARpRp · xRp + ŷRp
ypq ← Apq• · (xR |xRp |xpq |x

11
rcv | · · · |x

k1k2
rcv )

T
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5. Evaluation

5.1. Experimental Setup

We evaluated our theoretical ideas and approaches both based on communication models
as well as in experiments on a HPC cluster.

5.1.1. Implementation

We implemented a distributed sparse matrix-vector and sparse matrix-dense matrix algo-
rithm. For graph and hypergraph partitioning, we used KaHIP [30] with its fastsocial
con�guration using clustering-based coarsening and PaToH [33] with its SPEED con�gura-
tion, both with deg+1 vertex weights and an imbalance limit of 3%.1 For our largest input
graphs, we were only able to use KaHIP, as PaToH terminated unexpectedly. All codes
were compiled using GCC 7.3.0 and the �ags -O3 -march=native. We used the Intel Math
Kernel Library (MKL) version 2019.0.0 in double precision with its OpenMP parallelization
and 32bit indices for all low-level linear algebra kernels (spmv, spmm, axpy, dot, . . . ) except
for the gather and scatter kernels. These kernels are used to collect or distribute the data
to and from the all-to-all operation, and were implemented by hand using OpenMP for
parallelization. We used OpenMPI 3.1 as the basis for our distributed implementation.

5.1.2. Environment

Our distributed benchmarks were executed on the ForHLR II cluster, which has 1152
nodes, each with two deca-core Intel Xeon E5-2660 v3 processors (Haswell) with a regular
clock frequency of 2,6 GHz (maximum 3,3 GHz) and 64 GB main memory. The nodes are
connected by an In�niBand 4X EDR Interconnect with a theoretical bandwidth of 54.54
GBits/s per node and 100 GBits/s total.

5.1.3. Data Sets

We used a variety of real-world networks and generated graphs based on the Barabási-
Albert and Random Hyperbolic graph model as input graphs for our experiments. As a
sanity check, we also added a Delaunay triangulation as an example of a graph that has a
more regular structure, and should thus not lead to any advantages by data replication.
Table 5.1 lists all of these graphs with their basic properties and degree distribution.

1We also evaluated hMETIS and KaHyPar as alternative hypergraph partitioners, but the former proved
di�cult to integrate due to its binary-only distribution and the latter failed to produce a partition within
an acceptable time-frame even for medium-sized hypergraphs
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Name Vertices Edges Type Ref. Degrees
Real-world networks

cnr-2000 326k 5.48M Web graph [52][53]

web-Google 357k 4.19M Web graph [54]

coPapersCiteseer 434k 32.1M Co-authorship [55]

coPapersDBLP 540k 30.5M Co-authorship [55]

as-skitter 555k 11.6M Internet topology [54]

amazon-2008 735k 70.5M Book similarity [52][53]

eu-2005 863k 32.3M Web graph [52][53]

in-2004 1.38M 27.2M Web graph [52][53]

uk-2002 18.5M 524M Web graph [52][53]

arabic-2005 22.7M 1.1G Web graph [52][53]

Generated graphs

ba-1M-10 1M 20M Barabási-Albert [44]

RHG-1-10 1M 20.1M Random Hyperbolic [46]

RHG-1-20 1M 40M Random Hyperbolic [46]

RHG-10-100 10M 200M Random Hyperbolic [46]

RHG-10-200 10M 399M Random Hyperbolic [46]

Non-network graphs

del-24 16.8M 101M Delaunay triangulation [56]

Table 5.1.: Input graphs with vertex and (directed) edge count, type classi�cation, source
and a log-log plot of degree (blue) and cut-degree distribution for partition with
k = 16, 64, 256 parts (red, yellow, green) like in Figure 4.2
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5.1. Experimental Setup

We evaluated our implementation in the theoretical communication model using par-
titions of the input graphs into k = 16, 64 and 256 parts with an imbalance limit of 3%
and 4 di�erent random seeds. In the practical implementation, we used only 16-way and
64-way partitions with the same parameters. Each parallel task uses all 20 cores of a single
distributed node for the shared-memory linear algebra kernels. This way, we only measure
latencies and bandwidths of the interconnection network, no MPI data transfers via shared
memory.

We also measured the runtime di�erence between the compute-�rst and send-�rst
implementation using the CSC and CSR format without replication. For replicated vertices,
we only used the compute-�rst implementation with CSR.

5.1.4. Experiments in the Communication Model

For each input graph, we computed multiple partitions with deg+1 weights. We then used
our replication heuristics degree, cutdegree, connectivity and greedy to determine the
1% most “important” vertices (at most 10000 vertices). Based on these replication orders,
we evaluated the communication volume (4.1) when replicating the 0 up to 10000 most
important vertices. For the resulting plots, we assume that the bandwidth of All-To-All
communication is equal to the All-Reduce bandwidth (α = 1).

5.1.5. Experiments on the HPC Cluster

We measured the runtime of a single distributed SpMV computation for every input graph
in di�erent con�gurations. To be able to di�erentiate between communication latencies
and bandwidth e�ects, we computed the SpMV product with multiple right-hand sides:

(y1 | · · · |yr ) = A · (x1 | · · · |xr )

While for small r , the setup overhead of the All-To-All and All-Reduce operations plays a
larger role, for larger r the communication bandwidth becomes the limiting factor. We
executed the SpMV computation with r = 1, 16, 256 for graphs with less than 10M vertices
and with r = 1, 8, 32 for the largest graphs. This limit is necessary as we additionally
measured the runtime of the same (shared-memory) SpMV computation on a single
distributed node as a reference solution, which limits our memory usage. To check our
computations for validity, we compare the result from the reference SpMV with the
distributed result.

We executed each operation within the distributed SpMV implementation 10 times, and
recorded the average runtime on each distributed node. This allows us to both measure
the total (bottleneck) execution time as well as the computation time balance.

Finally, to evaluate the performance impact of replication in the application context on
a number of graphs which seem to favor replication in terms of runtime. We implemented
the PageRank algorithm using a simple power iteration as in Algorithm 2.4 as well as the
GMRES algorithm to compute the solution to a linear system based on the graph Laplacian
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5.2. Experimental Results

5.2.1. Communication Model

The replication heuristics evaluated in the communication model show very promising
results, as listed in Table 5.2. After replicating only a small number of vertices (rarely more
than 1000), the communication volume is drastically reduced, sometimes by up to 90%. We
could observe the best results with either the cutdegree or the greedy heuristic. Despite
it being closest to the actual communication volume, the connectivity heuristic resulted
in the smallest reduction on almost all graphs. As expected, replication worked best on
network graphs, while we could only observe a small e�ect on del-24. The Barabási-Albert
graph ba-10M-1 proved to be very di�cult to partition, which is why we excluded it from
the runtime measurements. In the random hyperbolic graphs, we noticed a large drop in
communication volume when replicating only the most important 100-200 vertices, but
no reductions afterwards. This can be explained by the geometric structure of the graphs,
where the removal of a few vertices from the “center” of the graph causes it to become
almost disconnected. This is also re�ected in the communication quotient graph of the
partition. Figure 5.1 shows the e�ect of replication on the SpMV communication for three
input graphs, where the disconnection is most visible for RHG-10-100. A second interesting
observation is the following: The more parts our partition has, the fewer vertices make up
the optimal replication count for almost all graphs. This is likely due to the fact that the
quotient graph of the partition is much more sparse for a larger k , so replicating a vertex
has a smaller impact on the overall communication volume.

We did not observe any signi�cant di�erences between the partitions generated by
KaHIP and PaToH, or by repartitioning the graphs after replication, which is why we only
report results for KaHIP in this thesis. This result is again surprising, since KaHIP optimizes
the “wrong” objective, while PaToH optimizes for the correct hypergraph partitioning
objective, but consistent with observations from larger hypergraph partitioning surveys
that found the largest discrepancies between graph and hypergraph partitioning in non-
symmetric graphs [57], while we only used symmetric input matrices/undirected graphs.

5.2.2. Practical Measurements

The practical runtimes of the distributed SpMV implementations are very mixed compared
to their communication model, while also strongly dependent on the number of right-hand
sides we computed at the same time. As Table 5.3 shows, for r = 1, we only �nd small
di�erences in the SpMV runtime with replication compared to unreplicated SpMV, even
for the best replication heuristics. For some heuristics and graphs, the runtime was even
signi�cantly higher, like degree on arabic-2005 or eu-2005. However, the generated
RHG graphs and even del-24 showed surprisingly large reductions in runtime up to 50%.
Moving to a larger number of right-hand sides, the e�ects of replication becomes stronger
and more consistent: On almost all network graphs, we observe a reduction in runtime by
at least 20% by using the degree or cutdegree replication heuristic, on the largest instance
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Figure 5.1.: Communication graphs for unreplicated (left) and replicated (right) SpMV
with k = 16 nodes and input graphs in-2004 (top), cnr-2000 (middle) and
RHG-10-100 (bottom). The points represent distributed nodes, the edge thick-
ness is proportional to the communication between the two incident parts.
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Table 5.2.: Minimal communication volume when replicating with di�erent heuristics for
k = 64 with an 1 : 1 relationship between p2p-volume and All-Reduce volume

graph no replication degree cutdegree connectivity greedy

cnr-2000 22.4k 3.16k 2.14k 18.9k 14.5k
web-Google 2.46k 1.66k 1.43k 1.56k 1.92k
coPapersCiteseer 14.1k 15.1k 13.6k 13.9k 11.3k
coPapersDBLP 27.1k 27.2k 26.1k 26.5k 22.8k
as-skitter 35.5k 16.4k 13.9k 17.4k 19.0k
amazon-2008 17.4k 17.6k 17.0k 17.2k 14.6k
eu-2005 40.2k 27.0k 21.9k 28.0k 37.2k
in-2004 16.8k 8.70k 8.43k 13.5k 14.5k
uk-2002 87.9k 75.7k 47.9k 75.3k 78.2k
arabic-2005 346k 144k 117k 187k 306k
ba-1M-10 221k 201k 201k 202k 196k
RHG-1-10 15.7k 548 431 570 15.2k
RHG-1-20 3.44k 890 692 896 3.11k
RHG-10-100 5.70k 401 313 430 5.50k
RHG-10-200 8.95k 1.43k 885 1.44k 8.65k
del-24 2.53k 2.63k 2.61k 2.62k 2.52k
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Figure 5.2.: Runtime breakdown for eu-2005 and in-2004 when computing SpMV with
r = 256 right-hand sides
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graph no repl. degree cutdegree connectivity greedy

r = 1
cnr-2000 0.52(± 0.16) 0.44(± 0.11) 0.33(± 0.01) 0.52(± 0.09) 0.47(± 0.02)
web-Google 0.56(± 0.45) 0.42(± 0.15) 0.44(± 0.15) 0.34(± 0.00) 0.35(± 0.01)
coPapersCiteseer 0.81(± 0.33) 0.85(± 0.30) 0.55(± 0.04) 0.86(± 0.39) 0.58(± 0.02)
coPapersDBLP 0.66(± 0.03) 1.08(± 0.70) 0.71(± 0.07) 1.04(± 0.19) 0.70(± 0.02)
as-skitter 0.89(± 0.28) 0.93(± 0.40) 0.63(± 0.07) 0.94(± 0.42) 0.76(± 0.09)
amazon-2008 0.78(± 0.42) 0.73(± 0.41) 0.63(± 0.27) 0.79(± 0.36) 0.52(± 0.02)
eu-2005 0.85(± 0.04) 3.23(± 1.79) 0.70(± 0.01) 0.94(± 0.20) 0.84(± 0.03)
in-2004 0.89(± 0.38) 0.67(± 0.05) 0.77(± 0.14) 0.74(± 0.14) 0.78(± 0.21)
uk-2002 4.72(± 0.19) 4.86(± 0.17) 4.64(± 0.18) 4.78(± 0.11) 4.79(± 0.17)
arabic-2005 15.88(± 1.97) 26.09(± 2.22) 15.12(± 2.54) 16.03(± 2.33) 15.74(± 2.14)
RHG-1-10 0.71(± 0.66) 0.56(± 0.33) 0.43(± 0.19) 0.35(± 0.01) 0.63(± 0.23)
RHG-1-20 0.34(± 0.01) 1.19(± 0.90) 0.38(± 0.03) 0.59(± 0.23) 0.49(± 0.17)
RHG-10-100 2.72(± 1.84) 2.23(± 1.54) 1.25(± 0.14) 1.43(± 0.19) 1.26(± 0.29)
RHG-10-200 2.25(± 0.17) 2.34(± 0.40) 2.02(± 0.03) 2.07(± 0.07) 2.04(± 0.02)
del-24 1.66(± 1.76) 3.51(± 0.49) 1.12(± 0.31) 1.73(± 0.98) 0.81(± 0.28)

r = 256
cnr-2000 21.62(± 2.45) 8.35(± 0.52) 6.96(± 0.29) 22.22(± 1.32) 22.13(± 1.50)
web-Google 3.77(± 0.17) 4.54(± 0.16) 4.47(± 0.17) 4.41(± 0.08) 4.74(± 0.21)
coPapersCiteseer 15.76(± 0.49) 16.76(± 0.39) 16.69(± 0.46) 16.51(± 0.46) 16.52(± 0.53)
coPapersDBLP 26.12(± 0.76) 32.11(± 5.20) 27.04(± 1.00) 31.22(± 4.00) 27.30(± 0.21)
as-skitter 36.33(± 4.14) 22.57(± 0.72) 22.42(± 0.63) 35.66(± 2.00) 36.08(± 2.30)
amazon-2008 20.97(± 2.93) 22.40(± 2.90) 20.86(± 2.21) 21.78(± 3.58) 20.65(± 1.21)
eu-2005 75.80(± 5.56) 45.56(± 2.44) 57.60(± 4.25) 70.21(± 6.41) 76.61(± 5.98)
in-2004 24.42(± 3.38) 23.37(± 0.50) 20.75(± 2.58) 26.10(± 4.11) 25.80(± 3.38)
RHG-1-10 26.82(± 1.37) 10.45(± 1.15) 10.22(± 0.90) 10.79(± 1.17) 28.15(± 1.01)
RHG-1-20 11.54(± 0.64) 9.75(± 0.58) 9.76(± 0.51) 10.11(± 0.54) 12.59(± 0.56)

r = 32
uk-2002 22.84(± 1.21) 22.66(± 0.83) 21.14(± 0.37) 23.50(± 1.27) 22.91(± 1.18)
arabic-2005 76.26(± 6.29) 41.08(± 1.64) 47.63(± 2.84) 55.97(± 3.89) 69.69(± 5.47)
RHG-10-100 6.04(± 0.09) 6.20(± 0.15) 6.41(± 0.12) 6.04(± 0.21) 6.72(± 0.05)
RHG-10-200 7.50(± 0.77) 7.38(± 0.17) 7.32(± 0.19) 7.35(± 0.09) 7.81(± 0.71)
del-24 8.83(± 0.14) 8.75(± 0.38) 8.68(± 0.34) 8.55(± 0.07) 8.57(± 0.25)

Table 5.3.: Total bottleneck runtime (ms) for distributed SpMV on 64 nodes for di�erent
replication heuristics, input graphs and numbers of right-hand sides r . Each
graph was partitioned with 4 di�erent random seeds using KaHIP. We only list
the minimum runtime with its standard deviation among all replication counts.
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Figure 5.3.: Runtime breakdown by node for SpMV computation with r = 32 (arabic-2005)
or r = 256 (eu-2005) right-hand sides and k = 64 nodes for an unreplicated and
replicated partition using the cutdegree heuristic with 200 replicated vertices.

arabic-2005 the runtime was even almost halved. On the non-network graph del-24, the
e�ect is substantially smaller than for r = 1, which is consistent with our expectations.

Figure 5.2 shows how the choice of replication heuristic can impact both computation
and communication at the same time: While we see no large e�ect for in-2004, eu-2005
shows a substantial reduction in both computation and communication runtime for the
degree replication heuristic.

Finally, Figure 5.3 breaks down the overall computation and communication distribution
over all 64 nodes of a distributed SpMV with and without replication. We can see that
the runtime for p2p communication gets reduced drastically, while the overall runtime of
computation, All-Reduce and scatter (after the p2p communication) only changes slightly.
We especially have a large impact on a few bottleneck nodes, which is exactly what we
wanted to achieve with replication. We see the same behavior for both large and small
input graphs.

5.2.3. PageRank and GMRES

The benchmarks for r = 1 already do not predict a large margin of improvement by
data replication, but nevertheless we could measure a small e�ect in a few matrices.
For example on in-2004, 10000 iterations of the PageRank algorithm took 17.5 s with
cutdegree replication and 19.5 s without replication, both on k = 16 nodes. On the larger
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RHG-10-200 graph however, the same computation took 68.1 s with replication and 58.3 s
without. Figure 5.4 shows us the convergence of the PageRank iteration on two graphs.
The Rayleigh quotients of in-2004 oscillate strongly around 1 before �nally reaching
(numerical) convergence after about 250 iterations. the Rayleigh quotients in the RHG

graph converge on the Eigenvalue 1 much faster, but overall, convergence only seems to
be reached after roughly 500 iterations. This is understandable due to the much larger size,
and also might suggest that the spectrum of in-2004 has a smaller spectral gap below the
dominant Eigenvalue 1.

The attempt to use GMRES to build an inverse or Rayleigh quotient iteration were rather
unsuccessful: While the residuals initially decreased quickly, they tended to stagnate for
a long while, which is why we only show such a residual plot for regular GMRES and
GMRES(k) in Figure 5.5. The runtime of the SpMV computations tends to diminish in
importance for increasingly large Krylov spaces, as the inner products hi j and orthogo-
nalizations therewith then tend to dominate. It should also be noted that the shifts in the
Rayleigh quotient iteration as well as preconditioners like the Jacobi iteration would make
no di�erence here, as the diagonal entries of the PageRank matrix are all identical and the
shifts don’t in�uence the Krylov spaces:

m > 1 : Km(A − ρI ,b) = Km(A,b)

Still, due to the fast convergence and usually large enough spectral gap, the normal power
iteration should be su�cient for the PageRank application. For other numerical problems
on network graphs, like computations on the Laplacian matrix, other properties like the
positive semi-de�niteness of this matrix enable the use more stable and e�cient numerical
algorithms in practice.
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Figure 5.4.: Rayleigh quotients and ∆x for the power iteration computing the PageRank
vector of in-2004 (top) and RHG-10-200 (bottom) on k = 16 nodes with repli-
cation.
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Figure 5.5.: Stagnation of GMRES(k) residuals as well as runtime per iteration on the
PageRank matrix of in-2004, computed on 16 nodes with replication.
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6. Conclusion

The experimental results paint a very mixed picture of the e�ectiveness of data replication
for communication optimization. We were able to show in the communication model that
replication might lead to a large reduction in p2p communication without much overhead
from the All-Reduce operation, especially for the cutdegree heuristic. However, these
results are only partly re�ected in the runtime results, where other heuristics like the
degree heuristic proved surprisingly e�ective. This was also due to the fact that we did not
optimize for computation balance, which the degree heuristic seems to have a larger impact
on. An interesting question would be which structural properties of a network graph make
it a good candidate for vertex replication. Based on what we know about the input graphs
and their sources, it is di�cult to make an educated guess – the graphs on which we
observed signi�cant speed-ups (cnr-2002, as-skitter, eu-2005, arabic-2005) are di�cult
to separate from the other graphs like in-2004, where the theoretical model predicted
a large reduction in communication volume, but in practice only a small corresponding
reduction in runtime could be observed. For these instances, a closer investigation of
the communication structure might prove fruitful. Finally, the PageRank implementation
shows a small speedup in a few graphs, but due to the small per-vertex element size, these
results are far from conclusive, especially due to the dependence of the runtime results on
many variables, especially the random seeds used during partitioning.

The topic of replication as a communication optimization technique provides many
possible extensions. It could be possible to include vertex replication as an optional step
in local search algorithms of (hyper-)graph partitioning frameworks. During exploratory
benchmarks, we could only �nd negligible bene�ts of repartitioning a graph after a small
set of replicated vertices had been removed, but the integration of replication into the
partitioning pipeline might provide additional �exibility: It could be used both to deal with
vertices of large weight that make it di�cult to satisfy imbalance constraints as well as for
vertices with a large connectivity. The recursive bisection approach often employed in
these frameworks would potentially work well with a true multilevel replication approach
as sketched in Section 4.4. Orthogonal to the integration with partitioning algorithms, the
communication model and replication heuristics could be extended to include latencies
due to message count as well as contentions in the interconnection network of distributed
nodes, similar to the work by Acer et al. [17]. On the theoretical side, it would be interesting
to study the hyperbolic embedding of network graphs mentioned by Krioukov et al. [45],
where it might be possible to generally model the e�ect of replication on network graphs.
Finally, the results from this thesis were solely based on the distributed SpMV as a model
problem. Despite its prototypical communication structure, it might be interesting how
other, similar graph algorithms fare using replication. It might be especially interesting to
extend vertex-centric graph frameworks to transparently incorporate replication.
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B. Additional Experimental Results

B.1. Theoretical Communication Model

Table B.1.: Minimal communication volume when replicating with di�erent heuristics for
k = 16, 256. See Table 5.2 for k = 64

graph, k = 16 no replication degree cutdegree connectivity greedy

cnr-2000 18.0k 6.71k 2.40k 18.0k 17.3k
web-Google 3.03k 3.27k 2.45k 2.78k 2.17k
coPapersCiteseer 31.0k 33.4k 24.8k 30.9k 26.0k
coPapersDBLP 67.1k 68.4k 57.7k 64.5k 54.7k
as-skitter 45.0k 28.9k 23.6k 24.9k 35.5k
amazon-2008 37.4k 37.3k 34.7k 36.0k 30.7k
eu-2005 42.4k 32.4k 22.0k 32.5k 29.2k
in-2004 5.98k 6.22k 3.02k 5.67k 5.19k
uk-2002 165k 144k 87.9k 110k 128k
arabic-2005 304k 185k 133k 208k 256k
ba-1M-10 561k 518k 518k 552k 535k
RHG-1-10 9.45k 258 198 258 9.34k
RHG-1-20 1.40k 612 395 644 1.13k
RHG-10-100 1.40k 257 203 254 1.25k
RHG-10-200 2.17k 510 429 514 2.03k
del-24 4.65k 4.75k 4.72k 4.74k 4.66k

graph, k = 256 no replication degree cutdegree connectivity greedy

cnr-2000 19.7k 3.49k 1.68k 15.6k 16.5k
web-Google 1.74k 1.34k 1.24k 1.37k 1.53k
coPapersCiteseer 7.51k 8.08k 7.59k 7.27k 5.49k
coPapersDBLP 12.3k 12.4k 11.9k 11.2k 9.11k
as-skitter 23.1k 11.2k 9.50k 11.3k 12.0k
amazon-2008 8.10k 8.10k 8.11k 8.10k 6.46k
eu-2005 51.7k 20.2k 15.3k 27.4k 29.0k
in-2004 18.3k 9.88k 4.68k 18.1k 14.7k
uk-2002 50.0k 44.5k 26.9k 48.7k 44.3k
arabic-2005 332k 93.8k 84.7k 172k 276k
ba-1M-10 65.1k 63.4k 63.4k 63.5k 61.5k
RHG-1-10 4.93k 998 517 901 4.52k
RHG-1-20 6.26k 1.39k 1.02k 1.34k 5.06k
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RHG-10-100 25.3k 1.62k 880 1.63k 25.1k
RHG-10-200 28.6k 4.98k 1.54k 4.30k 28.2k
del-24 1.51k 1.61k 1.60k 1.61k 1.51k

Table B.2.: Theoretical communication volume (4.1) for di�erent replication heuristics
and counts based on a 1 : 1 relationship between All-To-All and All-Reduce
bandwidth for all input graphs. Each graph was partitioned into k = 16, 64, 256
parts using KaHIP with 4 di�erent random seeds. The plots show the average
bottleneck communication volume and its standard deviation
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B.2. Runtime Measurements for SpMV

Table B.3.: Total bottleneck runtime (ms) for distributed SpMV on 16 nodes for di�erent
replication heuristics, input graphs and numbers of right-hand sides r like in
Table 5.3

graph no repl. degree cutdegree connectivity greedy

r = 1
cnr-2000 0.36(± 0.05) 0.33(± 0.01) 0.27(± 0.05) 0.37(± 0.03) 0.36(± 0.02)
web-Google 0.16(± 0.01) 0.47(± 0.20) 0.18(± 0.00) 0.18(± 0.00) 0.18(± 0.00)
coCiteseer 0.85(± 0.08) 1.14(± 0.13) 0.97(± 0.18) 0.94(± 0.21) 0.87(± 0.06)
coDBLP 0.77(± 0.04) 0.96(± 0.15) 0.90(± 0.35) 1.85(± 1.17) 0.77(± 0.05)
as-skitter 0.62(± 0.03) 0.57(± 0.10) 0.49(± 0.01) 0.63(± 0.07) 0.61(± 0.02)
amazon-2008 0.67(± 0.36) 0.66(± 0.28) 0.53(± 0.21) 0.42(± 0.00) 0.42(± 0.00)
eu-2005 1.24(± 0.14) 1.46(± 0.28) 1.24(± 0.07) 1.25(± 0.16) 1.31(± 0.25)
in-2004 1.18(± 0.36) 1.95(± 1.55) 1.22(± 0.47) 1.24(± 0.60) 1.10(± 0.44)
uk-2002 12.14(± 0.59) 12.10(± 0.42) 12.06(± 0.54) 12.26(± 0.48) 12.09(± 0.45)
arabic-2005 29.05(± 1.99) 31.00(± 2.58) 28.16(± 1.53) 29.41(± 1.48) 29.14(± 1.08)
RHG-1-10 1.07(± 1.56) 0.72(± 0.68) 0.25(± 0.01) 0.72(± 0.73) 0.28(± 0.00)
RHG-1-20 1.57(± 2.17) 2.75(± 2.25) 1.22(± 0.50) 2.47(± 1.14) 0.37(± 0.01)
RHG-10-100 3.94(± 0.60) 4.09(± 0.31) 3.90(± 0.24) 4.05(± 0.37) 3.61(± 0.02)
RHG-10-200 7.15(± 1.30) 6.74(± 0.13) 6.73(± 0.02) 6.75(± 0.09) 6.55(± 0.06)
del-24 3.24(± 0.75) 6.20(± 3.84) 2.63(± 0.17) 3.05(± 0.63) 2.85(± 0.69)

r = 256
cnr-2000 27.40(± 4.98) 14.18(± 1.81) 13.52(± 1.36) 29.75(± 6.06) 29.40(± 5.94)
web-Google 9.33(± 0.14) 16.08(± 1.58) 11.16(± 0.36) 13.27(± 2.47) 11.58(± 1.54)
coCiteseer 33.54(± 0.39) 39.28(± 3.54) 35.09(± 1.40) 40.21(± 8.12) 36.88(± 4.36)
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coDBLP 60.43(± 10.91) 58.73(± 1.87) 56.77(± 0.48) 57.39(± 0.45) 59.82(± 7.10)
as-skitter 57.44(± 3.94) 53.18(± 9.36) 47.65(± 2.16) 58.58(± 2.44) 58.13(± 3.05)
amazon-2008 36.46(± 0.59) 37.26(± 0.50) 37.02(± 0.52) 37.15(± 0.51) 36.90(± 0.37)
eu-2005 122.07(± 10.87) 79.00(± 4.68) 111.57(± 3.92) 138.14(± 20.09) 118.67(± 10.98)
in-2004 53.29(± 1.65) 43.10(± 1.39) 53.34(± 1.75) 56.72(± 2.55) 53.04(± 2.04)
RHG-1-10 37.73(± 2.19) 41.69(± 0.95) 39.80(± 3.11) 41.54(± 1.79) 39.19(± 2.07)
RHG-1-20 21.54(± 0.15) 23.19(± 1.42) 22.23(± 0.06) 22.79(± 1.41) 22.58(± 0.28)

r = 32
uk-2002 56.95(± 2.60) 56.98(± 3.82) 54.63(± 3.46) 56.54(± 3.68) 56.85(± 2.95)
arabic-2005 145.29(± 11.16) 112.20(± 5.72) 113.58(± 11.43) 145.60(± 10.25) 141.11(± 8.67)
RHG-10-100 13.12(± 0.20) 14.99(± 0.18) 14.96(± 0.22) 15.11(± 0.28) 13.37(± 0.25)
RHG-10-200 17.35(± 0.56) 18.53(± 0.34) 18.53(± 0.42) 18.35(± 0.28) 17.46(± 0.60)
del-24 29.54(± 0.44) 30.36(± 0.10) 30.22(± 0.20) 30.91(± 0.74) 30.09(± 0.12)

Table B.4.: Distributed SpMV runtime for di�erent replication heuristics and counts as
well as di�erent numbers r of right-hand sides on the ForHLR2 cluster. Each
graph was partitioned with 4 di�erent random seeds into k = 64 parts, each
kernel was executed 10 times. The plots show the average bottleneck runtime
with its standard deviation.
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Table B.6.: Distributed SpMV runtime like in Table B.4 for k = 16 parts
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